refactor(library/algebra/ring): more robust proofs
This commit is contained in:
parent
7ffabeb245
commit
018518f0cf
1 changed files with 6 additions and 3 deletions
|
@ -254,11 +254,14 @@ section
|
|||
include s
|
||||
|
||||
theorem mul_self_sub_mul_self_eq : a * a - b * b = (a + b) * (a - b) :=
|
||||
by rewrite [left_distrib, *right_distrib, add.assoc, -{b*a + _}add.assoc,
|
||||
-*neg_mul_eq_mul_neg, {a*b}mul.comm, add.right_inv, zero_add]
|
||||
begin
|
||||
krewrite [left_distrib, *right_distrib, add.assoc],
|
||||
rewrite [-{b*a + _}add.assoc,
|
||||
-*neg_mul_eq_mul_neg, {a*b}mul.comm, add.right_inv, zero_add]
|
||||
end
|
||||
|
||||
theorem mul_self_sub_one_eq : a * a - 1 = (a + 1) * (a - 1) :=
|
||||
mul_one 1 ▸ mul_self_sub_mul_self_eq a 1
|
||||
by rewrite [-mul_self_sub_mul_self_eq, mul_one]
|
||||
|
||||
theorem dvd_neg_iff_dvd : (a ∣ -b) ↔ (a ∣ b) :=
|
||||
iff.intro
|
||||
|
|
Loading…
Reference in a new issue