feat(library/algebra): finish adding one-directional versions of iff theorems

This commit is contained in:
Rob Lewis 2015-08-05 17:03:46 -04:00 committed by Leonardo de Moura
parent 11bb342819
commit 00262e4e47
4 changed files with 40 additions and 10 deletions

View file

@ -200,11 +200,20 @@ section division_ring
a / b = b / b : this a / b = b / b : this
... = 1 : div_self Hb) ... = 1 : div_self Hb)
theorem eq_of_div_eq_one (Hb : b ≠ 0) : a / b = 1 → a = b :=
iff.mp (div_eq_one_iff_eq Hb)
theorem eq_div_iff_mul_eq (Hc : c ≠ 0) : a = b / c ↔ a * c = b := theorem eq_div_iff_mul_eq (Hc : c ≠ 0) : a = b / c ↔ a * c = b :=
iff.intro iff.intro
(suppose a = b / c, by rewrite [this, (div_mul_cancel Hc)]) (suppose a = b / c, by rewrite [this, (div_mul_cancel Hc)])
(suppose a * c = b, by rewrite [-(mul_div_cancel Hc), this]) (suppose a * c = b, by rewrite [-(mul_div_cancel Hc), this])
theorem eq_div_of_mul_eq (Hc : c ≠ 0) : a * c = b → a = b / c :=
iff.mpr (eq_div_iff_mul_eq Hc)
theorem mul_eq_of_eq_div (Hc : c ≠ 0) : a = b / c → a * c = b :=
iff.mp (eq_div_iff_mul_eq Hc)
theorem add_div_eq_mul_add_div (Hc : c ≠ 0) : a + b / c = (a * c + b) / c := theorem add_div_eq_mul_add_div (Hc : c ≠ 0) : a + b / c = (a * c + b) / c :=
have (a + b / c) * c = a * c + b, by rewrite [right_distrib, (div_mul_cancel Hc)], have (a + b / c) * c = a * c + b, by rewrite [right_distrib, (div_mul_cancel Hc)],
(iff.elim_right (eq_div_iff_mul_eq Hc)) this (iff.elim_right (eq_div_iff_mul_eq Hc)) this

View file

@ -399,7 +399,6 @@ section discrete_linear_ordered_field
have H3 : 0 < -a, from pos_of_div_pos H2, have H3 : 0 < -a, from pos_of_div_pos H2,
neg_of_neg_pos H3 neg_of_neg_pos H3
-- why is mul_le_mul under ordered_ring namespace?
theorem le_of_div_le (H : 0 < a) (Hl : 1 / a ≤ 1 / b) : b ≤ a := theorem le_of_div_le (H : 0 < a) (Hl : 1 / a ≤ 1 / b) : b ≤ a :=
have Hb : 0 < b, from pos_of_div_pos (calc have Hb : 0 < b, from pos_of_div_pos (calc
0 < 1 / a : div_pos_of_pos H 0 < 1 / a : div_pos_of_pos H
@ -407,11 +406,10 @@ section discrete_linear_ordered_field
have H' : 1 ≤ a / b, from (calc have H' : 1 ≤ a / b, from (calc
1 = a / a : div_self (ne.symm (ne_of_lt H)) 1 = a / a : div_self (ne.symm (ne_of_lt H))
... = a * (1 / a) : div_eq_mul_one_div ... = a * (1 / a) : div_eq_mul_one_div
... ≤ a * (1 / b) : ordered_ring.mul_le_mul_of_nonneg_left Hl (le_of_lt H) ... ≤ a * (1 / b) : mul_le_mul_of_nonneg_left Hl (le_of_lt H)
... = a / b : div_eq_mul_one_div ... = a / b : div_eq_mul_one_div
), le_of_one_le_div Hb H' ), le_of_one_le_div Hb H'
theorem le_of_div_le_neg (H : b < 0) (Hl : 1 / a ≤ 1 / b) : b ≤ a := theorem le_of_div_le_neg (H : b < 0) (Hl : 1 / a ≤ 1 / b) : b ≤ a :=
assert Ha : a ≠ 0, from ne_of_lt (neg_of_div_neg (calc assert Ha : a ≠ 0, from ne_of_lt (neg_of_div_neg (calc
1 / a ≤ 1 / b : Hl 1 / a ≤ 1 / b : Hl
@ -480,14 +478,13 @@ section discrete_linear_ordered_field
theorem div_lt_div_of_pos_of_lt_of_pos (Hb : 0 < b) (H : b < a) (Hc : 0 < c) : c / a < c / b := theorem div_lt_div_of_pos_of_lt_of_pos (Hb : 0 < b) (H : b < a) (Hc : 0 < c) : c / a < c / b :=
begin begin
apply iff.mp (sub_neg_iff_lt _ _), apply iff.mp !sub_neg_iff_lt,
rewrite [div_eq_mul_one_div, {c / b}div_eq_mul_one_div], rewrite [div_eq_mul_one_div, {c / b}div_eq_mul_one_div, -mul_sub_left_distrib],
rewrite -mul_sub_left_distrib,
apply mul_neg_of_pos_of_neg, apply mul_neg_of_pos_of_neg,
exact Hc, exact Hc,
apply iff.mpr (sub_neg_iff_lt _ _), apply iff.mpr !sub_neg_iff_lt,
apply div_lt_div_of_lt, apply div_lt_div_of_lt,
exact Hb, exact H repeat assumption
end end
theorem div_mul_le_div_mul_of_div_le_div_pos' {d e : A} (H : a / b ≤ c / d) theorem div_mul_le_div_mul_of_div_le_div_pos' {d e : A} (H : a / b ≤ c / d)
@ -507,7 +504,7 @@ section discrete_linear_ordered_field
by rewrite [abs_of_neg H', abs_of_neg (div_neg_of_neg H'), by rewrite [abs_of_neg H', abs_of_neg (div_neg_of_neg H'),
-(one_div_neg_eq_neg_one_div (ne_of_lt H'))] -(one_div_neg_eq_neg_one_div (ne_of_lt H'))]
else else
have Heq [visible] : a = 0, from eq_of_le_of_ge (le_of_not_gt H) (le_of_not_gt H'), assert Heq : a = 0, from eq_of_le_of_ge (le_of_not_gt H) (le_of_not_gt H'),
by rewrite [Heq, div_zero, *abs_zero, div_zero]) by rewrite [Heq, div_zero, *abs_zero, div_zero])
theorem ge_sub_of_abs_sub_le_left (H : abs (a - b) ≤ c) : a ≥ b - c := theorem ge_sub_of_abs_sub_le_left (H : abs (a - b) ≤ c) : a ≥ b - c :=

View file

@ -603,9 +603,15 @@ section
theorem abs_dvd_iff (a b : A) : abs a b ↔ a b := theorem abs_dvd_iff (a b : A) : abs a b ↔ a b :=
abs.by_cases !iff.refl !neg_dvd_iff_dvd abs.by_cases !iff.refl !neg_dvd_iff_dvd
theorem abs_dvd_of_dvd {a b : A} : a b → abs a b :=
iff.mpr !abs_dvd_iff
theorem dvd_abs_iff (a b : A) : a abs b ↔ a b := theorem dvd_abs_iff (a b : A) : a abs b ↔ a b :=
abs.by_cases !iff.refl !dvd_neg_iff_dvd abs.by_cases !iff.refl !dvd_neg_iff_dvd
theorem dvd_abs_of_dvd {a b : A} : a b → a abs b :=
iff.mpr !dvd_abs_iff
theorem abs_mul (a b : A) : abs (a * b) = abs a * abs b := theorem abs_mul (a b : A) : abs (a * b) = abs a * abs b :=
or.elim (le.total 0 a) or.elim (le.total 0 a)
(assume H1 : 0 ≤ a, (assume H1 : 0 ≤ a,

View file

@ -222,6 +222,12 @@ section
... ↔ a * e - b * e + c = d : by rewrite sub_add_eq_add_sub ... ↔ a * e - b * e + c = d : by rewrite sub_add_eq_add_sub
... ↔ (a - b) * e + c = d : by rewrite mul_sub_right_distrib ... ↔ (a - b) * e + c = d : by rewrite mul_sub_right_distrib
theorem mul_add_eq_mul_add_of_sub_mul_add_eq : (a - b) * e + c = d → a * e + c = b * e + d :=
iff.mpr !mul_add_eq_mul_add_iff_sub_mul_add_eq
theorem sub_mul_add_eq_of_mul_add_eq_mul_add : a * e + c = b * e + d → (a - b) * e + c = d :=
iff.mp !mul_add_eq_mul_add_iff_sub_mul_add_eq
theorem mul_neg_one_eq_neg : a * (-1) = -a := theorem mul_neg_one_eq_neg : a * (-1) = -a :=
have a + a * -1 = 0, from calc have a + a * -1 = 0, from calc
a + a * -1 = a * 1 + a * -1 : mul_one a + a * -1 = a * 1 + a * -1 : mul_one
@ -278,6 +284,12 @@ section
(show a * -c = -b, (show a * -c = -b,
by rewrite [-neg_mul_eq_mul_neg, -this]))) by rewrite [-neg_mul_eq_mul_neg, -this])))
theorem dvd_neg_of_dvd : (a b) → (a -b) :=
iff.mpr !dvd_neg_iff_dvd
theorem dvd_of_dvd_neg : (a -b) → (a b) :=
iff.mp !dvd_neg_iff_dvd
theorem neg_dvd_iff_dvd : (-a b) ↔ (a b) := theorem neg_dvd_iff_dvd : (-a b) ↔ (a b) :=
iff.intro iff.intro
(suppose -a b, (suppose -a b,
@ -291,8 +303,14 @@ section
dvd.intro dvd.intro
(show -a * -c = b, by rewrite [neg_mul_neg, this]))) (show -a * -c = b, by rewrite [neg_mul_neg, this])))
theorem neg_dvd_of_dvd : (a b) → (-a b) :=
iff.mpr !neg_dvd_iff_dvd
theorem dvd_of_neg_dvd : (-a b) → (a b) :=
iff.mp !neg_dvd_iff_dvd
theorem dvd_sub (H₁ : (a b)) (H₂ : (a c)) : (a b - c) := theorem dvd_sub (H₁ : (a b)) (H₂ : (a c)) : (a b - c) :=
dvd_add H₁ (iff.elim_right !dvd_neg_iff_dvd H₂) dvd_add H₁ (!dvd_neg_of_dvd H₂)
end end
/- integral domains -/ /- integral domains -/