lean2/library/data/vector.lean

206 lines
7.9 KiB
Text
Raw Normal View History

-- Copyright (c) 2014 Floris van Doorn. All rights reserved.
-- Released under Apache 2.0 license as described in the file LICENSE.
-- Author: Floris van Doorn, Leonardo de Moura
import data.nat.basic data.empty data.prod
open nat eq.ops prod
inductive vector (T : Type) : → Type :=
nil {} : vector T 0,
cons : T → ∀{n}, vector T n → vector T (succ n)
namespace vector
notation a :: b := cons a b
notation `[` l:(foldr `,` (h t, cons h t) nil) `]` := l
variables {A B C : Type}
variables {n m : nat}
protected definition is_inhabited [instance] (H : inhabited A) (n : nat) : inhabited (vector A n) :=
nat.rec_on n
(inhabited.mk nil)
(λ (n : nat) (iH : inhabited (vector A n)),
inhabited.destruct H
(λa, inhabited.destruct iH
(λv, inhabited.mk (a :: v))))
theorem z_cases_on {C : vector A 0 → Type} (v : vector A 0) (Hnil : C nil) : C v :=
have aux : ∀ (n₁ : nat) (v₁ : vector A n₁) (eq₁ : n₁ = 0) (eq₂ : v₁ == v) (Hnil : C nil), C v, from
λ n₁ v₁, vector.rec_on v₁
(λ (eq₁ : 0 = 0) (eq₂ : nil == v) (Hnil : C nil), eq.rec_on (heq.to_eq eq₂) Hnil)
(λ h₂ n₂ v₂ ih eq₁ eq₂ hnil, nat.no_confusion eq₁),
aux 0 v rfl !heq.refl Hnil
theorem vector0_eq_nil (v : vector A 0) : v = nil :=
z_cases_on v rfl
protected definition destruct (v : vector A (succ n)) {P : Π {n : nat}, vector A (succ n) → Type}
(H : Π {n : nat} (h : A) (t : vector A n), P (h :: t)) : P v :=
have aux : ∀ (n₁ : nat) (v₁ : vector A n₁) (eq₁ : n₁ = succ n) (eq₂ : v₁ == v), P v, from
(λ n₁ v₁, vector.rec_on v₁
(λ eq₁, nat.no_confusion eq₁)
(λ h₂ n₂ v₂ ih eq₁ eq₂,
nat.no_confusion eq₁ (λ e₃ : n₂ = n,
have aux : Π (n₂ : nat) (e₃ : n₂ = n) (v₂ : vector A n₂) (eq₂ : h₂ :: v₂ == v), P v, from
λ n₂ e₃, eq.rec_on (eq.rec_on e₃ rfl)
(λ (v₂ : vector A n) (eq₂ : h₂ :: v₂ == v),
have Phv : P (h₂ :: v₂), from H h₂ v₂,
eq.rec_on (heq.to_eq eq₂) Phv),
aux n₂ e₃ v₂ eq₂))),
aux (succ n) v rfl !heq.refl
definition nz_cases_on := @destruct
definition head (v : vector A (succ n)) : A :=
destruct v (λ n h t, h)
definition tail (v : vector A (succ n)) : vector A n :=
destruct v (λ n h t, t)
theorem head_cons (h : A) (t : vector A n) : head (h :: t) = h :=
rfl
theorem tail_cons (h : A) (t : vector A n) : tail (h :: t) = t :=
rfl
theorem eta (v : vector A (succ n)) : head v :: tail v = v :=
-- TODO(Leo): replace 'head_cons h t ▸ tail_cons h t ▸ rfl' with rfl
-- after issue #318 is fixed
destruct v (λ n h t, head_cons h t ▸ tail_cons h t ▸ rfl)
definition last : vector A (succ n) → A :=
nat.rec_on n
(λ (v : vector A (succ zero)), head v)
(λ n₁ r v, r (tail v))
theorem last_singleton (a : A) : last (a :: nil) = a :=
rfl
theorem last_cons (a : A) (v : vector A (succ n)) : last (a :: v) = last v :=
rfl
definition const (n : nat) (a : A) : vector A n :=
nat.rec_on n
nil
(λ n₁ r, a :: r)
theorem head_const (n : nat) (a : A) : head (const (succ n) a) = a :=
rfl
theorem last_const (n : nat) (a : A) : last (const (succ n) a) = a :=
nat.induction_on n
rfl
(λ n₁ ih, ih)
definition map (f : A → B) (v : vector A n) : vector B n :=
nat.rec_on n
(λ v, nil)
(λ n₁ r v, f (head v) :: r (tail v))
v
theorem map_vnil (f : A → B) : map f nil = nil :=
rfl
theorem map_vcons (f : A → B) (h : A) (t : vector A n) : map f (h :: t) = f h :: map f t :=
rfl
definition map2 (f : A → B → C) (v₁ : vector A n) (v₂ : vector B n) : vector C n :=
nat.rec_on n
(λ v₁ v₂, nil)
(λ n₁ r v₁ v₂, f (head v₁) (head v₂) :: r (tail v₁) (tail v₂))
v₁ v₂
theorem map2_vnil (f : A → B → C) : map2 f nil nil = nil :=
rfl
theorem map2_vcons (f : A → B → C) (h₁ : A) (h₂ : B) (t₁ : vector A n) (t₂ : vector B n) :
map2 f (h₁ :: t₁) (h₂ :: t₂) = f h₁ h₂ :: map2 f t₁ t₂ :=
rfl
definition append_core (w : vector A m) (v : vector A n) : vector A (n + m) :=
rec_on w
v
(λ (a₁ : A) (m₁ : nat) (v₁ : vector A m₁) (r₁ : vector A (n + m₁)), a₁ :: r₁)
theorem append_vnil (v : vector A n) : append_core nil v = v :=
rfl
theorem append_vcons (h : A) (t : vector A n) (v : vector A m) :
append_core (h :: t) v = h :: (append_core t v) :=
rfl
definition append (w : vector A n) (v : vector A m) : vector A (n + m) :=
eq.rec_on !add.comm (append_core w v)
definition unzip : vector (A × B) n → vector A n × vector B n :=
nat.rec_on n
(λ v, (nil, nil))
(λ a r v,
let t := r (tail v) in
(pr₁ (head v) :: pr₁ t, pr₂ (head v) :: pr₂ t))
definition zip : vector A n → vector B n → vector (A × B) n :=
nat.rec_on n
(λ v₁ v₂, nil)
(λ a r v₁ v₂, (head v₁, head v₂) :: r (tail v₁) (tail v₂))
theorem unzip_zip : ∀ (v₁ : vector A n) (v₂ : vector B n), unzip (zip v₁ v₂) = (v₁, v₂) :=
nat.induction_on n
(λ (v₁ : vector A zero) (v₂ : vector B zero),
z_cases_on v₁ (z_cases_on v₂ rfl))
(λ (n₁ : nat) (ih : ∀ (v₁ : vector A n₁) (v₂ : vector B n₁), unzip (zip v₁ v₂) = (v₁, v₂))
(v₁ : vector A (succ n₁)) (v₂ : vector B (succ n₁)), calc
unzip (zip v₁ v₂) = unzip ((head v₁, head v₂) :: zip (tail v₁) (tail v₂)) : rfl
... = (head v₁ :: pr₁ (unzip (zip (tail v₁) (tail v₂))),
head v₂ :: pr₂ (unzip (zip (tail v₁) (tail v₂)))) : rfl
... = (head v₁ :: pr₁ (tail v₁, tail v₂),
head v₂ :: pr₂ (tail v₁, tail v₂)) : ih
... = (head v₁ :: tail v₁, head v₂ :: tail v₂) : rfl
... = (v₁, head v₂ :: tail v₂) : vector.eta
... = (v₁, v₂) : vector.eta)
theorem zip_unzip : ∀ (v : vector (A × B) n), zip (pr₁ (unzip v)) (pr₂ (unzip v)) = v :=
nat.induction_on n
(λ (v : vector (A × B) zero),
z_cases_on v rfl)
(λ (n₁ : nat) (ih : ∀ v, zip (pr₁ (unzip v)) (pr₂ (unzip v)) = v) (v : vector (A × B) (succ n₁)), calc
zip (pr₁ (unzip v)) (pr₂ (unzip v)) = zip (pr₁ (head v) :: pr₁ (unzip (tail v)))
(pr₂ (head v) :: pr₂ (unzip (tail v))) : rfl
... = (pr₁ (head v), pr₂ (head v)) :: zip (pr₁ (unzip (tail v))) (pr₂ (unzip (tail v))) : rfl
... = (pr₁ (head v), pr₂ (head v)) :: tail v : ih
... = head v :: tail v : prod.eta
... = v : vector.eta)
-- Length
-- ------
definition length (v : vector A n) :=
n
theorem length_nil : length (@nil A) = 0 :=
rfl
theorem length_cons (a : A) (v : vector A n) : length (a :: v) = succ (length v) :=
rfl
theorem length_append (v₁ : vector A n) (v₂ : vector A m) : length (append v₁ v₂) = length v₁ + length v₂ :=
rfl
-- Concat
-- ------
definition concat (v : vector A n) (a : A) : vector A (succ n) :=
vector.rec_on v
(a :: nil)
(λ h n t r, h :: r)
theorem concat_nil (a : A) : concat nil a = a :: nil :=
rfl
theorem last_concat (v : vector A n) (a : A) : last (concat v a) = a :=
vector.induction_on v
rfl
(λ h n t ih, calc
last (concat (h :: t) a) = last (concat t a) : rfl
... = a : ih)
end vector