lean2/tests/lean/hott/congr_tac.hlean

47 lines
1.1 KiB
Text
Raw Normal View History

example (f : nat → nat → nat) (a b c : nat) : b = c → f a b = f a c :=
begin
intro bc,
congruence,
assumption
end
example (f g : nat → nat → nat) (a b c : nat) : f = g → b = c → f a b = g a c :=
begin
intro fg bc,
congruence,
exact fg,
exact bc
end
example (f g : nat → nat → nat) (a b c : nat) : f = g → b = c → f a b = g a c :=
by intros; congruence; assumption
inductive list (A : Type) :=
| nil {} : list A
| cons : A → list A → list A
namespace list
notation `[` a `]` := list.cons a list.nil
notation `[` l:(foldr `,` (h t, cons h t) nil `]`) := l
notation h :: t := cons h t
variable {T : Type}
definition append : list T → list T → list T
| [] l := l
| (h :: s) t := h :: (append s t)
notation l₁ ++ l₂ := append l₁ l₂
end list
open list
example (a b : nat) : a = b → [a] ++ [b] = [b] ++ [a] :=
begin
intro ab,
congruence,
{congruence,
exact ab},
{congruence,
exact (eq.symm ab)}
end
example (a b : nat) : a = b → [a] ++ [b] = [b] ++ [a] :=
by intros; repeat (congruence | assumption | apply eq.symm)