2013-08-07 08:16:37 +00:00
/*
Copyright ( c ) 2013 Microsoft Corporation . All rights reserved .
Released under Apache 2.0 license as described in the file LICENSE .
Author : Leonardo de Moura
*/
# include "basic_thms.h"
# include "environment.h"
# include "abstract.h"
# include "type_check.h"
namespace lean {
2013-08-07 18:23:04 +00:00
MK_CONSTANT ( true_neq_false , name ( " TrueNeFalse " ) ) ;
MK_CONSTANT ( truth , name ( " Truth " ) ) ;
MK_CONSTANT ( false_elim_fn , name ( " FalseElim " ) ) ;
MK_CONSTANT ( absurd_fn , name ( " Absurd " ) ) ;
MK_CONSTANT ( em_fn , name ( " EM " ) ) ;
MK_CONSTANT ( double_neg_fn , name ( " DoubleNeg " ) ) ;
MK_CONSTANT ( double_neg_elim_fn , name ( " DoubleNegElim " ) ) ;
MK_CONSTANT ( mt_fn , name ( " MT " ) ) ;
MK_CONSTANT ( contrapos_fn , name ( " Contrapos " ) ) ;
MK_CONSTANT ( false_imp_any_fn , name ( " FalseImpAny " ) ) ;
MK_CONSTANT ( eq_mp_fn , name ( " EqMP " ) ) ;
MK_CONSTANT ( not_imp1_fn , name ( " NotImp1 " ) ) ;
MK_CONSTANT ( not_imp2_fn , name ( " NotImp2 " ) ) ;
MK_CONSTANT ( conj_fn , name ( " Conj " ) ) ;
MK_CONSTANT ( conjunct1_fn , name ( " Conjunct1 " ) ) ;
MK_CONSTANT ( conjunct2_fn , name ( " Conjunct2 " ) ) ;
MK_CONSTANT ( disj1_fn , name ( " Disj1 " ) ) ;
MK_CONSTANT ( disj2_fn , name ( " Disj2 " ) ) ;
MK_CONSTANT ( disj_cases_fn , name ( " DisjCases " ) ) ;
MK_CONSTANT ( symm_fn , name ( " Symm " ) ) ;
MK_CONSTANT ( trans_fn , name ( " Trans " ) ) ;
MK_CONSTANT ( xtrans_fn , name ( " xTrans " ) ) ;
MK_CONSTANT ( congr1_fn , name ( " Congr1 " ) ) ;
MK_CONSTANT ( congr2_fn , name ( " Congr2 " ) ) ;
MK_CONSTANT ( congr_fn , name ( " Congr " ) ) ;
MK_CONSTANT ( eqt_elim_fn , name ( " EqTElim " ) ) ;
MK_CONSTANT ( eqt_intro_fn , name ( " EqTIntro " ) ) ;
MK_CONSTANT ( forall_elim_fn , name ( " ForallElim " ) ) ;
2013-08-07 08:16:37 +00:00
#if 0
MK_CONSTANT ( ext_fn , name ( " ext " ) ) ;
MK_CONSTANT ( foralli_fn , name ( " foralli " ) ) ;
MK_CONSTANT ( domain_inj_fn , name ( " domain_inj " ) ) ;
MK_CONSTANT ( range_inj_fn , name ( " range_inj " ) ) ;
# endif
void add_basic_thms ( environment & env ) {
expr A = Const ( " A " ) ;
expr a = Const ( " a " ) ;
expr b = Const ( " b " ) ;
expr c = Const ( " c " ) ;
expr H = Const ( " H " ) ;
expr H1 = Const ( " H1 " ) ;
expr H2 = Const ( " H2 " ) ;
2013-08-07 18:23:04 +00:00
expr H3 = Const ( " H3 " ) ;
2013-08-07 08:16:37 +00:00
expr B = Const ( " B " ) ;
expr f = Const ( " f " ) ;
expr g = Const ( " g " ) ;
expr h = Const ( " h " ) ;
expr x = Const ( " x " ) ;
expr y = Const ( " y " ) ;
expr z = Const ( " z " ) ;
expr P = Const ( " P " ) ;
expr A1 = Const ( " A1 " ) ;
expr B1 = Const ( " B1 " ) ;
expr a1 = Const ( " a1 " ) ;
expr A_pred = A > > Bool ;
expr q_type = Pi ( { A , TypeU } , A_pred > > Bool ) ;
expr piABx = Pi ( { x , A } , B ( x ) ) ;
expr A_arrow_u = A > > TypeU ;
// True_neq_False : Not(True = False)
env . add_theorem ( true_neq_false_name , Not ( Eq ( True , False ) ) , Trivial ) ;
2013-08-07 18:23:04 +00:00
// Truth : True
2013-08-07 08:16:37 +00:00
env . add_theorem ( truth_name , True , Trivial ) ;
2013-08-07 18:23:04 +00:00
// EM : Pi (a : Bool), Or(a, Not(a))
env . add_theorem ( em_fn_name , Pi ( { a , Bool } , Or ( a , Not ( a ) ) ) ,
Fun ( { a , Bool } , Case ( Fun ( { x , Bool } , Or ( x , Not ( x ) ) ) , Trivial , Trivial , a ) ) ) ;
2013-08-07 08:16:37 +00:00
// FalseElim : Pi (a : Bool) (H : False), a
env . add_theorem ( false_elim_fn_name , Pi ( { { a , Bool } , { H , False } } , a ) ,
Fun ( { { a , Bool } , { H , False } } , Case ( Fun ( { x , Bool } , x ) , Truth , H , a ) ) ) ;
// Absurd : Pi (a : Bool) (H1 : a) (H2 : Not a), False
env . add_theorem ( absurd_fn_name , Pi ( { { a , Bool } , { H1 , a } , { H2 , Not ( a ) } } , False ) ,
Fun ( { { a , Bool } , { H1 , a } , { H2 , Not ( a ) } } ,
MP ( a , False , H2 , H1 ) ) ) ;
// DoubleNeg : Pi (a : Bool), Eq(Not(Not(a)), a)
env . add_theorem ( double_neg_fn_name , Pi ( { a , Bool } , Eq ( Not ( Not ( a ) ) , a ) ) ,
Fun ( { a , Bool } , Case ( Fun ( { x , Bool } , Eq ( Not ( Not ( x ) ) , x ) ) , Trivial , Trivial , a ) ) ) ;
2013-08-07 18:23:04 +00:00
// DoubleNegElim : Pi (a : Bool) (P : Bool -> Bool) (H : P (Not (Not a))), (P a)
env . add_theorem ( double_neg_elim_fn_name , Pi ( { { a , Bool } , { P , Bool > > Bool } , { H , P ( Not ( Not ( a ) ) ) } } , P ( a ) ) ,
Fun ( { { a , Bool } , { P , Bool > > Bool } , { H , P ( Not ( Not ( a ) ) ) } } ,
Subst ( Bool , P , Not ( Not ( a ) ) , a , H , DoubleNeg ( a ) ) ) ) ;
2013-08-07 08:16:37 +00:00
// ModusTollens : Pi (a b : Bool) (H1 : a => b) (H2 : Not(b)), Not(a)
env . add_theorem ( mt_fn_name , Pi ( { { a , Bool } , { b , Bool } , { H1 , Implies ( a , b ) } , { H2 , Not ( b ) } } , Not ( a ) ) ,
Fun ( { { a , Bool } , { b , Bool } , { H1 , Implies ( a , b ) } , { H2 , Not ( b ) } } ,
Discharge ( a , False , Fun ( { H , a } ,
Absurd ( b , MP ( a , b , H1 , H ) , H2 ) ) ) ) ) ;
// Contrapositive : Pi (a b : Bool) (H : a => b), (Not(b) => Not(a))
env . add_theorem ( contrapos_fn_name , Pi ( { { a , Bool } , { b , Bool } , { H , Implies ( a , b ) } } , Implies ( Not ( b ) , Not ( a ) ) ) ,
Fun ( { { a , Bool } , { b , Bool } , { H , Implies ( a , b ) } } ,
Discharge ( Not ( b ) , Not ( a ) , Fun ( { H1 , Not ( b ) } , MT ( a , b , H , H1 ) ) ) ) ) ;
2013-08-07 18:23:04 +00:00
// FalseImpliesAny : Pi (a : Bool), False => a
env . add_theorem ( false_imp_any_fn_name , Pi ( { a , Bool } , Implies ( False , a ) ) ,
Fun ( { a , Bool } , Case ( Fun ( { x , Bool } , Implies ( False , x ) ) , Trivial , Trivial , a ) ) ) ;
// EqMP : Pi (a b: Bool) (H1 : a = b) (H2 : a), b
env . add_theorem ( eq_mp_fn_name , Pi ( { { a , Bool } , { b , Bool } , { H1 , Eq ( a , b ) } , { H2 , a } } , b ) ,
Fun ( { { a , Bool } , { b , Bool } , { H1 , Eq ( a , b ) } , { H2 , a } } ,
Subst ( Bool , Fun ( { x , Bool } , x ) , a , b , H2 , H1 ) ) ) ;
// NotImp1 : Pi (a b : Bool) (H : Not(Implies(a, b))), a
env . add_theorem ( not_imp1_fn_name , Pi ( { { a , Bool } , { b , Bool } , { H , Not ( Implies ( a , b ) ) } } , a ) ,
Fun ( { { a , Bool } , { b , Bool } , { H , Not ( Implies ( a , b ) ) } } ,
EqMP ( Not ( Not ( a ) ) , a ,
DoubleNeg ( a ) ,
Discharge ( Not ( a ) , False ,
Fun ( { H1 , Not ( a ) } ,
Absurd ( Implies ( a , b ) ,
Discharge ( a , b ,
Fun ( { H2 , a } ,
FalseElim ( b , Absurd ( a , H2 , H1 ) ) ) ) ,
H ) ) ) ) ) ) ;
// NotImp2 : Pi (a b : Bool) (H : Not(Implies(a, b))), Not(b)
env . add_theorem ( not_imp2_fn_name , Pi ( { { a , Bool } , { b , Bool } , { H , Not ( Implies ( a , b ) ) } } , Not ( b ) ) ,
Fun ( { { a , Bool } , { b , Bool } , { H , Not ( Implies ( a , b ) ) } } ,
Discharge ( b , False ,
Fun ( { H1 , b } ,
Absurd ( Implies ( a , b ) ,
// a => b
DoubleNegElim ( b , Fun ( { x , Bool } , Implies ( a , x ) ) ,
// a => Not(Not(b))
DoubleNegElim ( a , Fun ( { x , Bool } , Implies ( x , Not ( Not ( b ) ) ) ) ,
// Not(Not(a)) => Not(Not(b))
Contrapos ( Not ( b ) , Not ( a ) ,
Discharge ( Not ( b ) , Not ( a ) ,
Fun ( { H2 , Not ( b ) } ,
FalseElim ( Not ( a ) , Absurd ( b , H1 , H2 ) ) ) ) ) ) ) ,
H ) ) ) ) ) ;
2013-08-07 08:16:37 +00:00
// Conj : Pi (a b : Bool) (H1 : a) (H2 : b), And(a, b)
env . add_theorem ( conj_fn_name , Pi ( { { a , Bool } , { b , Bool } , { H1 , a } , { H2 , b } } , And ( a , b ) ) ,
Fun ( { { a , Bool } , { b , Bool } , { H1 , a } , { H2 , b } } ,
Discharge ( Implies ( a , Not ( b ) ) , False , Fun ( { H , Implies ( a , Not ( b ) ) } ,
Absurd ( b , H2 , MP ( a , Not ( b ) , H , H1 ) ) ) ) ) ) ;
2013-08-07 18:23:04 +00:00
// Conjunct1 : Pi (a b : Bool) (H : And(a, b)), a
env . add_theorem ( conjunct1_fn_name , Pi ( { { a , Bool } , { b , Bool } , { H , And ( a , b ) } } , a ) ,
Fun ( { { a , Bool } , { b , Bool } , { H , And ( a , b ) } } ,
NotImp1 ( a , Not ( b ) , H ) ) ) ;
// Conjunct2 : Pi (a b : Bool) (H : And(a, b)), b
env . add_theorem ( conjunct2_fn_name , Pi ( { { a , Bool } , { b , Bool } , { H , And ( a , b ) } } , b ) ,
Fun ( { { a , Bool } , { b , Bool } , { H , And ( a , b ) } } ,
EqMP ( Not ( Not ( b ) ) , b , DoubleNeg ( b ) , NotImp2 ( a , Not ( b ) , H ) ) ) ) ;
// Disj1 : Pi (a b : Bool) (H : a), Or(a, b)
env . add_theorem ( disj1_fn_name , Pi ( { { a , Bool } , { b , Bool } , { H , a } } , Or ( a , b ) ) ,
Fun ( { { a , Bool } , { b , Bool } , { H , a } } ,
Discharge ( Not ( a ) , b , Fun ( { H1 , Not ( a ) } ,
FalseElim ( b , Absurd ( a , H , H1 ) ) ) ) ) ) ;
// Disj2 : Pi (a b : Bool) (H : b), Or(a, b)
env . add_theorem ( disj2_fn_name , Pi ( { { a , Bool } , { b , Bool } , { H , b } } , Or ( a , b ) ) ,
Fun ( { { a , Bool } , { b , Bool } , { H , b } } ,
// Not(a) => b
DoubleNegElim ( b , Fun ( { x , Bool } , Implies ( Not ( a ) , x ) ) ,
// Not(a) => Not(Not(b))
Contrapos ( Not ( b ) , a ,
Discharge ( Not ( b ) , a , Fun ( { H1 , Not ( b ) } ,
FalseElim ( a , Absurd ( b , H , H1 ) ) ) ) ) ) ) ) ;
// DisjCases : Pi (a b c: Bool) (H1 : Or(a,b)) (H2 : a -> c) (H3 : b -> c), c */
env . add_theorem ( disj_cases_fn_name , Pi ( { { a , Bool } , { b , Bool } , { c , Bool } , { H1 , Or ( a , b ) } , { H2 , a > > c } , { H3 , b > > c } } , c ) ,
Fun ( { { a , Bool } , { b , Bool } , { c , Bool } , { H1 , Or ( a , b ) } , { H2 , a > > c } , { H3 , b > > c } } ,
EqMP ( Not ( Not ( c ) ) , c , DoubleNeg ( c ) ,
Discharge ( Not ( c ) , False ,
Fun ( { H , Not ( c ) } ,
Absurd ( c ,
MP ( b , c , Discharge ( b , c , H3 ) ,
MP ( Not ( a ) , b , H1 ,
// Not(a)
MT ( a , c , Discharge ( a , c , H2 ) , H ) ) ) ,
H ) ) ) ) ) ) ;
// Symm : Pi (A : Type u) (a b : A) (H : a = b), b = a
2013-08-07 08:16:37 +00:00
env . add_theorem ( symm_fn_name , Pi ( { { A , TypeU } , { a , A } , { b , A } , { H , Eq ( a , b ) } } , Eq ( b , a ) ) ,
Fun ( { { A , TypeU } , { a , A } , { b , A } , { H , Eq ( a , b ) } } ,
Subst ( A , Fun ( { x , A } , Eq ( x , a ) ) , a , b , Refl ( A , a ) , H ) ) ) ;
2013-08-07 18:23:04 +00:00
// Trans: Pi (A: Type u) (a b c : A) (H1 : a = b) (H2 : b = c), a = c
2013-08-07 08:16:37 +00:00
env . add_theorem ( trans_fn_name , Pi ( { { A , TypeU } , { a , A } , { b , A } , { c , A } , { H1 , Eq ( a , b ) } , { H2 , Eq ( b , c ) } } , Eq ( a , c ) ) ,
Fun ( { { A , TypeU } , { a , A } , { b , A } , { c , A } , { H1 , Eq ( a , b ) } , { H2 , Eq ( b , c ) } } ,
Subst ( A , Fun ( { x , A } , Eq ( a , x ) ) , b , c , H1 , H2 ) ) ) ;
2013-08-07 18:23:04 +00:00
// xTrans: Pi (A: Type u) (B : Type u) (a : A) (b c : B) (H1 : a = b) (H2 : b = c), a = c
2013-08-07 08:16:37 +00:00
env . add_theorem ( xtrans_fn_name , Pi ( { { A , TypeU } , { B , TypeU } , { a , A } , { b , B } , { c , B } , { H1 , Eq ( a , b ) } , { H2 , Eq ( b , c ) } } , Eq ( a , c ) ) ,
Fun ( { { A , TypeU } , { B , TypeU } , { a , A } , { b , B } , { c , B } , { H1 , Eq ( a , b ) } , { H2 , Eq ( b , c ) } } ,
Subst ( B , Fun ( { x , B } , Eq ( a , x ) ) , b , c , H1 , H2 ) ) ) ;
2013-08-07 18:23:04 +00:00
// EqTElim : Pi (a : Bool) (H : a = True), a
env . add_theorem ( eqt_elim_fn_name , Pi ( { { a , Bool } , { H , Eq ( a , True ) } } , a ) ,
Fun ( { { a , Bool } , { H , Eq ( a , True ) } } ,
EqMP ( True , a , Symm ( Bool , a , True , H ) , Truth ) ) ) ;
// EqTIntro : Pi (a : Bool) (H : a), a = True
env . add_theorem ( eqt_intro_fn_name , Pi ( { { a , Bool } , { H , a } } , Eq ( a , True ) ) ,
Fun ( { { a , Bool } , { H , a } } ,
ImpAntisym ( a , True ,
Discharge ( a , True , Fun ( { H1 , a } , Truth ) ) ,
Discharge ( True , a , Fun ( { H2 , True } , H ) ) ) ) ) ;
2013-08-07 08:16:37 +00:00
env . add_theorem ( name ( " OrIdempotent " ) , Pi ( { a , Bool } , Eq ( Or ( a , a ) , a ) ) ,
Fun ( { a , Bool } , Case ( Fun ( { x , Bool } , Eq ( Or ( x , x ) , x ) ) , Trivial , Trivial , a ) ) ) ;
env . add_theorem ( name ( " OrComm " ) , Pi ( { { a , Bool } , { b , Bool } } , Eq ( Or ( a , b ) , Or ( b , a ) ) ) ,
Fun ( { { a , Bool } , { b , Bool } } ,
Case ( Fun ( { x , Bool } , Eq ( Or ( x , b ) , Or ( b , x ) ) ) ,
Case ( Fun ( { y , Bool } , Eq ( Or ( True , y ) , Or ( y , True ) ) ) , Trivial , Trivial , b ) ,
Case ( Fun ( { y , Bool } , Eq ( Or ( False , y ) , Or ( y , False ) ) ) , Trivial , Trivial , b ) ,
a ) ) ) ;
env . add_theorem ( name ( " OrAssoc " ) , Pi ( { { a , Bool } , { b , Bool } , { c , Bool } } , Eq ( Or ( Or ( a , b ) , c ) , Or ( a , Or ( b , c ) ) ) ) ,
Fun ( { { a , Bool } , { b , Bool } , { c , Bool } } ,
Case ( Fun ( { x , Bool } , Eq ( Or ( Or ( x , b ) , c ) , Or ( x , Or ( b , c ) ) ) ) ,
Case ( Fun ( { y , Bool } , Eq ( Or ( Or ( True , y ) , c ) , Or ( True , Or ( y , c ) ) ) ) ,
Case ( Fun ( { z , Bool } , Eq ( Or ( Or ( True , True ) , z ) , Or ( True , Or ( True , z ) ) ) ) , Trivial , Trivial , c ) ,
Case ( Fun ( { z , Bool } , Eq ( Or ( Or ( True , False ) , z ) , Or ( True , Or ( False , z ) ) ) ) , Trivial , Trivial , c ) , b ) ,
Case ( Fun ( { y , Bool } , Eq ( Or ( Or ( False , y ) , c ) , Or ( False , Or ( y , c ) ) ) ) ,
Case ( Fun ( { z , Bool } , Eq ( Or ( Or ( False , True ) , z ) , Or ( False , Or ( True , z ) ) ) ) , Trivial , Trivial , c ) ,
Case ( Fun ( { z , Bool } , Eq ( Or ( Or ( False , False ) , z ) , Or ( False , Or ( False , z ) ) ) ) , Trivial , Trivial , c ) , b ) , a ) ) ) ;
2013-08-07 18:23:04 +00:00
// Congr1 : Pi (A : Type u) (B : A -> Type u) (f g: Pi (x : A) B x) (a : A) (H : f = g), f a = g a
2013-08-07 08:16:37 +00:00
env . add_theorem ( congr1_fn_name , Pi ( { { A , TypeU } , { B , A_arrow_u } , { f , piABx } , { g , piABx } , { a , A } , { H , Eq ( f , g ) } } , Eq ( f ( a ) , g ( a ) ) ) ,
Fun ( { { A , TypeU } , { B , A_arrow_u } , { f , piABx } , { g , piABx } , { a , A } , { H , Eq ( f , g ) } } ,
Subst ( piABx , Fun ( { h , piABx } , Eq ( f ( a ) , h ( a ) ) ) , f , g , Refl ( piABx , f ) , H ) ) ) ;
2013-08-07 18:23:04 +00:00
// Congr2 : Pi (A : Type u) (B : A -> Type u) (f : Pi (x : A) B x) (a b : A) (H : a = b), f a = f b
2013-08-07 08:16:37 +00:00
env . add_theorem ( congr2_fn_name , Pi ( { { A , TypeU } , { B , A_arrow_u } , { f , piABx } , { a , A } , { b , A } , { H , Eq ( a , b ) } } , Eq ( f ( a ) , f ( b ) ) ) ,
Fun ( { { A , TypeU } , { B , A_arrow_u } , { f , piABx } , { a , A } , { b , A } , { H , Eq ( a , b ) } } ,
Subst ( A , Fun ( { x , A } , Eq ( f ( a ) , f ( x ) ) ) , a , b , Refl ( A , a ) , H ) ) ) ;
2013-08-07 18:23:04 +00:00
// Congr : Pi (A : Type u) (B : A -> Type u) (f g : Pi (x : A) B x) (a b : A) (H1 : f = g) (H2 : a = b), f a = g b
2013-08-07 08:16:37 +00:00
env . add_theorem ( congr_fn_name , Pi ( { { A , TypeU } , { B , A_arrow_u } , { f , piABx } , { g , piABx } , { a , A } , { b , A } , { H1 , Eq ( f , g ) } , { H2 , Eq ( a , b ) } } , Eq ( f ( a ) , g ( b ) ) ) ,
Fun ( { { A , TypeU } , { B , A_arrow_u } , { f , piABx } , { g , piABx } , { a , A } , { b , A } , { H1 , Eq ( f , g ) } , { H2 , Eq ( a , b ) } } ,
xTrans ( B ( a ) , B ( b ) , f ( a ) , f ( b ) , g ( b ) ,
Congr2 ( A , B , f , a , b , H2 ) , Congr1 ( A , B , f , g , b , H1 ) ) ) ) ;
// ForallElim : Pi (A : Type u) (P : A -> bool) (H : (forall A P)) (a : A), P a
env . add_theorem ( forall_elim_fn_name , Pi ( { { A , TypeU } , { P , A_pred } , { H , mk_forall ( A , P ) } , { a , A } } , P ( a ) ) ,
Fun ( { { A , TypeU } , { P , A_pred } , { H , mk_forall ( A , P ) } , { a , A } } ,
EqTElim ( P ( a ) , Congr1 ( A , Fun ( { x , A } , Bool ) , P , Fun ( { x , A } , True ) , a , H ) ) ) ) ;
#if 0
// STOPPED HERE
// foralli : Pi (A : Type u) (P : A -> bool) (H : Pi (x : A), P x), (forall A P)
env . add_axiom ( foralli_fn_name , Pi ( { { A , TypeU } , { P , A_pred } , { H , Pi ( { x , A } , P ( x ) ) } } , Forall ( A , P ) ) ) ;
// ext : Pi (A : Type u) (B : A -> Type u) (f g : Pi (x : A) B x) (H : Pi x : A, (f x) = (g x)), f = g
env . add_axiom ( ext_fn_name , Pi ( { { A , TypeU } , { B , A_arrow_u } , { f , piABx } , { g , piABx } , { H , Pi ( { x , A } , Eq ( f ( x ) , g ( x ) ) ) } } , Eq ( f , g ) ) ) ;
// domain_inj : Pi (A A1: Type u) (B : A -> Type u) (B1 : A1 -> Type u) (H : (Pi (x : A), B x) = (Pi (x : A1), B1 x)), A = A1
expr piA1B1x = Pi ( { x , A1 } , B1 ( x ) ) ;
expr A1_arrow_u = A1 > > TypeU ;
env . add_axiom ( domain_inj_fn_name , Pi ( { { A , TypeU } , { A1 , TypeU } , { B , A_arrow_u } , { B1 , A1_arrow_u } , { H , Eq ( piABx , piA1B1x ) } } , Eq ( A , A1 ) ) ) ;
// range_inj : Pi (A A1: Type u) (B : A -> Type u) (B1 : A1 -> Type u) (a : A) (a1 : A1) (H : (Pi (x : A), B x) = (Pi (x : A1), B1 x)), (B a) = (B1 a1)
env . add_axiom ( range_inj_fn_name , Pi ( { { A , TypeU } , { A1 , TypeU } , { B , A_arrow_u } , { B1 , A1_arrow_u } , { a , A } , { a1 , A1 } , { H , Eq ( piABx , piA1B1x ) } } , Eq ( B ( a ) , B1 ( a1 ) ) ) ) ;
# endif
}
}