lean2/library/standard/struc/relation.lean

173 lines
5.6 KiB
Text
Raw Normal View History

----------------------------------------------------------------------------------------------------
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
-- Released under Apache 2.0 license as described in the file LICENSE.
-- Author: Jeremy Avigad
----------------------------------------------------------------------------------------------------
import logic.connectives.prop
-- General properties of relations
-- -------------------------------
namespace relation
abbreviation reflexive {T : Type} (R : T → T → Type) : Type := ∀x, R x x
abbreviation symmetric {T : Type} (R : T → T → Type) : Type := ∀x y, R x y → R y x
abbreviation transitive {T : Type} (R : T → T → Type) : Type := ∀x y z, R x y → R y z → R x z
namespace is_reflexive
inductive class {T : Type} (R : T → T → Type) : Prop :=
| mk : reflexive R → class R
abbreviation app ⦃T : Type⦄ {R : T → T → Type} (C : class R) : reflexive R
:= class_rec (λu, u) C
abbreviation infer ⦃T : Type⦄ {R : T → T → Type} {C : class R} : reflexive R
:= class_rec (λu, u) C
end is_reflexive
namespace is_symmetric
inductive class {T : Type} (R : T → T → Type) : Prop :=
| mk : symmetric R → class R
abbreviation app ⦃T : Type⦄ {R : T → T → Type} (C : class R) ⦃x y : T⦄ (H : R x y) : R y x
:= class_rec (λu, u) C x y H
abbreviation infer ⦃T : Type⦄ {R : T → T → Type} {C : class R} ⦃x y : T⦄ (H : R x y) : R y x
:= class_rec (λu, u) C x y H
end is_symmetric
namespace is_transitive
inductive class {T : Type} (R : T → T → Type) : Prop :=
| mk : transitive R → class R
abbreviation app ⦃T : Type⦄ {R : T → T → Type} (C : class R) ⦃x y z : T⦄ (H1 : R x y)
(H2 : R y z) : R x z
:= class_rec (λu, u) C x y z H1 H2
abbreviation infer ⦃T : Type⦄ {R : T → T → Type} {C : class R} ⦃x y z : T⦄ (H1 : R x y)
(H2 : R y z) : R x z
:= class_rec (λu, u) C x y z H1 H2
end is_transitive
-- Congruence for unary and binary functions
-- -----------------------------------------
namespace congr
inductive class {T1 : Type} (R1 : T1 → T1 → Prop) {T2 : Type} (R2 : T2 → T2 → Prop)
(f : T1 → T2) : Prop :=
| mk : (∀x y, R1 x y → R2 (f x) (f y)) → class R1 R2 f
abbreviation app {T1 : Type} {R1 : T1 → T1 → Prop} {T2 : Type} {R2 : T2 → T2 → Prop}
{f : T1 → T2} (C : class R1 R2 f) ⦃x y : T1⦄ : R1 x y → R2 (f x) (f y) :=
class_rec (λu, u) C x y
theorem infer {T1 : Type} (R1 : T1 → T1 → Prop) {T2 : Type} (R2 : T2 → T2 → Prop)
(f : T1 → T2) {C : class R1 R2 f} ⦃x y : T1⦄ : R1 x y → R2 (f x) (f y) :=
class_rec (λu, u) C x y
-- for binary functions
inductive class2 {T1 : Type} (R1 : T1 → T1 → Prop) {T2 : Type} (R2 : T2 → T2 → Prop)
{T3 : Type} (R3 : T3 → T3 → Prop) (f : T1 → T2 → T3) : Prop :=
| mk2 : (∀(x1 y1 : T1) (x2 y2 : T2), R1 x1 y1 → R2 x2 y2 → R3 (f x1 x2) (f y1 y2)) →
class2 R1 R2 R3 f
abbreviation app2 {T1 : Type} {R1 : T1 → T1 → Prop} {T2 : Type} {R2 : T2 → T2 → Prop}
{T3 : Type} {R3 : T3 → T3 → Prop}
{f : T1 → T2 → T3} (C : class2 R1 R2 R3 f) ⦃x1 y1 : T1⦄ ⦃x2 y2 : T2⦄
: R1 x1 y1 → R2 x2 y2 → R3 (f x1 x2) (f y1 y2) :=
class2_rec (λu, u) C x1 y1 x2 y2
-- ### general tools to build instances
theorem compose
{T2 : Type} {R2 : T2 → T2 → Prop}
{T3 : Type} {R3 : T3 → T3 → Prop}
{g : T2 → T3} (C2 : congr.class R2 R3 g)
{{T1 : Type}} {R1 : T1 → T1 → Prop}
{f : T1 → T2} (C1 : congr.class R1 R2 f) :
congr.class R1 R3 (λx, g (f x)) :=
mk (λx1 x2 H, app C2 (app C1 H))
theorem compose21
{T2 : Type} {R2 : T2 → T2 → Prop}
{T3 : Type} {R3 : T3 → T3 → Prop}
{T4 : Type} {R4 : T4 → T4 → Prop}
{g : T2 → T3 → T4} (C3 : congr.class2 R2 R3 R4 g)
⦃T1 : Type⦄ {R1 : T1 → T1 → Prop}
{f1 : T1 → T2} (C1 : congr.class R1 R2 f1)
{f2 : T1 → T3} (C2 : congr.class R1 R3 f2) :
congr.class R1 R4 (λx, g (f1 x) (f2 x)) :=
mk (λx1 x2 H, app2 C3 (app C1 H) (app C2 H))
theorem const {T2 : Type} (R2 : T2 → T2 → Prop) (H : relation.reflexive R2)
⦃T1 : Type⦄ (R1 : T1 → T1 → Prop) (c : T2) :
class R1 R2 (λu : T1, c) :=
mk (λx y H1, H c)
end congr
end relation
-- TODO: notice these can't be in the congr namespace, if we want it visible without
-- using congr.
theorem congr_const [instance] {T2 : Type} (R2 : T2 → T2 → Prop)
{C : relation.is_reflexive.class R2} ⦃T1 : Type⦄ (R1 : T1 → T1 → Prop) (c : T2) :
relation.congr.class R1 R2 (λu : T1, c) :=
relation.congr.const R2 (relation.is_reflexive.app C) R1 c
theorem congr_trivial [instance] {T : Type} (R : T → T → Prop) :
relation.congr.class R R (λu, u) :=
relation.congr.mk (λx y H, H)
-- Relations that can be coerced to functions / implications
-- ---------------------------------------------------------
namespace relation
namespace mp_like
inductive class {R : Type → Type → Prop} {a b : Type} (H : R a b) : Prop :=
| mk {} : (a → b) → @class R a b H
definition app {R : Type → Type → Prop} {a : Type} {b : Type} {H : R a b}
(C : class H) : a → b := class_rec (λx, x) C
definition infer ⦃R : Type → Type → Prop⦄ {a : Type} {b : Type} (H : R a b)
{C : class H} : a → b := class_rec (λx, x) C
end mp_like
-- Notation for operations on general symbols
-- ------------------------------------------
namespace operations
definition refl := is_reflexive.infer
definition symm := is_symmetric.infer
definition trans := is_transitive.infer
definition mp := mp_like.infer
end operations
namespace symbols
postfix `⁻¹`:100 := operations.symm
infixr `⬝`:75 := operations.trans
end symbols
end relation