lean2/hott/homotopy/homotopy_group.hlean

152 lines
6.1 KiB
Text
Raw Normal View History

/-
Copyright (c) 2016 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn, Clive Newstead
-/
import .LES_of_homotopy_groups .sphere .complex_hopf
open eq is_trunc trunc_index pointed algebra trunc nat is_conn fiber pointed
namespace is_trunc
-- Lemma 8.3.1
theorem trivial_homotopy_group_of_is_trunc (A : Type*) (n k : ) [is_trunc n A] (H : n ≤ k)
: is_contr (πg[k+1] A) :=
begin
apply is_trunc_trunc_of_is_trunc,
apply is_contr_loop_of_is_trunc,
apply @is_trunc_of_le A n _,
rewrite [succ_sub_two_succ k],
exact of_nat_le_of_nat H,
end
-- Lemma 8.3.2
theorem trivial_homotopy_group_of_is_conn (A : Type*) {k n : } (H : k ≤ n) [is_conn n A]
: is_contr (π[k] A) :=
begin
have H3 : is_contr (ptrunc k A), from is_conn_of_le A (of_nat_le_of_nat H),
have H4 : is_contr (Ω[k](ptrunc k A)), from !is_trunc_loop_of_is_trunc,
apply is_trunc_equiv_closed_rev,
{ apply equiv_of_pequiv (phomotopy_group_pequiv_loop_ptrunc k A)}
end
-- Corollary 8.3.3
section
open sphere sphere.ops sphere_index
theorem homotopy_group_sphere_le (n k : ) (H : k < n) : is_contr (π[k] (S. n)) :=
begin
cases n with n,
{ exfalso, apply not_lt_zero, exact H},
{ have H2 : k ≤ n, from le_of_lt_succ H,
apply @(trivial_homotopy_group_of_is_conn _ H2) }
end
end
theorem is_contr_HG_fiber_of_is_connected {A B : Type*} (k n : ) (f : A →* B)
[H : is_conn_fun n f] (H2 : k ≤ n) : is_contr (π[k] (pfiber f)) :=
@(trivial_homotopy_group_of_is_conn (pfiber f) H2) (H pt)
/- Corollaries of the LES of homotopy groups -/
local attribute comm_group.to_group [coercion]
local attribute is_equiv_tinverse [instance]
open prod chain_complex group fin equiv function is_equiv lift
/-
Because of the construction of the LES this proof only gives us this result when
A and B live in the same universe (because Lean doesn't have universe cumulativity).
However, below we also proof that it holds for A and B in arbitrary universes.
-/
theorem is_equiv_π_of_is_connected'.{u} {A B : pType.{u}} {n k : } (f : A →* B)
(H2 : k ≤ n) [H : is_conn_fun n f] : is_equiv (π→[k] f) :=
begin
cases k with k,
{ /- k = 0 -/
change (is_equiv (trunc_functor 0 f)), apply is_equiv_trunc_functor_of_is_conn_fun,
refine is_conn_fun_of_le f (zero_le_of_nat n)},
{ /- k > 0 -/
have H2' : k ≤ n, from le.trans !self_le_succ H2,
exact
@is_equiv_of_trivial _
(LES_of_homotopy_groups f) _
(is_exact_LES_of_homotopy_groups f (k, 2))
(is_exact_LES_of_homotopy_groups f (succ k, 0))
(@is_contr_HG_fiber_of_is_connected A B k n f H H2')
(@is_contr_HG_fiber_of_is_connected A B (succ k) n f H H2)
(@pgroup_of_group _ (group_LES_of_homotopy_groups f k 0) idp)
(@pgroup_of_group _ (group_LES_of_homotopy_groups f k 1) idp)
(homomorphism.struct (homomorphism_LES_of_homotopy_groups_fun f (k, 0)))},
end
theorem is_equiv_π_of_is_connected.{u v} {A : pType.{u}} {B : pType.{v}} {n k : } (f : A →* B)
(H2 : k ≤ n) [H : is_conn_fun n f] : is_equiv (π→[k] f) :=
begin
have π→*[k] pdown.{v u} ∘* π→*[k] (plift_functor f) ∘* π→*[k] pup.{u v} ~* π→*[k] f,
begin
refine pwhisker_left _ !phomotopy_group_functor_compose⁻¹* ⬝* _,
refine !phomotopy_group_functor_compose⁻¹* ⬝* _,
apply phomotopy_group_functor_phomotopy, apply plift_functor_phomotopy
end,
have π→[k] pdown.{v u} ∘ π→[k] (plift_functor f) ∘ π→[k] pup.{u v} ~ π→[k] f, from this,
apply is_equiv.homotopy_closed, rotate 1,
{ exact this},
{ do 2 apply is_equiv_compose,
{ apply is_equiv_homotopy_group_functor, apply to_is_equiv !equiv_lift},
{ refine @(is_equiv_π_of_is_connected' _ H2) _, apply is_conn_fun_lift_functor},
{ apply is_equiv_homotopy_group_functor, apply to_is_equiv !equiv_lift⁻¹ᵉ}}
end
definition π_equiv_π_of_is_connected {A B : Type*} {n k : } (f : A →* B)
(H2 : k ≤ n) [H : is_conn_fun n f] : π*[k] A ≃* π*[k] B :=
pequiv_of_pmap (π→*[k] f) (is_equiv_π_of_is_connected f H2)
-- TODO: prove this for A and B in different universe levels
theorem is_surjective_π_of_is_connected.{u} {A B : pType.{u}} (n : ) (f : A →* B)
[H : is_conn_fun n f] : is_surjective (π→[n + 1] f) :=
@is_surjective_of_trivial _
(LES_of_homotopy_groups f) _
(is_exact_LES_of_homotopy_groups f (n, 2))
(@is_contr_HG_fiber_of_is_connected A B n n f H !le.refl)
/-
Theorem 8.8.3: Whitehead's principle
-/
definition whiteheads_principle (n : ℕ₋₂) {A B : Type}
[HA : is_trunc n A] [HB : is_trunc n B] (f : A → B) (H' : is_equiv (trunc_functor 0 f))
(H : Πa k, is_equiv (π→*[k + 1] (pmap_of_map f a))) : is_equiv f :=
begin
revert A B HA HB f H' H, induction n with n IH: intros,
{ apply is_equiv_of_is_contr},
have Πa, is_equiv (Ω→ (pmap_of_map f a)),
begin
intro a,
apply IH, do 2 (esimp; exact _),
{ rexact H a 0},
intro p k,
have is_equiv (π→*[k + 1] (Ω→(pmap_of_map f a))),
from is_equiv_phomotopy_group_functor_ap1 (k+1) (pmap_of_map f a),
have Π(b : A) (p : a = b),
is_equiv (pmap.to_fun (π→*[k + 1] (pmap_of_map (ap f) p))),
begin
intro b p, induction p, apply is_equiv.homotopy_closed, exact this,
refine phomotopy_group_functor_phomotopy _ _,
apply ap1_pmap_of_map
end,
have is_equiv (phomotopy_group_pequiv _
(pequiv_of_eq_pt (!idp_con⁻¹ : ap f p = Ω→ (pmap_of_map f a) p)) ∘
pmap.to_fun (π→*[k + 1] (pmap_of_map (ap f) p))),
begin
apply is_equiv_compose, exact this a p,
end,
apply is_equiv.homotopy_closed, exact this,
refine !phomotopy_group_functor_compose⁻¹* ⬝* _,
apply phomotopy_group_functor_phomotopy,
fapply phomotopy.mk,
{ esimp, intro q, refine !idp_con⁻¹},
{ esimp, refine !idp_con⁻¹},
end,
apply is_equiv_of_is_equiv_ap1_of_is_equiv_trunc
end
end is_trunc