302 lines
12 KiB
Text
302 lines
12 KiB
Text
|
/-
|
|||
|
Copyright (c) 2015 Floris van Doorn. All rights reserved.
|
|||
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|||
|
Authors: Floris van Doorn
|
|||
|
|
|||
|
Limits in a category
|
|||
|
-/
|
|||
|
|
|||
|
import .constructions.cone .groupoid .constructions.discrete .constructions.product
|
|||
|
.constructions.finite_cats
|
|||
|
|
|||
|
open is_trunc functor nat_trans eq
|
|||
|
|
|||
|
namespace category
|
|||
|
|
|||
|
variables {ob : Type} [C : precategory ob] {c c' : ob} (D I : Precategory)
|
|||
|
include C
|
|||
|
|
|||
|
definition is_terminal [class] (c : ob) := Πd, is_contr (d ⟶ c)
|
|||
|
definition is_contr_of_is_terminal [instance] (c d : ob) [H : is_terminal d]
|
|||
|
: is_contr (c ⟶ d) :=
|
|||
|
H c
|
|||
|
|
|||
|
definition terminal_morphism (c c' : ob) [H : is_terminal c'] : c ⟶ c' :=
|
|||
|
!center
|
|||
|
|
|||
|
definition hom_terminal_eq [H : is_terminal c'] (f f' : c ⟶ c') : f = f' :=
|
|||
|
!is_hprop.elim
|
|||
|
|
|||
|
definition eq_terminal_morphism [H : is_terminal c'] (f : c ⟶ c') : f = terminal_morphism c c' :=
|
|||
|
!is_hprop.elim
|
|||
|
|
|||
|
definition terminal_iso_terminal {c c' : ob} (H : is_terminal c) (K : is_terminal c') : c ≅ c' :=
|
|||
|
iso.MK !terminal_morphism !terminal_morphism !hom_terminal_eq !hom_terminal_eq
|
|||
|
|
|||
|
omit C
|
|||
|
|
|||
|
structure has_terminal_object [class] (D : Precategory) :=
|
|||
|
(d : D)
|
|||
|
(is_term : is_terminal d)
|
|||
|
|
|||
|
abbreviation terminal_object [constructor] := @has_terminal_object.d
|
|||
|
attribute has_terminal_object.is_term [instance]
|
|||
|
|
|||
|
definition terminal_object_iso_terminal_object (H₁ H₂ : has_terminal_object D)
|
|||
|
: @terminal_object D H₁ ≅ @terminal_object D H₂ :=
|
|||
|
terminal_iso_terminal (@has_terminal_object.is_term D H₁) (@has_terminal_object.is_term D H₂)
|
|||
|
|
|||
|
definition has_limits_of_shape [class] := Π(F : I ⇒ D), has_terminal_object (cone F)
|
|||
|
|
|||
|
variables {I D}
|
|||
|
definition has_terminal_object_of_has_limits_of_shape [instance] [H : has_limits_of_shape D I]
|
|||
|
(F : I ⇒ D) : has_terminal_object (cone F) :=
|
|||
|
H F
|
|||
|
|
|||
|
variables (F : I ⇒ D) [H : has_limits_of_shape D I] {i j : I}
|
|||
|
include H
|
|||
|
|
|||
|
definition limit_cone : cone F := !terminal_object
|
|||
|
|
|||
|
definition is_terminal_limit_cone [instance] : is_terminal (limit_cone F) :=
|
|||
|
has_terminal_object.is_term _
|
|||
|
|
|||
|
definition limit_object : D :=
|
|||
|
cone_obj.c (limit_cone F)
|
|||
|
|
|||
|
definition limit_nat_trans : constant_functor I (limit_object F) ⟹ F :=
|
|||
|
cone_obj.η (limit_cone F)
|
|||
|
|
|||
|
definition limit_morphism (i : I) : limit_object F ⟶ F i :=
|
|||
|
limit_nat_trans F i
|
|||
|
|
|||
|
variable {H}
|
|||
|
theorem limit_commute {i j : I} (f : i ⟶ j)
|
|||
|
: to_fun_hom F f ∘ limit_morphism F i = limit_morphism F j :=
|
|||
|
naturality (limit_nat_trans F) f ⬝ !id_right
|
|||
|
|
|||
|
variable [H]
|
|||
|
definition limit_cone_obj [constructor] {d : D} {η : Πi, d ⟶ F i}
|
|||
|
(p : Π⦃i j : I⦄ (f : i ⟶ j), to_fun_hom F f ∘ η i = η j) : cone_obj F :=
|
|||
|
cone_obj.mk d (nat_trans.mk η (λa b f, p f ⬝ !id_right⁻¹))
|
|||
|
|
|||
|
variable {H}
|
|||
|
definition hom_limit {d : D} (η : Πi, d ⟶ F i)
|
|||
|
(p : Π⦃i j : I⦄ (f : i ⟶ j), to_fun_hom F f ∘ η i = η j) : d ⟶ limit_object F :=
|
|||
|
cone_hom.f (@(terminal_morphism (limit_cone_obj F p) _) (is_terminal_limit_cone _))
|
|||
|
|
|||
|
definition hom_limit_commute {d : D} (η : Πi, d ⟶ F i)
|
|||
|
(p : Π⦃i j : I⦄ (f : i ⟶ j), to_fun_hom F f ∘ η i = η j) (i : I)
|
|||
|
: limit_morphism F i ∘ hom_limit F η p = η i :=
|
|||
|
cone_hom.p (@(terminal_morphism (limit_cone_obj F p) _) (is_terminal_limit_cone _)) i
|
|||
|
|
|||
|
definition limit_cone_hom [constructor] {d : D} {η : Πi, d ⟶ F i}
|
|||
|
(p : Π⦃i j : I⦄ (f : i ⟶ j), to_fun_hom F f ∘ η i = η j) {h : d ⟶ limit_object F}
|
|||
|
(q : Πi, limit_morphism F i ∘ h = η i) : cone_hom (limit_cone_obj F p) (limit_cone F) :=
|
|||
|
cone_hom.mk h q
|
|||
|
|
|||
|
variable {F}
|
|||
|
theorem eq_hom_limit {d : D} {η : Πi, d ⟶ F i}
|
|||
|
(p : Π⦃i j : I⦄ (f : i ⟶ j), to_fun_hom F f ∘ η i = η j) {h : d ⟶ limit_object F}
|
|||
|
(q : Πi, limit_morphism F i ∘ h = η i) : h = hom_limit F η p :=
|
|||
|
ap cone_hom.f (@eq_terminal_morphism _ _ _ _ (is_terminal_limit_cone _) (limit_cone_hom F p q))
|
|||
|
|
|||
|
theorem limit_cone_unique {d : D} {η : Πi, d ⟶ F i}
|
|||
|
(p : Π⦃i j : I⦄ (f : i ⟶ j), to_fun_hom F f ∘ η i = η j)
|
|||
|
{h₁ : d ⟶ limit_object F} (q₁ : Πi, limit_morphism F i ∘ h₁ = η i)
|
|||
|
{h₂ : d ⟶ limit_object F} (q₂ : Πi, limit_morphism F i ∘ h₂ = η i): h₁ = h₂ :=
|
|||
|
eq_hom_limit p q₁ ⬝ (eq_hom_limit p q₂)⁻¹
|
|||
|
|
|||
|
omit H
|
|||
|
|
|||
|
-- notation `noinstances` t:max := by+ with_options [elaborator.ignore_instances true] (exact t)
|
|||
|
-- definition noinstance (t : tactic) : tactic := with_options [elaborator.ignore_instances true] t
|
|||
|
|
|||
|
variable (F)
|
|||
|
definition limit_object_iso_limit_object [constructor] (H₁ H₂ : has_limits_of_shape D I) :
|
|||
|
@(limit_object F) H₁ ≅ @(limit_object F) H₂ :=
|
|||
|
begin
|
|||
|
fapply iso.MK,
|
|||
|
{ apply hom_limit, apply @(limit_commute F) H₁},
|
|||
|
{ apply @(hom_limit F) H₁, apply limit_commute},
|
|||
|
{ exact abstract begin fapply limit_cone_unique,
|
|||
|
{ apply limit_commute},
|
|||
|
{ intro i, rewrite [assoc, hom_limit_commute], apply hom_limit_commute},
|
|||
|
{ intro i, apply id_right} end end},
|
|||
|
{ exact abstract begin fapply limit_cone_unique,
|
|||
|
{ apply limit_commute},
|
|||
|
{ intro i, rewrite [assoc, hom_limit_commute], apply hom_limit_commute},
|
|||
|
{ intro i, apply id_right} end end}
|
|||
|
end
|
|||
|
|
|||
|
section bin_products
|
|||
|
open bool prod.ops
|
|||
|
definition has_binary_products [reducible] (D : Precategory) := has_limits_of_shape D c2
|
|||
|
variables [K : has_binary_products D] (d d' : D)
|
|||
|
include K
|
|||
|
|
|||
|
definition product_object : D :=
|
|||
|
limit_object (c2_functor D d d')
|
|||
|
|
|||
|
infixr × := product_object
|
|||
|
|
|||
|
definition pr1 : d × d' ⟶ d :=
|
|||
|
limit_morphism (c2_functor D d d') ff
|
|||
|
|
|||
|
definition pr2 : d × d' ⟶ d' :=
|
|||
|
limit_morphism (c2_functor D d d') tt
|
|||
|
|
|||
|
variables {d d'}
|
|||
|
definition hom_product {x : D} (f : x ⟶ d) (g : x ⟶ d') : x ⟶ d × d' :=
|
|||
|
hom_limit (c2_functor D d d') (bool.rec f g)
|
|||
|
(by intro b₁ b₂ f; induction b₁: induction b₂: esimp at *; try contradiction: apply id_left)
|
|||
|
|
|||
|
definition pr1_hom_product {x : D} (f : x ⟶ d) (g : x ⟶ d') : !pr1 ∘ hom_product f g = f :=
|
|||
|
hom_limit_commute (c2_functor D d d') (bool.rec f g) _ ff
|
|||
|
|
|||
|
definition pr2_hom_product {x : D} (f : x ⟶ d) (g : x ⟶ d') : !pr2 ∘ hom_product f g = g :=
|
|||
|
hom_limit_commute (c2_functor D d d') (bool.rec f g) _ tt
|
|||
|
|
|||
|
theorem eq_hom_product {x : D} {f : x ⟶ d} {g : x ⟶ d'} {h : x ⟶ d × d'}
|
|||
|
(p : !pr1 ∘ h = f) (q : !pr2 ∘ h = g) : h = hom_product f g :=
|
|||
|
eq_hom_limit _ (bool.rec p q)
|
|||
|
|
|||
|
theorem product_cone_unique {x : D} {f : x ⟶ d} {g : x ⟶ d'}
|
|||
|
{h₁ : x ⟶ d × d'} (p₁ : !pr1 ∘ h₁ = f) (q₁ : !pr2 ∘ h₁ = g)
|
|||
|
{h₂ : x ⟶ d × d'} (p₂ : !pr1 ∘ h₂ = f) (q₂ : !pr2 ∘ h₂ = g)
|
|||
|
: h₁ = h₂ :=
|
|||
|
eq_hom_product p₁ q₁ ⬝ (eq_hom_product p₂ q₂)⁻¹
|
|||
|
|
|||
|
variable (D)
|
|||
|
definition product_functor [constructor] : D ×c D ⇒ D :=
|
|||
|
functor.mk
|
|||
|
(λx, product_object x.1 x.2)
|
|||
|
(λx y f, hom_product (f.1 ∘ !pr1) (f.2 ∘ !pr2))
|
|||
|
abstract begin intro x, symmetry, apply eq_hom_product: apply comp_id_eq_id_comp end end
|
|||
|
abstract begin intro x y z g f, symmetry, apply eq_hom_product,
|
|||
|
rewrite [assoc,pr1_hom_product,-assoc,pr1_hom_product,assoc],
|
|||
|
rewrite [assoc,pr2_hom_product,-assoc,pr2_hom_product,assoc] end end
|
|||
|
omit K
|
|||
|
variables {D} (d d')
|
|||
|
|
|||
|
definition product_object_iso_product_object [constructor] (H₁ H₂ : has_binary_products D) :
|
|||
|
@product_object D H₁ d d' ≅ @product_object D H₂ d d' :=
|
|||
|
limit_object_iso_limit_object _ H₁ H₂
|
|||
|
|
|||
|
end bin_products
|
|||
|
|
|||
|
section equalizers
|
|||
|
open bool prod.ops sum equalizer_diagram_hom
|
|||
|
definition has_equalizers [reducible] (D : Precategory) := has_limits_of_shape D equalizer_diagram
|
|||
|
variables [K : has_equalizers D]
|
|||
|
include K
|
|||
|
|
|||
|
variables {d d' x : D} (f g : d ⟶ d')
|
|||
|
definition equalizer_object : D :=
|
|||
|
limit_object (equalizer_diagram_functor D f g)
|
|||
|
|
|||
|
definition equalizer : equalizer_object f g ⟶ d :=
|
|||
|
limit_morphism (equalizer_diagram_functor D f g) ff
|
|||
|
|
|||
|
theorem equalizes : f ∘ equalizer f g = g ∘ equalizer f g :=
|
|||
|
limit_commute (equalizer_diagram_functor D f g) (inl f1) ⬝
|
|||
|
(limit_commute (equalizer_diagram_functor D f g) (inl f2))⁻¹
|
|||
|
|
|||
|
variables {f g}
|
|||
|
definition hom_equalizer (h : x ⟶ d) (p : f ∘ h = g ∘ h) : x ⟶ equalizer_object f g :=
|
|||
|
hom_limit (equalizer_diagram_functor D f g)
|
|||
|
(bool.rec h (g ∘ h))
|
|||
|
begin
|
|||
|
intro b₁ b₂ i; induction i with j j: induction j,
|
|||
|
-- report(?) "esimp" is super slow here
|
|||
|
exact p, reflexivity, apply id_left
|
|||
|
end
|
|||
|
|
|||
|
definition equalizer_hom_equalizer (h : x ⟶ d) (p : f ∘ h = g ∘ h)
|
|||
|
: equalizer f g ∘ hom_equalizer h p = h :=
|
|||
|
hom_limit_commute (equalizer_diagram_functor D f g) (bool.rec h (g ∘ h)) _ ff
|
|||
|
|
|||
|
theorem eq_hom_equalizer {h : x ⟶ d} (p : f ∘ h = g ∘ h) {i : x ⟶ equalizer_object f g}
|
|||
|
(q : equalizer f g ∘ i = h) : i = hom_equalizer h p :=
|
|||
|
eq_hom_limit _ (bool.rec q
|
|||
|
begin
|
|||
|
refine ap (λx, x ∘ i) (limit_commute (equalizer_diagram_functor D f g) (inl f2))⁻¹ ⬝ _,
|
|||
|
refine !assoc⁻¹ ⬝ _,
|
|||
|
exact ap (λx, _ ∘ x) q
|
|||
|
end)
|
|||
|
|
|||
|
theorem equalizer_cone_unique {h : x ⟶ d} (p : f ∘ h = g ∘ h)
|
|||
|
{i₁ : x ⟶ equalizer_object f g} (q₁ : equalizer f g ∘ i₁ = h)
|
|||
|
{i₂ : x ⟶ equalizer_object f g} (q₂ : equalizer f g ∘ i₂ = h) : i₁ = i₂ :=
|
|||
|
eq_hom_equalizer p q₁ ⬝ (eq_hom_equalizer p q₂)⁻¹
|
|||
|
|
|||
|
variables (f g)
|
|||
|
definition equalizer_object_iso_equalizer_object [constructor] (H₁ H₂ : has_equalizers D) :
|
|||
|
@equalizer_object D H₁ _ _ f g ≅ @equalizer_object D H₂ _ _ f g :=
|
|||
|
limit_object_iso_limit_object _ H₁ H₂
|
|||
|
|
|||
|
end equalizers
|
|||
|
|
|||
|
section pullbacks
|
|||
|
open sum prod.ops pullback_diagram_ob pullback_diagram_hom
|
|||
|
definition has_pullbacks [reducible] (D : Precategory) := has_limits_of_shape D pullback_diagram
|
|||
|
variables [K : has_pullbacks D]
|
|||
|
include K
|
|||
|
|
|||
|
variables {d₁ d₂ d₃ x : D} (f : d₁ ⟶ d₃) (g : d₂ ⟶ d₃)
|
|||
|
definition pullback_object : D :=
|
|||
|
limit_object (pullback_diagram_functor D f g)
|
|||
|
|
|||
|
definition pullback : pullback_object f g ⟶ d₁ :=
|
|||
|
limit_morphism (pullback_diagram_functor D f g) TR
|
|||
|
|
|||
|
definition pullback_rev : pullback_object f g ⟶ d₂ :=
|
|||
|
limit_morphism (pullback_diagram_functor D f g) BL
|
|||
|
|
|||
|
theorem pullback_commutes : f ∘ pullback f g = g ∘ pullback_rev f g :=
|
|||
|
limit_commute (pullback_diagram_functor D f g) (inl f1) ⬝
|
|||
|
(limit_commute (pullback_diagram_functor D f g) (inl f2))⁻¹
|
|||
|
|
|||
|
variables {f g}
|
|||
|
definition hom_pullback (h₁ : x ⟶ d₁) (h₂ : x ⟶ d₂) (p : f ∘ h₁ = g ∘ h₂)
|
|||
|
: x ⟶ pullback_object f g :=
|
|||
|
hom_limit (pullback_diagram_functor D f g)
|
|||
|
(pullback_diagram_ob.rec h₁ h₂ (g ∘ h₂))
|
|||
|
begin
|
|||
|
intro i₁ i₂ k; induction k with j j: induction j,
|
|||
|
exact p, reflexivity, apply id_left
|
|||
|
end
|
|||
|
|
|||
|
definition pullback_hom_pullback (h₁ : x ⟶ d₁) (h₂ : x ⟶ d₂) (p : f ∘ h₁ = g ∘ h₂)
|
|||
|
: pullback f g ∘ hom_pullback h₁ h₂ p = h₁ :=
|
|||
|
hom_limit_commute (pullback_diagram_functor D f g) (pullback_diagram_ob.rec h₁ h₂ (g ∘ h₂)) _ TR
|
|||
|
|
|||
|
definition pullback_rev_hom_pullback (h₁ : x ⟶ d₁) (h₂ : x ⟶ d₂) (p : f ∘ h₁ = g ∘ h₂)
|
|||
|
: pullback_rev f g ∘ hom_pullback h₁ h₂ p = h₂ :=
|
|||
|
hom_limit_commute (pullback_diagram_functor D f g) (pullback_diagram_ob.rec h₁ h₂ (g ∘ h₂)) _ BL
|
|||
|
|
|||
|
theorem eq_hom_pullback {h₁ : x ⟶ d₁} {h₂ : x ⟶ d₂} (p : f ∘ h₁ = g ∘ h₂)
|
|||
|
{k : x ⟶ pullback_object f g} (q : pullback f g ∘ k = h₁) (r : pullback_rev f g ∘ k = h₂)
|
|||
|
: k = hom_pullback h₁ h₂ p :=
|
|||
|
eq_hom_limit _ (pullback_diagram_ob.rec q r
|
|||
|
begin
|
|||
|
refine ap (λx, x ∘ k) (limit_commute (pullback_diagram_functor D f g) (inl f2))⁻¹ ⬝ _,
|
|||
|
refine !assoc⁻¹ ⬝ _,
|
|||
|
exact ap (λx, _ ∘ x) r
|
|||
|
end)
|
|||
|
|
|||
|
theorem pullback_cone_unique {h₁ : x ⟶ d₁} {h₂ : x ⟶ d₂} (p : f ∘ h₁ = g ∘ h₂)
|
|||
|
{k₁ : x ⟶ pullback_object f g} (q₁ : pullback f g ∘ k₁ = h₁) (r₁ : pullback_rev f g ∘ k₁ = h₂)
|
|||
|
{k₂ : x ⟶ pullback_object f g} (q₂ : pullback f g ∘ k₂ = h₁) (r₂ : pullback_rev f g ∘ k₂ = h₂)
|
|||
|
: k₁ = k₂ :=
|
|||
|
(eq_hom_pullback p q₁ r₁) ⬝ (eq_hom_pullback p q₂ r₂)⁻¹
|
|||
|
|
|||
|
variables (f g)
|
|||
|
definition pullback_object_iso_pullback_object [constructor] (H₁ H₂ : has_pullbacks D) :
|
|||
|
@pullback_object D H₁ _ _ _ f g ≅ @pullback_object D H₂ _ _ _ f g :=
|
|||
|
limit_object_iso_limit_object _ H₁ H₂
|
|||
|
|
|||
|
end pullbacks
|
|||
|
|
|||
|
end category
|