lean2/hott/algebra/category/constructions/pushout.hlean

452 lines
18 KiB
Text
Raw Normal View History

/-
Copyright (c) 2016 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn
The pushout of categories
The morphisms in the pushout of two categories is defined as a quotient on lists of composable
morphisms. For this we use the notion of paths in a graph.
-/
import ..category ..nat_trans hit.set_quotient algebra.relation ..groupoid algebra.graph
.functor
open eq is_trunc functor trunc sum set_quotient relation iso category sigma nat nat_trans
/- we first define the categorical structure on paths in a graph -/
namespace paths
section
parameters {A : Type} {R : A → A → Type}
(Q : Π⦃a a' : A⦄, paths R a a' → paths R a a' → Type)
variables ⦃a a' a₁ a₂ a₃ a₄ : A⦄
definition paths_trel [constructor] (l l' : paths R a a') : Prop :=
∥paths_rel Q l l'∥
local notation `S` := @paths_trel
definition paths_quotient (a a' : A) : Type := set_quotient (@S a a')
local notation `mor` := paths_quotient
local attribute paths_quotient [reducible]
definition is_reflexive_R : is_reflexive (@S a a') :=
begin constructor, intro s, apply tr, constructor end
local attribute is_reflexive_R [instance]
definition paths_compose [unfold 7 8] (g : mor a₂ a₃) (f : mor a₁ a₂) : mor a₁ a₃ :=
begin
refine quotient_binary_map _ _ g f, exact append,
intros, refine trunc_functor2 _ r s, exact rel_respect_append
end
definition paths_id [constructor] (a : A) : mor a a :=
class_of nil
local infix ` ∘∘ `:60 := paths_compose
local notation `p1` := paths_id _
theorem paths_assoc (h : mor a₃ a₄) (g : mor a₂ a₃) (f : mor a₁ a₂) :
h ∘∘ (g ∘∘ f) = (h ∘∘ g) ∘∘ f :=
begin
induction h using set_quotient.rec_prop with h,
induction g using set_quotient.rec_prop with g,
induction f using set_quotient.rec_prop with f,
rewrite [▸*, append_assoc]
end
theorem paths_id_left (f : mor a a') : p1 ∘∘ f = f :=
begin
induction f using set_quotient.rec_prop with f,
reflexivity
end
theorem paths_id_right (f : mor a a') : f ∘∘ p1 = f :=
begin
induction f using set_quotient.rec_prop with f,
rewrite [▸*, append_nil]
end
definition Precategory_paths [constructor] : Precategory :=
precategory.MK A
mor
_
paths_compose
paths_id
paths_assoc
paths_id_left
paths_id_right
/- given a way to reverse edges and some additional properties we can extend this to a
groupoid structure -/
parameters (inv : Π⦃a a' : A⦄, R a a' → R a' a)
(rel_inv : Π⦃a a' : A⦄ {l l' : paths R a a'},
Q l l' → paths_rel Q (reverse inv l) (reverse inv l'))
(li : Π⦃a a' : A⦄ (r : R a a'), paths_rel Q [inv r, r] nil)
(ri : Π⦃a a' : A⦄ (r : R a a'), paths_rel Q [r, inv r] nil)
include rel_inv li ri
definition paths_inv [unfold 8] (f : mor a a') : mor a' a :=
begin
refine quotient_unary_map (reverse inv) _ f,
intros, refine trunc_functor _ _ r, esimp,
intro s, apply rel_respect_reverse inv s rel_inv
end
local postfix `^`:max := paths_inv
theorem paths_left_inv (f : mor a₁ a₂) : f^ ∘∘ f = p1 :=
begin
induction f using set_quotient.rec_prop with f,
esimp, apply eq_of_rel, apply tr,
apply rel_left_inv, apply li
end
theorem paths_right_inv (f : mor a₁ a₂) : f ∘∘ f^ = p1 :=
begin
induction f using set_quotient.rec_prop with f,
esimp, apply eq_of_rel, apply tr,
apply rel_right_inv, apply ri
end
definition Groupoid_paths [constructor] : Groupoid :=
groupoid.MK Precategory_paths
(λa b f, is_iso.mk (paths_inv f) (paths_left_inv f) (paths_right_inv f))
end
end paths
open paths
namespace category
/- We also define the pushout of two groupoids with a type of basepoints, which are surjectively
mapped into C (although we don't need to assume that this mapping is surjective for the
definition) -/
section
inductive bpushout_prehom_index {S : Type} {C D E : Precategory} (k : S → C) (F : C ⇒ D)
(G : C ⇒ E) : D + E → D + E → Type :=
| iD : Π{d d' : D} (f : d ⟶ d'), bpushout_prehom_index k F G (inl d) (inl d')
| iE : Π{e e' : E} (g : e ⟶ e'), bpushout_prehom_index k F G (inr e) (inr e')
| DE : Π(s : S), bpushout_prehom_index k F G (inl (F (k s))) (inr (G (k s)))
| ED : Π(s : S), bpushout_prehom_index k F G (inr (G (k s))) (inl (F (k s)))
open bpushout_prehom_index
definition bpushout_prehom {S : Type} {C D E : Precategory} (k : S → C) (F : C ⇒ D) (G : C ⇒ E) :
D + E → D + E → Type :=
paths (bpushout_prehom_index k F G)
inductive bpushout_hom_rel_index {S : Type} {C D E : Precategory} (k : S → C) (F : C ⇒ D)
(G : C ⇒ E) : Π⦃x x' : D + E⦄,
bpushout_prehom k F G x x' → bpushout_prehom k F G x x' → Type :=
| DD : Π{d₁ d₂ d₃ : D} (g : d₂ ⟶ d₃) (f : d₁ ⟶ d₂),
bpushout_hom_rel_index k F G [iD k F G g, iD k F G f] [iD k F G (g ∘ f)]
| EE : Π{e₁ e₂ e₃ : E} (g : e₂ ⟶ e₃) (f : e₁ ⟶ e₂),
bpushout_hom_rel_index k F G [iE k F G g, iE k F G f] [iE k F G (g ∘ f)]
| DED : Π(s : S), bpushout_hom_rel_index k F G [ED k F G s, DE k F G s] nil
| EDE : Π(s : S), bpushout_hom_rel_index k F G [DE k F G s, ED k F G s] nil
| idD : Π(d : D), bpushout_hom_rel_index k F G [iD k F G (ID d)] nil
| idE : Π(e : E), bpushout_hom_rel_index k F G [iE k F G (ID e)] nil
| cohDE : Π{s₁ s₂ : S} (h : k s₁ ⟶ k s₂),
bpushout_hom_rel_index k F G [iE k F G (G h), DE k F G s₁] [DE k F G s₂, iD k F G (F h)]
| cohED : Π{s₁ s₂ : S} (h : k s₁ ⟶ k s₂),
bpushout_hom_rel_index k F G [ED k F G s₂, iE k F G (G h)] [iD k F G (F h), ED k F G s₁]
open bpushout_hom_rel_index paths.paths_rel
definition Precategory_bpushout [constructor] {S : Type} {C D E : Precategory}
(k : S → C) (F : C ⇒ D) (G : C ⇒ E) : Precategory :=
Precategory_paths (bpushout_hom_rel_index k F G)
parameters {C D E X : Precategory} (F : C ⇒ D) (G : C ⇒ E) (H : D ⇒ X) (K : E ⇒ X)
(η : H ∘f F ≅ K ∘f G)
definition Cpushout [constructor] : Precategory :=
Precategory_bpushout (λc, c) F G
definition Cpushout_inl [constructor] : D ⇒ Cpushout :=
begin
fapply functor.mk,
{ exact inl},
{ intro d d' f, exact class_of [iD (λc, c) F G f]},
{ intro d, refine eq_of_rel (tr (paths_rel_of_Q _)), apply idD},
{ intro d₁ d₂ d₃ g f, refine (eq_of_rel (tr (paths_rel_of_Q _)))⁻¹, apply DD}
end
definition Cpushout_inr [constructor] : E ⇒ Cpushout :=
begin
fapply functor.mk,
{ exact inr},
{ intro e e' f, exact class_of [iE (λc, c) F G f]},
{ intro e, refine eq_of_rel (tr (paths_rel_of_Q _)), apply idE},
{ intro e₁ e₂ e₃ g f, refine (eq_of_rel (tr (paths_rel_of_Q _)))⁻¹, apply EE}
end
variables ⦃x x' x₁ x₂ x₃ : Cpushout⦄
include H K
local notation `R` := bpushout_prehom_index (λ c, c) F G
local notation `Q` := bpushout_hom_rel_index (λ c, c) F G
definition Cpushout_functor_ob [unfold 9] (x : Cpushout) : X :=
begin
induction x with d e,
{ exact H d},
{ exact K e}
end
include η
parameters {F G H K}
definition Cpushout_functor_reduction_rule [unfold 12] (i : R x x') :
Cpushout_functor_ob x ⟶ Cpushout_functor_ob x' :=
begin
induction i,
{ exact H f},
{ exact K g},
{ exact natural_map (to_hom η) s},
{ exact natural_map (to_inv η) s}
end
definition Cpushout_functor_list (l : paths R x x') :
Cpushout_functor_ob x ⟶ Cpushout_functor_ob x' :=
realize _
Cpushout_functor_reduction_rule
(λa, id)
(λa b c g f, f ∘ g) l
definition Cpushout_functor_list_nil (x : Cpushout) :
Cpushout_functor_list (@nil _ _ x) = id :=
idp
definition Cpushout_functor_list_cons (r : R x₂ x₃) (l : paths R x₁ x₂) :
Cpushout_functor_list (r :: l) = Cpushout_functor_reduction_rule r ∘ Cpushout_functor_list l :=
idp
definition Cpushout_functor_list_singleton (r : R x₁ x₂) :
Cpushout_functor_list [r] = Cpushout_functor_reduction_rule r :=
realize_singleton (λa b f, id_right f) r
definition Cpushout_functor_list_pair (r₂ : R x₂ x₃) (r₁ : R x₁ x₂) :
Cpushout_functor_list [r₂, r₁] =
Cpushout_functor_reduction_rule r₂ ∘ Cpushout_functor_reduction_rule r₁ :=
realize_pair (λa b f, id_right f) r₂ r₁
definition Cpushout_functor_list_append (l₂ : paths R x₂ x₃) (l₁ : paths R x₁ x₂) :
Cpushout_functor_list (l₂ ++ l₁) = Cpushout_functor_list l₂ ∘ Cpushout_functor_list l₁ :=
realize_append (λa b c d h g f, assoc f g h) (λa b f, id_left f) l₂ l₁
theorem Cpushout_functor_list_rel {l l' : paths R x x'} (q : Q l l') :
Cpushout_functor_list l = Cpushout_functor_list l' :=
begin
induction q,
{ rewrite [Cpushout_functor_list_pair, Cpushout_functor_list_singleton],
exact (respect_comp H g f)⁻¹},
{ rewrite [Cpushout_functor_list_pair, Cpushout_functor_list_singleton],
exact (respect_comp K g f)⁻¹},
{ rewrite [Cpushout_functor_list_pair, Cpushout_functor_list_nil],
exact ap010 natural_map (to_left_inverse η) s},
{ rewrite [Cpushout_functor_list_pair, Cpushout_functor_list_nil],
exact ap010 natural_map (to_right_inverse η) s},
{ rewrite [Cpushout_functor_list_singleton, Cpushout_functor_list_nil], exact respect_id H d},
{ rewrite [Cpushout_functor_list_singleton, Cpushout_functor_list_nil], exact respect_id K e},
{ rewrite [+Cpushout_functor_list_pair], exact naturality (to_hom η) h},
{ rewrite [+Cpushout_functor_list_pair], exact (naturality (to_inv η) h)⁻¹}
end
definition Cpushout_functor_hom [unfold 12] (f : x ⟶ x') :
Cpushout_functor_ob x ⟶ Cpushout_functor_ob x' :=
begin
induction f with l l l' q,
{ exact Cpushout_functor_list l},
{ esimp at *, induction q with q, refine realize_eq _ _ _ q,
{ intros, apply assoc},
{ intros, apply id_left},
intro a₁ a₂ l₁ l₁ q, exact Cpushout_functor_list_rel q}
end
definition Cpushout_functor [constructor] : Cpushout ⇒ X :=
begin
fapply functor.mk,
{ exact Cpushout_functor_ob},
{ exact Cpushout_functor_hom},
{ intro x, reflexivity},
{ intro x₁ x₂ x₃ g f,
induction g using set_quotient.rec_prop with l₂,
induction f using set_quotient.rec_prop with l₁,
exact Cpushout_functor_list_append l₂ l₁}
end
definition Cpushout_functor_inl [constructor] : Cpushout_functor ∘f Cpushout_inl ≅ H :=
begin
fapply natural_iso.mk,
{ fapply nat_trans.mk,
{ intro d, exact id},
{ intro d d' f, rewrite [▸*, Cpushout_functor_list_singleton], apply comp_id_eq_id_comp}},
esimp, exact _
end
definition Cpushout_functor_inr [constructor] : Cpushout_functor ∘f Cpushout_inr ≅ K :=
begin
fapply natural_iso.mk,
{ fapply nat_trans.mk,
{ intro d, exact id},
{ intro d d' f, rewrite [▸*, Cpushout_functor_list_singleton], apply comp_id_eq_id_comp}},
esimp, exact _
end
definition Cpushout_functor_coh (c : C) : natural_map (to_hom Cpushout_functor_inr) (G c) ∘
Cpushout_functor (class_of [DE (λ c, c) F G c]) ∘ natural_map (to_inv Cpushout_functor_inl) (F c)
= natural_map (to_hom η) c :=
!id_leftright ⬝ !Cpushout_functor_list_singleton
definition Cpushout_functor_unique_ob [unfold 13] (L : Cpushout ⇒ X) (η₁ : L ∘f Cpushout_inl ≅ H)
(η₂ : L ∘f Cpushout_inr ≅ K) (x : Cpushout) : L x ⟶ Cpushout_functor x :=
begin
induction x with d e,
{ exact natural_map (to_hom η₁) d},
{ exact natural_map (to_hom η₂) e}
end
definition Cpushout_functor_unique_inv_ob [unfold 13] (L : Cpushout ⇒ X)
(η₁ : L ∘f Cpushout_inl ≅ H) (η₂ : L ∘f Cpushout_inr ≅ K) (x : Cpushout) :
Cpushout_functor x ⟶ L x :=
begin
induction x with d e,
{ exact natural_map (to_inv η₁) d},
{ exact natural_map (to_inv η₂) e}
end
definition Cpushout_functor_unique_nat_singleton (L : Cpushout ⇒ X) (η₁ : L ∘f Cpushout_inl ≅ H)
(η₂ : L ∘f Cpushout_inr ≅ K)
(p : Πs, natural_map (to_hom η₂) (to_fun_ob G s) ∘ to_fun_hom L (class_of [DE (λ c, c) F G s]) ∘
natural_map (to_inv η₁) (to_fun_ob F s) = natural_map (to_hom η) s) (r : R x x') :
Cpushout_functor_reduction_rule r ∘ Cpushout_functor_unique_ob L η₁ η₂ x =
Cpushout_functor_unique_ob L η₁ η₂ x' ∘ L (class_of [r]) :=
begin
induction r,
{ exact naturality (to_hom η₁) f},
{ exact naturality (to_hom η₂) g},
{ refine ap (λx, x ∘ _) (p s)⁻¹ ⬝ _, refine !assoc' ⬝ _, apply ap (λx, _ ∘ x),
refine !assoc' ⬝ _ ⬝ !id_right, apply ap (λx, _ ∘ x),
exact ap010 natural_map (to_left_inverse η₁) (F s)},
{ apply comp.cancel_left (to_hom (componentwise_iso η s)),
refine !assoc ⬝ _ ⬝ ap (λx, x ∘ _) (p s),
refine ap (λx, x ∘ _) (ap010 natural_map (to_right_inverse η) s) ⬝ _ ⬝ !assoc,
refine !id_left ⬝ !id_right⁻¹ ⬝ _, apply ap (λx, _ ∘ x),
refine _ ⬝ ap (λx, _ ∘ x) (ap (λx, x ∘ _) _⁻¹ ⬝ !assoc') ⬝ !assoc,
rotate 2, exact ap010 natural_map (to_left_inverse η₁) (F s),
refine _⁻¹ ⬝ ap (λx, _ ∘ x) !id_left⁻¹, refine (respect_comp L _ _)⁻¹ ⬝ _ ⬝ respect_id L _,
apply ap (to_fun_hom L), refine eq_of_rel (tr (paths_rel_of_Q _)), apply EDE},
end
definition Cpushout_functor_unique [constructor] (L : Cpushout ⇒ X) (η₁ : L ∘f Cpushout_inl ≅ H)
(η₂ : L ∘f Cpushout_inr ≅ K)
(p : Πs, natural_map (to_hom η₂) (to_fun_ob G s) ∘ to_fun_hom L (class_of [DE (λ c, c) F G s]) ∘
natural_map (to_inv η₁) (to_fun_ob F s) = natural_map (to_hom η) s) :
L ≅ Cpushout_functor :=
begin
fapply natural_iso.MK,
{ exact Cpushout_functor_unique_ob L η₁ η₂},
{ intro x x' f, induction f using set_quotient.rec_prop with l,
esimp, induction l with x x₁ x₂ x₃ r l IH,
{ refine !id_left ⬝ !id_right⁻¹ ⬝ _⁻¹, apply ap (λx, _ ∘ x), apply respect_id},
{ rewrite [Cpushout_functor_list_cons, assoc', ▸*, IH, assoc, ▸*,
Cpushout_functor_unique_nat_singleton L η₁ η₂ p r, ▸*, assoc', -respect_comp L]}},
{ exact Cpushout_functor_unique_inv_ob L η₁ η₂},
{ intro x, induction x with d e,
{ exact ap010 natural_map (to_left_inverse η₁) d},
{ exact ap010 natural_map (to_left_inverse η₂) e}},
{ intro x, induction x with d e,
{ exact ap010 natural_map (to_right_inverse η₁) d},
{ exact ap010 natural_map (to_right_inverse η₂) e}},
end
end
open bpushout_prehom_index prod prod.ops is_equiv equiv
definition Cpushout_universal {C D E : Precategory} {X : Category} (F : C ⇒ D) (G : C ⇒ E)
(H : D ⇒ X) (K : E ⇒ X) (η : H ∘f F ≅ K ∘f G) :
is_contr (Σ(L : Cpushout F G ⇒ X) (θ : L ∘f Cpushout_inl F G ≅ H × L ∘f Cpushout_inr F G ≅ K),
Πs, natural_map (to_hom θ.2) (to_fun_ob G s) ∘ to_fun_hom L (class_of [DE (λ c, c) F G s]) ∘
natural_map (to_inv θ.1) (to_fun_ob F s) = natural_map (to_hom η) s) :=
begin
fapply is_contr.mk,
{ exact ⟨Cpushout_functor η, (Cpushout_functor_inl η, Cpushout_functor_inr η),
Cpushout_functor_coh η⟩},
intro v₁, induction v₁ with L v₂, induction v₂ with θ p, induction θ with θ₁ θ₂,
fapply sigma_eq,
{ esimp, apply eq_of_iso, symmetry, exact Cpushout_functor_unique η L θ₁ θ₂ p},
fapply sigma_pathover,
{ apply prod_pathover: esimp,
{ apply iso_pathover,
apply hom_pathover_functor_left_constant_right (precomposition_functor _ _),
apply nat_trans_eq, intro d,
xrewrite [↑[hom_of_eq], to_right_inv !eq_equiv_iso, ▸*],
exact (ap010 natural_map (to_right_inverse θ₁) d)⁻¹},
{ apply iso_pathover,
apply hom_pathover_functor_left_constant_right (precomposition_functor _ _),
apply nat_trans_eq, intro e,
xrewrite [↑[hom_of_eq], to_right_inv !eq_equiv_iso, ▸*],
exact (ap010 natural_map (to_right_inverse θ₂) e)⁻¹}},
apply is_prop.elimo
end
/- Pushout of groupoids with a type of basepoints -/
section
variables {S : Type} {C D E : Groupoid} (k : S → C) (F : C ⇒ D) (G : C ⇒ E)
variables ⦃x x' x₁ x₂ x₃ x₄ : Precategory_bpushout k F G⦄
open bpushout_prehom_index paths.paths_rel bpushout_hom_rel_index
definition bpushout_index_inv [unfold 8] (i : bpushout_prehom_index k F G x x') :
bpushout_prehom_index k F G x' x :=
begin
induction i,
{ exact iD k F G f⁻¹},
{ exact iE k F G g⁻¹},
{ exact ED k F G s},
{ exact DE k F G s},
end
theorem bpushout_index_reverse {l l' : bpushout_prehom k F G x x'}
(q : bpushout_hom_rel_index k F G l l') : paths_rel (bpushout_hom_rel_index k F G)
(reverse (bpushout_index_inv k F G) l) (reverse (bpushout_index_inv k F G) l') :=
begin
induction q: apply paths_rel_of_Q;
try rewrite reverse_singleton; rewrite *reverse_pair; try rewrite reverse_nil; esimp;
try rewrite [comp_inverse]; try rewrite [id_inverse]; rewrite [-*respect_inv]; constructor
end
theorem bpushout_index_li (i : bpushout_prehom_index k F G x x') :
paths_rel (bpushout_hom_rel_index k F G) [bpushout_index_inv k F G i, i] nil :=
begin
induction i: esimp,
{ refine rtrans (paths_rel_of_Q !DD) _,
rewrite [comp.left_inverse], exact paths_rel_of_Q !idD},
{ refine rtrans (paths_rel_of_Q !EE) _,
rewrite [comp.left_inverse], exact paths_rel_of_Q !idE},
{ exact paths_rel_of_Q !DED},
{ exact paths_rel_of_Q !EDE}
end
theorem bpushout_index_ri (i : bpushout_prehom_index k F G x x') :
paths_rel (bpushout_hom_rel_index k F G) [i, bpushout_index_inv k F G i] nil :=
begin
induction i: esimp,
{ refine rtrans (paths_rel_of_Q !DD) _,
rewrite [comp.right_inverse], exact paths_rel_of_Q !idD},
{ refine rtrans (paths_rel_of_Q !EE) _,
rewrite [comp.right_inverse], exact paths_rel_of_Q !idE},
{ exact paths_rel_of_Q !EDE},
{ exact paths_rel_of_Q !DED}
end
definition Groupoid_bpushout [constructor] : Groupoid :=
Groupoid_paths (bpushout_hom_rel_index k F G) (bpushout_index_inv k F G)
(bpushout_index_reverse k F G) (bpushout_index_li k F G) (bpushout_index_ri k F G)
definition Gpushout [constructor] : Groupoid :=
Groupoid_bpushout (λc, c) F G
end
end category