2013-12-19 05:24:04 +00:00
|
|
|
|
Definition Set (A : Type) : Type := A → Bool
|
2013-12-19 05:03:16 +00:00
|
|
|
|
|
2013-12-19 05:18:45 +00:00
|
|
|
|
Definition element {A : Type} (x : A) (s : Set A) := s x
|
2013-12-19 05:03:16 +00:00
|
|
|
|
Infix 60 ∈ : element
|
|
|
|
|
|
2013-12-19 05:18:45 +00:00
|
|
|
|
Definition subset {A : Type} (s1 : Set A) (s2 : Set A) := ∀ x, x ∈ s1 ⇒ x ∈ s2
|
2013-12-19 05:03:16 +00:00
|
|
|
|
Infix 50 ⊆ : subset
|
|
|
|
|
|
2013-12-19 05:18:45 +00:00
|
|
|
|
Theorem SubsetProp {A : Type} {s1 s2 : Set A} {x : A} (H1 : s1 ⊆ s2) (H2 : x ∈ s1) : x ∈ s2 :=
|
2013-12-19 05:03:16 +00:00
|
|
|
|
MP (ForallElim H1 x) H2
|
|
|
|
|
|
2013-12-19 05:18:45 +00:00
|
|
|
|
Theorem SubsetTrans {A : Type} {s1 s2 s3 : Set A} (H1 : s1 ⊆ s2) (H2 : s2 ⊆ s3) : s1 ⊆ s3 :=
|
2013-12-19 05:03:16 +00:00
|
|
|
|
ForallIntro (λ x,
|
|
|
|
|
Discharge (λ Hin : x ∈ s1,
|
|
|
|
|
let L1 : x ∈ s2 := SubsetProp H1 Hin,
|
|
|
|
|
L2 : x ∈ s3 := SubsetProp H2 L1
|
|
|
|
|
in L2)).
|
|
|
|
|
|
|
|
|
|
Definition transitive {A : Type} (R : A → A → Bool) := ∀ x y z, R x y ⇒ R y z ⇒ R x z
|
|
|
|
|
|
2013-12-22 01:02:16 +00:00
|
|
|
|
Theorem SubsetTrans2 {A : Type} : transitive (@subset A) :=
|
2013-12-19 05:03:16 +00:00
|
|
|
|
ForallIntro (λ s1, ForallIntro (λ s2, ForallIntro (λ s3,
|
|
|
|
|
Discharge (λ H1, (Discharge (λ H2,
|
|
|
|
|
SubsetTrans H1 H2)))))).
|
|
|
|
|
|
2013-12-19 05:18:45 +00:00
|
|
|
|
Theorem SubsetRefl {A : Type} (s : Set A) : s ⊆ s :=
|
2013-12-19 05:03:16 +00:00
|
|
|
|
ForallIntro (λ x, Discharge (λ H : x ∈ s, H))
|
|
|
|
|
|
2013-12-19 05:18:45 +00:00
|
|
|
|
Definition union {A : Type} (s1 : Set A) (s2 : Set A) := λ x, x ∈ s1 ∨ x ∈ s2
|
2013-12-19 05:03:16 +00:00
|
|
|
|
Infix 55 ∪ : union
|