121 lines
4.8 KiB
Text
121 lines
4.8 KiB
Text
|
import logic data.nat.sub struc.relation data.prod
|
|||
|
import tools.fake_simplifier
|
|||
|
|
|||
|
open nat relation relation.iff_ops prod
|
|||
|
open fake_simplifier decidable
|
|||
|
open eq_ops
|
|||
|
|
|||
|
namespace nat
|
|||
|
|
|||
|
-- A general recursion principle
|
|||
|
-- -----------------------------
|
|||
|
--
|
|||
|
-- Data:
|
|||
|
--
|
|||
|
-- dom, codom : Type
|
|||
|
-- default : codom
|
|||
|
-- measure : dom → ℕ
|
|||
|
-- rec_val : dom → (dom → codom) → codom
|
|||
|
--
|
|||
|
-- and a proof
|
|||
|
--
|
|||
|
-- rec_decreasing : ∀m, m ≥ measure x, rec_val x f = rec_val x (restrict f m)
|
|||
|
--
|
|||
|
-- ... which says that the recursive call only depends on f at values with measure less than x,
|
|||
|
-- in the sense that changing other values to the default value doesn't change the result.
|
|||
|
--
|
|||
|
-- The result is a function f = rec_measure, satisfying
|
|||
|
--
|
|||
|
-- f x = rec_val x f
|
|||
|
|
|||
|
definition restrict {dom codom : Type} (default : codom) (measure : dom → ℕ) (f : dom → codom)
|
|||
|
(m : ℕ) (x : dom) :=
|
|||
|
if measure x < m then f x else default
|
|||
|
|
|||
|
theorem restrict_lt_eq {dom codom : Type} (default : codom) (measure : dom → ℕ) (f : dom → codom)
|
|||
|
(m : ℕ) (x : dom) (H : measure x < m) :
|
|||
|
restrict default measure f m x = f x :=
|
|||
|
if_pos H
|
|||
|
|
|||
|
theorem restrict_not_lt_eq {dom codom : Type} (default : codom) (measure : dom → ℕ)
|
|||
|
(f : dom → codom) (m : ℕ) (x : dom) (H : ¬ measure x < m) :
|
|||
|
restrict default measure f m x = default :=
|
|||
|
if_neg H
|
|||
|
|
|||
|
definition rec_measure_aux {dom codom : Type} (default : codom) (measure : dom → ℕ)
|
|||
|
(rec_val : dom → (dom → codom) → codom) : ℕ → dom → codom :=
|
|||
|
rec (λx, default) (λm g x, if measure x < succ m then rec_val x g else default)
|
|||
|
|
|||
|
definition rec_measure {dom codom : Type} (default : codom) (measure : dom → ℕ)
|
|||
|
(rec_val : dom → (dom → codom) → codom) (x : dom) : codom :=
|
|||
|
rec_measure_aux default measure rec_val (succ (measure x)) x
|
|||
|
|
|||
|
theorem rec_measure_aux_spec {dom codom : Type} (default : codom) (measure : dom → ℕ)
|
|||
|
(rec_val : dom → (dom → codom) → codom)
|
|||
|
(rec_decreasing : ∀g1 g2 x, (∀z, measure z < measure x → g1 z = g2 z) →
|
|||
|
rec_val x g1 = rec_val x g2)
|
|||
|
(m : ℕ) :
|
|||
|
let f' := rec_measure_aux default measure rec_val in
|
|||
|
let f := rec_measure default measure rec_val in
|
|||
|
∀x, f' m x = restrict default measure f m x :=
|
|||
|
let f' := rec_measure_aux default measure rec_val in
|
|||
|
let f := rec_measure default measure rec_val in
|
|||
|
case_strong_induction_on m
|
|||
|
(take x,
|
|||
|
have H1 : f' 0 x = default, from rfl,
|
|||
|
have H2 : ¬ measure x < 0, from not_lt_zero,
|
|||
|
have H3 : restrict default measure f 0 x = default, from if_neg H2,
|
|||
|
show f' 0 x = restrict default measure f 0 x, from H1 ⬝ H3⁻¹)
|
|||
|
(take m,
|
|||
|
assume IH: ∀n, n ≤ m → ∀x, f' n x = restrict default measure f n x,
|
|||
|
take x : dom,
|
|||
|
show f' (succ m) x = restrict default measure f (succ m) x, from
|
|||
|
by_cases -- (measure x < succ m)
|
|||
|
(assume H1 : measure x < succ m,
|
|||
|
have H2a : ∀z, measure z < measure x → f' m z = f z,
|
|||
|
proof
|
|||
|
take z,
|
|||
|
assume Hzx : measure z < measure x,
|
|||
|
calc
|
|||
|
f' m z = restrict default measure f m z : IH m le_refl z
|
|||
|
... = f z : restrict_lt_eq _ _ _ _ _ (lt_le_trans Hzx (lt_succ_imp_le H1))
|
|||
|
∎,
|
|||
|
have H2 : f' (succ m) x = rec_val x f,
|
|||
|
proof
|
|||
|
calc
|
|||
|
f' (succ m) x = if measure x < succ m then rec_val x (f' m) else default : rfl
|
|||
|
... = rec_val x (f' m) : if_pos H1
|
|||
|
... = rec_val x f : rec_decreasing (f' m) f x H2a
|
|||
|
∎,
|
|||
|
let m' := measure x in
|
|||
|
have H3a : ∀z, measure z < m' → f' m' z = f z,
|
|||
|
proof
|
|||
|
take z,
|
|||
|
assume Hzx : measure z < measure x,
|
|||
|
calc
|
|||
|
f' m' z = restrict default measure f m' z : IH _ (lt_succ_imp_le H1) _
|
|||
|
... = f z : restrict_lt_eq _ _ _ _ _ Hzx
|
|||
|
qed,
|
|||
|
have H3 : restrict default measure f (succ m) x = rec_val x f,
|
|||
|
proof
|
|||
|
calc
|
|||
|
restrict default measure f (succ m) x = f x : if_pos H1
|
|||
|
... = f' (succ m') x : eq.refl _
|
|||
|
... = if measure x < succ m' then rec_val x (f' m') else default : rfl
|
|||
|
... = rec_val x (f' m') : if_pos self_lt_succ
|
|||
|
... = rec_val x f : rec_decreasing _ _ _ H3a
|
|||
|
qed,
|
|||
|
show f' (succ m) x = restrict default measure f (succ m) x,
|
|||
|
from H2 ⬝ H3⁻¹)
|
|||
|
(assume H1 : ¬ measure x < succ m,
|
|||
|
have H2 : f' (succ m) x = default, from
|
|||
|
calc
|
|||
|
f' (succ m) x = if measure x < succ m then rec_val x (f' m) else default : rfl
|
|||
|
... = default : if_neg H1,
|
|||
|
have H3 : restrict default measure f (succ m) x = default,
|
|||
|
from if_neg H1,
|
|||
|
show f' (succ m) x = restrict default measure f (succ m) x,
|
|||
|
from H2 ⬝ H3⁻¹))
|
|||
|
|
|||
|
end nat
|