lean2/hott/algebra/bundled.hlean

127 lines
3.5 KiB
Text
Raw Normal View History

/-
Copyright (c) 2015 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jeremy Avigad
Bundled structures
-/
import algebra.group homotopy.interval
open algebra pointed is_trunc
namespace algebra
structure Semigroup :=
(carrier : Type) (struct : semigroup carrier)
attribute Semigroup.carrier [coercion]
attribute Semigroup.struct [instance]
structure CommSemigroup :=
(carrier : Type) (struct : comm_semigroup carrier)
attribute CommSemigroup.carrier [coercion]
attribute CommSemigroup.struct [instance]
structure Monoid :=
(carrier : Type) (struct : monoid carrier)
attribute Monoid.carrier [coercion]
attribute Monoid.struct [instance]
structure CommMonoid :=
(carrier : Type) (struct : comm_monoid carrier)
attribute CommMonoid.carrier [coercion]
attribute CommMonoid.struct [instance]
structure Group :=
(carrier : Type) (struct : group carrier)
attribute Group.carrier [coercion]
attribute Group.struct [instance]
section
local attribute Group.struct [instance]
definition pSet_of_Group [constructor] [reducible] [coercion] (G : Group) : Set* :=
ptrunctype.mk G !semigroup.is_set_carrier 1
end
attribute algebra._trans_of_pSet_of_Group [unfold 1]
attribute algebra._trans_of_pSet_of_Group_1 algebra._trans_of_pSet_of_Group_2 [constructor]
definition pType_of_Group [reducible] [constructor] : Group → Type* :=
algebra._trans_of_pSet_of_Group_1
definition Set_of_Group [reducible] [constructor] : Group → Set :=
algebra._trans_of_pSet_of_Group_2
definition AddGroup : Type := Group
definition AddGroup.mk [constructor] [reducible] (G : Type) (H : add_group G) : AddGroup :=
Group.mk G H
definition AddGroup.struct [reducible] (G : AddGroup) : add_group G :=
Group.struct G
attribute AddGroup.struct Group.struct [instance] [priority 2000]
structure AbGroup :=
(carrier : Type) (struct : ab_group carrier)
attribute AbGroup.carrier [coercion]
definition AddAbGroup : Type := AbGroup
definition AddAbGroup.mk [constructor] [reducible] (G : Type) (H : add_ab_group G) :
AddAbGroup :=
AbGroup.mk G H
definition AddAbGroup.struct [reducible] (G : AddAbGroup) : add_ab_group G :=
AbGroup.struct G
attribute AddAbGroup.struct AbGroup.struct [instance] [priority 2000]
definition Group_of_AbGroup [coercion] [constructor] (G : AbGroup) : Group :=
Group.mk G _
attribute algebra._trans_of_Group_of_AbGroup_1
algebra._trans_of_Group_of_AbGroup
algebra._trans_of_Group_of_AbGroup_3 [constructor]
attribute algebra._trans_of_Group_of_AbGroup_2 [unfold 1]
-- structure AddSemigroup :=
-- (carrier : Type) (struct : add_semigroup carrier)
-- attribute AddSemigroup.carrier [coercion]
-- attribute AddSemigroup.struct [instance]
-- structure AddCommSemigroup :=
-- (carrier : Type) (struct : add_comm_semigroup carrier)
-- attribute AddCommSemigroup.carrier [coercion]
-- attribute AddCommSemigroup.struct [instance]
-- structure AddMonoid :=
-- (carrier : Type) (struct : add_monoid carrier)
-- attribute AddMonoid.carrier [coercion]
-- attribute AddMonoid.struct [instance]
-- structure AddCommMonoid :=
-- (carrier : Type) (struct : add_comm_monoid carrier)
-- attribute AddCommMonoid.carrier [coercion]
-- attribute AddCommMonoid.struct [instance]
-- structure AddGroup :=
-- (carrier : Type) (struct : add_group carrier)
-- attribute AddGroup.carrier [coercion]
-- attribute AddGroup.struct [instance]
-- structure AddAbGroup :=
-- (carrier : Type) (struct : add_ab_group carrier)
-- attribute AddAbGroup.carrier [coercion]
-- attribute AddAbGroup.struct [instance]
end algebra