2014-12-03 06:43:51 +00:00
|
|
|
|
-- Copyright (c) 2014 Jakob von Raumer. All rights reserved.
|
|
|
|
|
-- Released under Apache 2.0 license as described in the file LICENSE.
|
|
|
|
|
-- Authors: Floris van Doorn, Jakob von Raumer
|
|
|
|
|
|
|
|
|
|
import .basic .morphism hott.types.prod
|
|
|
|
|
|
|
|
|
|
open path precategory sigma sigma.ops equiv is_equiv function truncation
|
|
|
|
|
open prod
|
|
|
|
|
|
|
|
|
|
namespace morphism
|
|
|
|
|
variables {ob : Type} [C : precategory ob] include C
|
|
|
|
|
variables {a b c : ob} {g : b ⟶ c} {f : a ⟶ b} {h : b ⟶ a}
|
|
|
|
|
|
|
|
|
|
-- "is_iso f" is equivalent to a certain sigma type
|
2014-12-03 18:54:57 +00:00
|
|
|
|
definition sigma_char (f : hom a b) :
|
2014-12-03 06:43:51 +00:00
|
|
|
|
(Σ (g : hom b a), (g ∘ f ≈ id) × (f ∘ g ≈ id)) ≃ is_iso f :=
|
|
|
|
|
begin
|
|
|
|
|
fapply (equiv.mk),
|
|
|
|
|
intro S, apply is_iso.mk,
|
|
|
|
|
exact (pr₁ S.2),
|
|
|
|
|
exact (pr₂ S.2),
|
|
|
|
|
fapply adjointify,
|
|
|
|
|
intro H, apply (is_iso.rec_on H), intros (g, η, ε),
|
|
|
|
|
exact (dpair g (pair η ε)),
|
|
|
|
|
intro H, apply (is_iso.rec_on H), intros (g, η, ε), apply idp,
|
|
|
|
|
intro S, apply (sigma.rec_on S), intros (g, ηε),
|
|
|
|
|
apply (prod.rec_on ηε), intros (η, ε), apply idp,
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
-- The structure for isomorphism can be characterized up to equivalence
|
|
|
|
|
-- by a sigma type.
|
|
|
|
|
definition sigma_is_iso_equiv ⦃a b : ob⦄ : (Σ (f : hom a b), is_iso f) ≃ (a ≅ b) :=
|
|
|
|
|
begin
|
|
|
|
|
fapply (equiv.mk),
|
|
|
|
|
intro S, apply isomorphic.mk, apply (S.2),
|
|
|
|
|
fapply adjointify,
|
|
|
|
|
intro p, apply (isomorphic.rec_on p), intros (f, H),
|
|
|
|
|
exact (dpair f H),
|
|
|
|
|
intro p, apply (isomorphic.rec_on p), intros (f, H), apply idp,
|
|
|
|
|
intro S, apply (sigma.rec_on S), intros (f, H), apply idp,
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
-- The statement "f is an isomorphism" is a mere proposition
|
|
|
|
|
definition is_hprop_of_is_iso : is_hset (is_iso f) :=
|
|
|
|
|
begin
|
|
|
|
|
apply trunc_equiv,
|
2014-12-03 18:54:57 +00:00
|
|
|
|
apply (equiv.to_is_equiv (!sigma_char)),
|
2014-12-05 05:22:13 +00:00
|
|
|
|
apply trunc_sigma,
|
2014-12-03 06:43:51 +00:00
|
|
|
|
apply (!homH),
|
|
|
|
|
intro g, apply trunc_prod,
|
|
|
|
|
repeat (apply succ_is_trunc; apply trunc_succ; apply (!homH)),
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
-- The type of isomorphisms between two objects is a set
|
|
|
|
|
definition is_hset_iso : is_hset (a ≅ b) :=
|
|
|
|
|
begin
|
|
|
|
|
apply trunc_equiv,
|
|
|
|
|
apply (equiv.to_is_equiv (!sigma_is_iso_equiv)),
|
2014-12-05 05:22:13 +00:00
|
|
|
|
apply trunc_sigma,
|
2014-12-03 06:43:51 +00:00
|
|
|
|
apply homH,
|
|
|
|
|
intro f, apply is_hprop_of_is_iso,
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
-- In a precategory, equal objects are isomorphic
|
|
|
|
|
definition iso_of_path (p : a ≈ b) : isomorphic a b :=
|
|
|
|
|
path.rec_on p (isomorphic.mk id)
|
|
|
|
|
|
|
|
|
|
end morphism
|