diff --git a/library/logic/connectives/eq.lean b/library/logic/connectives/eq.lean index 32076e8f4..073f06e37 100644 --- a/library/logic/connectives/eq.lean +++ b/library/logic/connectives/eq.lean @@ -9,7 +9,6 @@ import .basic - -- eq -- -- @@ -36,6 +35,13 @@ calc_trans trans theorem symm {A : Type} {a b : A} (H : a = b) : b = a := subst H (refl a) +namespace eq_ops + postfix `⁻¹` := symm + infixr `⬝` := trans + infixr `▸` := subst +end eq_ops +using eq_ops + theorem true_ne_false : ¬true = false := assume H : true = false, subst H trivial @@ -45,7 +51,7 @@ definition eq_rec_on {A : Type} {a1 a2 : A} {B : A → Type} (H1 : a1 = a2) (H2 eq_rec H2 H1 theorem eq_rec_on_id {A : Type} {a : A} {B : A → Type} (H : a = a) (b : B a) : eq_rec_on H b = b := -@trans _ _ (eq_rec_on (refl a) b) _ (refl _) (refl _) +refl (eq_rec_on rfl b) theorem eq_rec_id {A : Type} {a : A} {B : A → Type} (H : a = a) (b : B a) : eq_rec b H = b := eq_rec_on_id H b @@ -57,13 +63,6 @@ theorem eq_rec_on_compose {A : Type} {a b c : A} {P : A → Type} (H1 : a = b) ( from eq_rec_on H2 (take (H2 : b = b), eq_rec_on_id H2 _)) H2 -namespace eq_ops - postfix `⁻¹` := symm - infixr `⬝` := trans - infixr `▸` := subst -end eq_ops -using eq_ops - theorem congr_fun {A : Type} {B : A → Type} {f g : Π x, B x} (H : f = g) (a : A) : f a = g a := H ▸ refl (f a)