lean2/library/algebra/ordered_ring.lean

350 lines
14 KiB
Text
Raw Normal View History

/-
Copyright (c) 2014 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Module: algebra.ordered_ring
Authors: Jeremy Avigad
Here an "ordered_ring" is partially ordered ring, which is ordered with respect to both a weak
order and an associated strict order. Our numeric structures (int, rat, and real) will be instances
of "linear_ordered_comm_ring". This development is modeled after Isabelle's library.
-/
import algebra.ordered_group algebra.ring
open eq eq.ops
namespace algebra
variable {A : Type}
structure ordered_semiring [class] (A : Type) extends semiring A, ordered_cancel_comm_monoid A :=
(mul_le_mul_of_nonneg_left: ∀a b c, le a b → le zero c → le (mul c a) (mul c b))
(mul_le_mul_of_nonneg_right: ∀a b c, le a b → le zero c → le (mul a c) (mul b c))
(mul_lt_mul_of_pos_left: ∀a b c, lt a b → lt zero c → lt (mul c a) (mul c b))
(mul_lt_mul_of_pos_right: ∀a b c, lt a b → lt zero c → lt (mul a c) (mul b c))
section
variable [s : ordered_semiring A]
variables (a b c d e : A)
include s
-- TODO: remove after we short-circuit class-graph
definition ordered_semiring.to_mul [instance] [priority 100000] : has_mul A :=
has_mul.mk (@ordered_semiring.mul A s)
definition ordered_semiring.to_lt [instance] [priority 100000] : has_lt A :=
has_lt.mk (@ordered_semiring.lt A s)
definition ordered_semiring.to_zero [instance] [priority 100000] : has_zero A :=
has_zero.mk (@ordered_semiring.zero A s)
theorem mul_le_mul_of_nonneg_left {a b c : A} (Hab : a ≤ b) (Hc : 0 ≤ c) :
c * a ≤ c * b := !ordered_semiring.mul_le_mul_of_nonneg_left Hab Hc
theorem mul_le_mul_of_nonneg_right {a b c : A} (Hab : a ≤ b) (Hc : 0 ≤ c) :
a * c ≤ b * c := !ordered_semiring.mul_le_mul_of_nonneg_right Hab Hc
-- TODO: there are four variations, depending on which variables we assume to be nonneg
theorem mul_le_mul {a b c d : A} (Hac : a ≤ c) (Hbd : b ≤ d) (nn_b : 0 ≤ b) (nn_c : 0 ≤ c) :
a * b ≤ c * d :=
calc
a * b ≤ c * b : mul_le_mul_of_nonneg_right Hac nn_b
... ≤ c * d : mul_le_mul_of_nonneg_left Hbd nn_c
theorem mul_nonneg {a b : A} (Ha : a ≥ 0) (Hb : b ≥ 0) : a * b ≥ 0 :=
have H : 0 * b ≤ a * b, from mul_le_mul_of_nonneg_right Ha Hb,
!zero_mul ▸ H
theorem mul_nonpos_of_nonneg_of_nonpos {a b : A} (Ha : a ≥ 0) (Hb : b ≤ 0) : a * b ≤ 0 :=
have H : a * b ≤ a * 0, from mul_le_mul_of_nonneg_left Hb Ha,
!mul_zero ▸ H
theorem mul_nonpos_of_nonpos_of_nonneg {a b : A} (Ha : a ≤ 0) (Hb : b ≥ 0) : a * b ≤ 0 :=
have H : a * b ≤ 0 * b, from mul_le_mul_of_nonneg_right Ha Hb,
!zero_mul ▸ H
theorem mul_lt_mul_of_pos_left {a b c : A} (Hab : a < b) (Hc : 0 < c) :
c * a < c * b := !ordered_semiring.mul_lt_mul_of_pos_left Hab Hc
theorem mul_lt_mul_of_pos_right {a b c : A} (Hab : a < b) (Hc : 0 < c) :
a * c < b * c := !ordered_semiring.mul_lt_mul_of_pos_right Hab Hc
-- TODO: once again, there are variations
theorem mul_lt_mul {a b c d : A} (Hac : a < c) (Hbd : b ≤ d) (pos_b : 0 < b) (nn_c : 0 ≤ c) :
a * b < c * d :=
calc
a * b < c * b : mul_lt_mul_of_pos_right Hac pos_b
... ≤ c * d : mul_le_mul_of_nonneg_left Hbd nn_c
theorem mul_pos {a b : A} (Ha : a > 0) (Hb : b > 0) : a * b > 0 :=
have H : 0 * b < a * b, from mul_lt_mul_of_pos_right Ha Hb,
!zero_mul ▸ H
theorem mul_neg_of_pos_of_neg {a b : A} (Ha : a > 0) (Hb : b < 0) : a * b < 0 :=
have H : a * b < a * 0, from mul_lt_mul_of_pos_left Hb Ha,
!mul_zero ▸ H
theorem mul_neg_of_neg_of_pos {a b : A} (Ha : a < 0) (Hb : b > 0) : a * b < 0 :=
have H : a * b < 0 * b, from mul_lt_mul_of_pos_right Ha Hb,
!zero_mul ▸ H
end
structure linear_ordered_semiring [class] (A : Type)
extends ordered_semiring A, linear_strong_order_pair A
section
variable [s : linear_ordered_semiring A]
variables {a b c : A}
include s
-- TODO: remove after we short-circuit class-graph
definition linear_ordered_semiring.to_mul [instance] [priority 100000] : has_mul A :=
has_mul.mk (@linear_ordered_semiring.mul A s)
definition linear_ordered_semiring.to_lt [instance] [priority 100000] : has_lt A :=
has_lt.mk (@linear_ordered_semiring.lt A s)
definition linear_ordered_semiring.to_zero [instance] [priority 100000] : has_zero A :=
has_zero.mk (@linear_ordered_semiring.zero A s)
theorem lt_of_mul_lt_mul_left (H : c * a < c * b) (Hc : c ≥ 0) : a < b :=
lt_of_not_le
(assume H1 : b ≤ a,
have H2 : c * b ≤ c * a, from mul_le_mul_of_nonneg_left H1 Hc,
not_lt_of_le H2 H)
theorem lt_of_mul_lt_mul_right (H : a * c < b * c) (Hc : c ≥ 0) : a < b :=
lt_of_not_le
(assume H1 : b ≤ a,
have H2 : b * c ≤ a * c, from mul_le_mul_of_nonneg_right H1 Hc,
not_lt_of_le H2 H)
theorem le_of_mul_le_mul_left (H : c * a ≤ c * b) (Hc : c > 0) : a ≤ b :=
le_of_not_lt
(assume H1 : b < a,
have H2 : c * b < c * a, from mul_lt_mul_of_pos_left H1 Hc,
not_le_of_lt H2 H)
theorem le_of_mul_le_mul_right (H : a * c ≤ b * c) (Hc : c > 0) : a ≤ b :=
le_of_not_lt
(assume H1 : b < a,
have H2 : b * c < a * c, from mul_lt_mul_of_pos_right H1 Hc,
not_le_of_lt H2 H)
theorem pos_of_mul_pos_left (H : 0 < a * b) (H1 : 0 ≤ a) : 0 < b :=
lt_of_not_le
(assume H2 : b ≤ 0,
have H3 : a * b ≤ 0, from mul_nonpos_of_nonneg_of_nonpos H1 H2,
not_lt_of_le H3 H)
theorem pos_of_mul_pos_right (H : 0 < a * b) (H1 : 0 ≤ b) : 0 < a :=
lt_of_not_le
(assume H2 : a ≤ 0,
have H3 : a * b ≤ 0, from mul_nonpos_of_nonpos_of_nonneg H2 H1,
not_lt_of_le H3 H)
end
structure ordered_ring [class] (A : Type) extends ring A, ordered_comm_group A :=
(mul_nonneg : ∀a b, le zero a → le zero b → le zero (mul a b))
(mul_pos : ∀a b, lt zero a → lt zero b → lt zero (mul a b))
definition ordered_ring.to_ordered_semiring [instance] [coercion] [s : ordered_ring A] :
ordered_semiring A :=
ordered_semiring.mk ordered_ring.add ordered_ring.add_assoc !ordered_ring.zero
ordered_ring.zero_add ordered_ring.add_zero ordered_ring.add_comm ordered_ring.mul
ordered_ring.mul_assoc !ordered_ring.one ordered_ring.one_mul ordered_ring.mul_one
ordered_ring.left_distrib ordered_ring.right_distrib
zero_mul mul_zero !ordered_ring.zero_ne_one
(@add.left_cancel A _) (@add.right_cancel A _)
ordered_ring.le ordered_ring.le_refl ordered_ring.le_trans ordered_ring.le_antisymm
ordered_ring.lt ordered_ring.lt_iff_le_ne ordered_ring.add_le_add_left
(@le_of_add_le_add_left A _)
(take a b c,
assume Hab : a ≤ b,
assume Hc : 0 ≤ c,
show c * a ≤ c * b,
proof
have H1 : 0 ≤ b - a, from iff.elim_right !sub_nonneg_iff_le Hab,
have H2 : 0 ≤ c * (b - a), from ordered_ring.mul_nonneg _ _ Hc H1,
iff.mp !sub_nonneg_iff_le (!mul_sub_left_distrib ▸ H2)
qed)
(take a b c,
assume Hab : a ≤ b,
assume Hc : 0 ≤ c,
show a * c ≤ b * c,
proof
have H1 : 0 ≤ b - a, from iff.elim_right !sub_nonneg_iff_le Hab,
have H2 : 0 ≤ (b - a) * c, from ordered_ring.mul_nonneg _ _ H1 Hc,
iff.mp !sub_nonneg_iff_le (!mul_sub_right_distrib ▸ H2)
qed)
(take a b c,
assume Hab : a < b,
assume Hc : 0 < c,
show c * a < c * b,
proof
have H1 : 0 < b - a, from iff.elim_right !sub_pos_iff_lt Hab,
have H2 : 0 < c * (b - a), from ordered_ring.mul_pos _ _ Hc H1,
iff.mp !sub_pos_iff_lt (!mul_sub_left_distrib ▸ H2)
qed)
(take a b c,
assume Hab : a < b,
assume Hc : 0 < c,
show a * c < b * c,
proof
have H1 : 0 < b - a, from iff.elim_right !sub_pos_iff_lt Hab,
have H2 : 0 < (b - a) * c, from ordered_ring.mul_pos _ _ H1 Hc,
iff.mp !sub_pos_iff_lt (!mul_sub_right_distrib ▸ H2)
qed)
section
variable [s : ordered_ring A]
variables {a b c : A}
include s
-- TODO: remove after we short-circuit class-graph
definition ordered_ring.to_mul [instance] [priority 100000] : has_mul A :=
has_mul.mk (@ordered_ring.mul A s)
definition ordered_ring.to_lt [instance] [priority 100000] : has_lt A :=
has_lt.mk (@ordered_ring.lt A s)
definition ordered_ring.to_zero [instance] [priority 100000] : has_zero A :=
has_zero.mk (@ordered_ring.zero A s)
theorem mul_le_mul_of_nonpos_left (H : b ≤ a) (Hc : c ≤ 0) : c * a ≤ c * b :=
have Hc' : -c ≥ 0, from iff.mp' !neg_nonneg_iff_nonpos Hc,
have H1 : -c * b ≤ -c * a, from mul_le_mul_of_nonneg_left H Hc',
have H2 : -(c * b) ≤ -(c * a), from !neg_mul_eq_neg_mul⁻¹ ▸ !neg_mul_eq_neg_mul⁻¹ ▸ H1,
iff.mp !neg_le_neg_iff_le H2
theorem mul_le_mul_of_nonpos_right (H : b ≤ a) (Hc : c ≤ 0) : a * c ≤ b * c :=
have Hc' : -c ≥ 0, from iff.mp' !neg_nonneg_iff_nonpos Hc,
have H1 : b * -c ≤ a * -c, from mul_le_mul_of_nonneg_right H Hc',
have H2 : -(b * c) ≤ -(a * c), from !neg_mul_eq_mul_neg⁻¹ ▸ !neg_mul_eq_mul_neg⁻¹ ▸ H1,
iff.mp !neg_le_neg_iff_le H2
theorem mul_nonneg_of_nonpos_of_nonpos (Ha : a ≤ 0) (Hb : b ≤ 0) : 0 ≤ a * b :=
!zero_mul ▸ mul_le_mul_of_nonpos_right Ha Hb
theorem mul_lt_mul_of_neg_left (H : b < a) (Hc : c < 0) : c * a < c * b :=
have Hc' : -c > 0, from iff.mp' !neg_pos_iff_neg Hc,
have H1 : -c * b < -c * a, from mul_lt_mul_of_pos_left H Hc',
have H2 : -(c * b) < -(c * a), from !neg_mul_eq_neg_mul⁻¹ ▸ !neg_mul_eq_neg_mul⁻¹ ▸ H1,
iff.mp !neg_lt_neg_iff_lt H2
theorem mul_lt_mul_of_neg_right (H : b < a) (Hc : c < 0) : a * c < b * c :=
have Hc' : -c > 0, from iff.mp' !neg_pos_iff_neg Hc,
have H1 : b * -c < a * -c, from mul_lt_mul_of_pos_right H Hc',
have H2 : -(b * c) < -(a * c), from !neg_mul_eq_mul_neg⁻¹ ▸ !neg_mul_eq_mul_neg⁻¹ ▸ H1,
iff.mp !neg_lt_neg_iff_lt H2
theorem mul_pos_of_neg_of_neg (Ha : a < 0) (Hb : b < 0) : 0 < a * b :=
!zero_mul ▸ mul_lt_mul_of_neg_right Ha Hb
end
-- TODO: we can eliminate mul_pos_of_pos, but now it is not worth the effort to redeclare the
-- class instance
structure linear_ordered_ring [class] (A : Type) extends ordered_ring A, linear_strong_order_pair A
-- print fields linear_ordered_semiring
definition linear_ordered_ring.to_linear_ordered_semiring [instance] [coercion]
[s : linear_ordered_ring A] :
linear_ordered_semiring A :=
linear_ordered_semiring.mk linear_ordered_ring.add linear_ordered_ring.add_assoc
(@linear_ordered_ring.zero _ _) linear_ordered_ring.zero_add linear_ordered_ring.add_zero
linear_ordered_ring.add_comm linear_ordered_ring.mul linear_ordered_ring.mul_assoc
(@linear_ordered_ring.one _ _) linear_ordered_ring.one_mul linear_ordered_ring.mul_one
linear_ordered_ring.left_distrib linear_ordered_ring.right_distrib
zero_mul mul_zero !ordered_ring.zero_ne_one
(@add.left_cancel A _) (@add.right_cancel A _)
linear_ordered_ring.le linear_ordered_ring.le_refl linear_ordered_ring.le_trans
linear_ordered_ring.le_antisymm
linear_ordered_ring.lt linear_ordered_ring.lt_iff_le_ne linear_ordered_ring.add_le_add_left
(@le_of_add_le_add_left A _)
(@mul_le_mul_of_nonneg_left A _) (@mul_le_mul_of_nonneg_right A _)
(@mul_lt_mul_of_pos_left A _) (@mul_lt_mul_of_pos_right A _)
linear_ordered_ring.le_iff_lt_or_eq linear_ordered_ring.le_total
structure linear_ordered_comm_ring [class] (A : Type) extends linear_ordered_ring A, comm_monoid A
-- Linearity implies no zero divisors. Doesn't need commutativity.
definition linear_ordered_comm_ring.to_integral_domain [instance] [coercion]
[s: linear_ordered_comm_ring A] :
integral_domain A :=
integral_domain.mk linear_ordered_comm_ring.add linear_ordered_comm_ring.add_assoc
(@linear_ordered_comm_ring.zero _ _)
linear_ordered_comm_ring.zero_add linear_ordered_comm_ring.add_zero
linear_ordered_comm_ring.neg linear_ordered_comm_ring.add_left_inv
linear_ordered_comm_ring.add_comm
linear_ordered_comm_ring.mul linear_ordered_comm_ring.mul_assoc
(@linear_ordered_comm_ring.one _ _)
linear_ordered_comm_ring.one_mul linear_ordered_comm_ring.mul_one
linear_ordered_comm_ring.left_distrib linear_ordered_comm_ring.right_distrib
(@linear_ordered_comm_ring.zero_ne_one _ _)
linear_ordered_comm_ring.mul_comm
(take a b,
assume H : a * b = 0,
show a = 0 b = 0, from
lt.by_cases
(assume Ha : 0 < a,
lt.by_cases
(assume Hb : 0 < b, absurd (H ▸ mul_pos Ha Hb) (lt.irrefl 0))
(assume Hb : 0 = b, or.inr (Hb⁻¹))
(assume Hb : 0 > b, absurd (H ▸ mul_neg_of_pos_of_neg Ha Hb) (lt.irrefl 0)))
(assume Ha : 0 = a, or.inl (Ha⁻¹))
(assume Ha : 0 > a,
lt.by_cases
(assume Hb : 0 < b, absurd (H ▸ mul_neg_of_neg_of_pos Ha Hb) (lt.irrefl 0))
(assume Hb : 0 = b, or.inr (Hb⁻¹))
(assume Hb : 0 > b, absurd (H ▸ mul_pos_of_neg_of_neg Ha Hb) (lt.irrefl 0))))
section
variable [s : linear_ordered_ring A]
variables (a b c : A)
include s
theorem mul_self_nonneg : a * a ≥ 0 :=
or.elim (le.total 0 a)
(assume H : a ≥ 0, mul_nonneg H H)
(assume H : a ≤ 0, mul_nonneg_of_nonpos_of_nonpos H H)
theorem zero_le_one : 0 ≤ 1 := one_mul 1 ▸ mul_self_nonneg 1
theorem zero_lt_one : 0 < 1 := lt_of_le_of_ne zero_le_one zero_ne_one
-- TODO: remove after we short-circuit class-graph
definition linear_ordered_ring.to_mul [instance] [priority 100000] : has_mul A :=
has_mul.mk (@linear_ordered_ring.mul A s)
definition linear_ordered_ring.to_lt [instance] [priority 100000] : has_lt A :=
has_lt.mk (@linear_ordered_ring.lt A s)
definition linear_ordered_ring.to_zero [instance] [priority 100000] : has_zero A :=
has_zero.mk (@linear_ordered_ring.zero A s)
theorem pos_and_pos_or_neg_and_neg_of_mul_pos {a b : A} (Hab : a * b > 0) :
(a > 0 ∧ b > 0) (a < 0 ∧ b < 0) :=
lt.by_cases
(assume Ha : 0 < a,
lt.by_cases
(assume Hb : 0 < b, or.inl (and.intro Ha Hb))
(assume Hb : 0 = b,
absurd (!mul_zero ▸ Hb⁻¹ ▸ Hab) (lt.irrefl 0))
(assume Hb : b < 0,
absurd Hab (lt.asymm (mul_neg_of_pos_of_neg Ha Hb))))
(assume Ha : 0 = a,
absurd (!zero_mul ▸ Ha⁻¹ ▸ Hab) (lt.irrefl 0))
(assume Ha : a < 0,
lt.by_cases
(assume Hb : 0 < b,
absurd Hab (lt.asymm (mul_neg_of_neg_of_pos Ha Hb)))
(assume Hb : 0 = b,
absurd (!mul_zero ▸ Hb⁻¹ ▸ Hab) (lt.irrefl 0))
(assume Hb : b < 0, or.inr (and.intro Ha Hb)))
end
/-
Still left to do:
Isabelle's library has all kinds of cancelation rules for the simplifier, search on
mult_le_cancel_right1 in Rings.thy.
Properties of abs, sgn, and dvd.
Multiplication and one, starting with mult_right_le_one_le.
-/
end algebra