fix(frontends/lean): bug in include/omit commands: in the end of section/context, the configuration must be restored
This commit is contained in:
parent
284f300440
commit
01d4644026
3 changed files with 111 additions and 108 deletions
|
@ -93,11 +93,11 @@ parser::parser(environment const & env, io_state const & ios,
|
|||
m_theorem_queue(*this, num_threads > 1 ? num_threads - 1 : 0),
|
||||
m_snapshot_vector(sv), m_info_manager(im), m_cache(nullptr), m_index(nullptr) {
|
||||
if (s) {
|
||||
m_local_level_decls = s->m_lds;
|
||||
m_local_decls = s->m_eds;
|
||||
m_variables = s->m_vars;
|
||||
m_include_vars = s->m_include_vars;
|
||||
m_options_stack = s->m_options_stack;
|
||||
m_local_level_decls = s->m_lds;
|
||||
m_local_decls = s->m_eds;
|
||||
m_variables = s->m_vars;
|
||||
m_include_vars = s->m_include_vars;
|
||||
m_parser_scope_stack = s->m_parser_scope_stack;
|
||||
}
|
||||
m_num_threads = num_threads;
|
||||
m_no_undef_id_error = false;
|
||||
|
@ -405,21 +405,25 @@ expr parser::mk_app(std::initializer_list<expr> const & args, pos_info const & p
|
|||
void parser::push_local_scope(bool save_options) {
|
||||
m_local_level_decls.push();
|
||||
m_local_decls.push();
|
||||
optional<options> opts;
|
||||
if (save_options)
|
||||
m_options_stack = cons(optional<options>(m_ios.get_options()), m_options_stack);
|
||||
else
|
||||
m_options_stack = cons(optional<options>(), m_options_stack);
|
||||
opts = m_ios.get_options();
|
||||
m_parser_scope_stack = cons(parser_scope_stack_elem(opts, m_variables, m_include_vars),
|
||||
m_parser_scope_stack);
|
||||
}
|
||||
|
||||
void parser::pop_local_scope() {
|
||||
m_local_level_decls.pop();
|
||||
m_local_decls.pop();
|
||||
lean_assert(!is_nil(m_options_stack));
|
||||
if (auto const & it = head(m_options_stack)) {
|
||||
m_ios.set_options(*it);
|
||||
lean_assert(!is_nil(m_parser_scope_stack));
|
||||
auto s = head(m_parser_scope_stack);
|
||||
if (s.m_options) {
|
||||
m_ios.set_options(*s.m_options);
|
||||
updt_options();
|
||||
}
|
||||
m_options_stack = tail(m_options_stack);
|
||||
m_variables = s.m_variables;
|
||||
m_include_vars = s.m_include_vars;
|
||||
m_parser_scope_stack = tail(m_parser_scope_stack);
|
||||
}
|
||||
|
||||
void parser::add_local_level(name const & n, level const & l) {
|
||||
|
@ -1360,7 +1364,7 @@ void parser::save_snapshot() {
|
|||
return;
|
||||
if (m_snapshot_vector->empty() || static_cast<int>(m_snapshot_vector->back().m_line) != m_scanner.get_line())
|
||||
m_snapshot_vector->push_back(snapshot(m_env, m_local_level_decls, m_local_decls, m_variables, m_include_vars,
|
||||
m_options_stack, m_ios.get_options(), m_scanner.get_line()));
|
||||
m_ios.get_options(), m_parser_scope_stack, m_scanner.get_line()));
|
||||
}
|
||||
|
||||
void parser::save_pre_info_data() {
|
||||
|
|
|
@ -43,26 +43,35 @@ struct parser_error : public exception {
|
|||
struct interrupt_parser {};
|
||||
typedef local_decls<expr> local_expr_decls;
|
||||
typedef local_decls<level> local_level_decls;
|
||||
typedef list<optional<options>> options_stack;
|
||||
typedef environment local_environment;
|
||||
|
||||
/** \brief Extra data needed to be saved when we execute parser::push_local_scope */
|
||||
struct parser_scope_stack_elem {
|
||||
optional<options> m_options;
|
||||
name_set m_variables;
|
||||
name_set m_include_vars;
|
||||
parser_scope_stack_elem(optional<options> const & o, name_set const & vs, name_set const & ivs):
|
||||
m_options(o), m_variables(vs), m_include_vars(ivs) {}
|
||||
};
|
||||
typedef list<parser_scope_stack_elem> parser_scope_stack;
|
||||
|
||||
/** \brief Snapshot of the state of the Lean parser */
|
||||
struct snapshot {
|
||||
environment m_env;
|
||||
local_level_decls m_lds;
|
||||
local_expr_decls m_eds;
|
||||
name_set m_vars; // subset of m_eds that is tagged as section variables
|
||||
name_set m_include_vars; // subset of m_eds that must be includes
|
||||
options_stack m_options_stack;
|
||||
options m_options;
|
||||
unsigned m_line;
|
||||
environment m_env;
|
||||
local_level_decls m_lds;
|
||||
local_expr_decls m_eds;
|
||||
name_set m_vars; // subset of m_eds that is tagged as section variables
|
||||
name_set m_include_vars; // subset of m_eds that must be includes
|
||||
options m_options;
|
||||
parser_scope_stack m_parser_scope_stack;
|
||||
unsigned m_line;
|
||||
snapshot():m_line(0) {}
|
||||
snapshot(environment const & env, options const & o):m_env(env), m_options(o), m_line(1) {}
|
||||
snapshot(environment const & env, local_level_decls const & lds, local_expr_decls const & eds,
|
||||
name_set const & vars, name_set const & includes, options_stack const & os, options const & opts,
|
||||
unsigned line):
|
||||
name_set const & vars, name_set const & includes, options const & opts,
|
||||
parser_scope_stack const & pss, unsigned line):
|
||||
m_env(env), m_lds(lds), m_eds(eds), m_vars(vars), m_include_vars(includes),
|
||||
m_options_stack(os), m_options(opts), m_line(line) {}
|
||||
m_options(opts), m_parser_scope_stack(pss), m_line(line) {}
|
||||
};
|
||||
|
||||
typedef std::vector<snapshot> snapshot_vector;
|
||||
|
@ -81,7 +90,7 @@ class parser {
|
|||
local_expr_decls m_local_decls;
|
||||
name_set m_variables; // subset of m_local_decls that is marked as variables
|
||||
name_set m_include_vars; // subset of m_local_decls that is marked as include
|
||||
options_stack m_options_stack;
|
||||
parser_scope_stack m_parser_scope_stack;
|
||||
pos_info m_last_cmd_pos;
|
||||
pos_info m_last_script_pos;
|
||||
unsigned m_next_tag_idx;
|
||||
|
|
|
@ -49,9 +49,10 @@ end semigroup
|
|||
|
||||
section
|
||||
parameters {A : Type} {s : semigroup A}
|
||||
definition semigroup_has_mul [instance] : including A s, has_mul A := has_mul.mk (semigroup.mul)
|
||||
include s
|
||||
definition semigroup_has_mul [instance] : has_mul A := has_mul.mk (semigroup.mul)
|
||||
|
||||
theorem mul_assoc [instance] {a b c : A} : including A s, a * b * c = a * (b * c) :=
|
||||
theorem mul_assoc [instance] (a b c : A) : a * b * c = a * (b * c) :=
|
||||
semigroup.assoc
|
||||
end
|
||||
|
||||
|
@ -68,26 +69,28 @@ mk : Π mul: A → A → A,
|
|||
namespace comm_semigroup
|
||||
section
|
||||
parameters {A : Type} {s : comm_semigroup A}
|
||||
variables a b c : A
|
||||
definition mul (a b : A) : A := comm_semigroup.rec (λmul assoc comm, mul) s a b
|
||||
definition assoc {a b c : A} : mul (mul a b) c = mul a (mul b c) :=
|
||||
definition assoc : mul (mul a b) c = mul a (mul b c) :=
|
||||
comm_semigroup.rec (λmul assoc comm, assoc) s a b c
|
||||
definition comm {a b : A} : mul a b = mul b a :=
|
||||
definition comm : mul a b = mul b a :=
|
||||
comm_semigroup.rec (λmul assoc comm, comm) s a b
|
||||
end
|
||||
end comm_semigroup
|
||||
|
||||
section
|
||||
parameters {A : Type} {s : comm_semigroup A}
|
||||
definition comm_semigroup_semigroup [instance] : including A s, semigroup A :=
|
||||
semigroup.mk (comm_semigroup.mul) (@comm_semigroup.assoc _ _)
|
||||
variables a b c : A
|
||||
include s
|
||||
definition comm_semigroup_semigroup [instance] : semigroup A :=
|
||||
semigroup.mk comm_semigroup.mul comm_semigroup.assoc
|
||||
|
||||
theorem mul_comm {a b : A} : including A s, a * b = b * a := comm_semigroup.comm
|
||||
theorem mul_comm : a * b = b * a := !comm_semigroup.comm
|
||||
|
||||
theorem mul_left_comm {a b c : A} : including A s, a * (b * c) = b * (a * c) :=
|
||||
binary.left_comm (@mul_comm) (@mul_assoc _ _) a b c
|
||||
theorem mul_left_comm : a * (b * c) = b * (a * c) :=
|
||||
binary.left_comm mul_comm mul_assoc a b c
|
||||
end
|
||||
|
||||
|
||||
-- monoid
|
||||
-- ------
|
||||
|
||||
|
@ -102,25 +105,28 @@ mk : Π mul: A → A → A,
|
|||
namespace monoid
|
||||
section
|
||||
parameters {A : Type} {s : monoid A}
|
||||
definition mul (a b : A) : A := monoid.rec (λmul one assoc right_id left_id, mul) s a b
|
||||
definition one : A := monoid.rec (λmul one assoc right_id left_id, one) s
|
||||
definition assoc {a b c : A} : mul (mul a b) c = mul a (mul b c) :=
|
||||
variables a b c : A
|
||||
definition mul := monoid.rec (λmul one assoc right_id left_id, mul) s a b
|
||||
definition one := monoid.rec (λmul one assoc right_id left_id, one) s
|
||||
definition assoc : mul (mul a b) c = mul a (mul b c) :=
|
||||
monoid.rec (λmul one assoc right_id left_id, assoc) s a b c
|
||||
definition right_id {a : A} : mul a one = a :=
|
||||
definition right_id : mul a one = a :=
|
||||
monoid.rec (λmul one assoc right_id left_id, right_id) s a
|
||||
definition left_id {a : A} : mul one a = a :=
|
||||
definition left_id : mul one a = a :=
|
||||
monoid.rec (λmul one assoc right_id left_id, left_id) s a
|
||||
end
|
||||
end monoid
|
||||
|
||||
section
|
||||
parameters {A : Type} {s : monoid A}
|
||||
definition monoid_has_one [instance] : including A s, has_one A := has_one.mk (monoid.one)
|
||||
definition monoid_semigroup [instance] : including A s, semigroup A :=
|
||||
semigroup.mk (monoid.mul) (@monoid.assoc _ _)
|
||||
variable a : A
|
||||
include s
|
||||
definition monoid_has_one [instance] : has_one A := has_one.mk (monoid.one)
|
||||
definition monoid_semigroup [instance] : semigroup A :=
|
||||
semigroup.mk monoid.mul monoid.assoc
|
||||
|
||||
theorem mul_right_id {a : A} : including s, a * one = a := monoid.right_id
|
||||
theorem mul_left_id {a : A} : including s, one * a = a := monoid.left_id
|
||||
theorem mul_right_id : a * one = a := !monoid.right_id
|
||||
theorem mul_left_id : one * a = a := !monoid.left_id
|
||||
end
|
||||
|
||||
|
||||
|
@ -139,95 +145,79 @@ mk : Π mul: A → A → A,
|
|||
namespace comm_monoid
|
||||
section
|
||||
parameters {A : Type} {s : comm_monoid A}
|
||||
definition mul (a b : A) : A := comm_monoid.rec (λmul one assoc right_id left_id comm, mul) s a b
|
||||
definition one : A := comm_monoid.rec (λmul one assoc right_id left_id comm, one) s
|
||||
definition assoc {a b c : A} : mul (mul a b) c = mul a (mul b c) :=
|
||||
include s
|
||||
variables a b c : A
|
||||
definition mul := comm_monoid.rec (λmul one assoc right_id left_id comm, mul) s a b
|
||||
definition one := comm_monoid.rec (λmul one assoc right_id left_id comm, one) s
|
||||
definition assoc : mul (mul a b) c = mul a (mul b c) :=
|
||||
comm_monoid.rec (λmul one assoc right_id left_id comm, assoc) s a b c
|
||||
definition right_id {a : A} : mul a one = a :=
|
||||
definition right_id : mul a one = a :=
|
||||
comm_monoid.rec (λmul one assoc right_id left_id comm, right_id) s a
|
||||
definition left_id {a : A} : mul one a = a :=
|
||||
definition left_id : mul one a = a :=
|
||||
comm_monoid.rec (λmul one assoc right_id left_id comm, left_id) s a
|
||||
definition comm {a b : A} : mul a b = mul b a :=
|
||||
definition comm : mul a b = mul b a :=
|
||||
comm_monoid.rec (λmul one assoc right_id left_id comm, comm) s a b
|
||||
end
|
||||
end comm_monoid
|
||||
|
||||
section
|
||||
parameters {A : Type} {s : comm_monoid A}
|
||||
definition comm_monoid_monoid [instance] : including A s, monoid A :=
|
||||
monoid.mk (comm_monoid.mul) (comm_monoid.one) (@comm_monoid.assoc _ _)
|
||||
(@comm_monoid.right_id _ _) (@comm_monoid.left_id _ _)
|
||||
definition comm_monoid_comm_semigroup [instance] : including A s, comm_semigroup A :=
|
||||
comm_semigroup.mk (comm_monoid.mul) (@comm_monoid.assoc _ _) (@comm_monoid.comm _ _)
|
||||
include s
|
||||
definition comm_monoid_monoid [instance] : monoid A :=
|
||||
monoid.mk comm_monoid.mul comm_monoid.one comm_monoid.assoc
|
||||
comm_monoid.right_id comm_monoid.left_id
|
||||
definition comm_monoid_comm_semigroup [instance] : comm_semigroup A :=
|
||||
comm_semigroup.mk comm_monoid.mul comm_monoid.assoc comm_monoid.comm
|
||||
end
|
||||
|
||||
|
||||
-- bundled structures
|
||||
-- ------------------
|
||||
|
||||
inductive Semigroup [class] : Type := mk : Π carrier : Type, semigroup carrier → Semigroup
|
||||
namespace Semigroup
|
||||
section
|
||||
parameter (S : Semigroup)
|
||||
definition carrier : Type := Semigroup.rec (λc s, c) S
|
||||
definition struc : semigroup carrier := Semigroup.rec (λc s, s) S
|
||||
end
|
||||
end Semigroup
|
||||
coercion Semigroup.carrier
|
||||
instance Semigroup.struc
|
||||
section
|
||||
parameter S : Semigroup
|
||||
definition Semigroup.carrier [coercion] : Type := Semigroup.rec (λc s, c) S
|
||||
definition Semigroup.struc [instance] : semigroup S := Semigroup.rec (λc s, s) S
|
||||
end
|
||||
|
||||
inductive CommSemigroup [class] : Type :=
|
||||
mk : Π carrier : Type, comm_semigroup carrier → CommSemigroup
|
||||
namespace CommSemigroup
|
||||
section
|
||||
parameter (S : CommSemigroup)
|
||||
definition carrier : Type := CommSemigroup.rec (λc s, c) S
|
||||
definition struc : comm_semigroup carrier := CommSemigroup.rec (λc s, s) S
|
||||
end
|
||||
end CommSemigroup
|
||||
coercion CommSemigroup.carrier
|
||||
instance CommSemigroup.struc
|
||||
section
|
||||
parameter S : CommSemigroup
|
||||
definition CommSemigroup.carrier [coercion] : Type := CommSemigroup.rec (λc s, c) S
|
||||
definition CommSemigroup.struc [instance] : comm_semigroup S := CommSemigroup.rec (λc s, s) S
|
||||
end
|
||||
|
||||
inductive Monoid [class] : Type := mk : Π carrier : Type, monoid carrier → Monoid
|
||||
namespace Monoid
|
||||
section
|
||||
parameter (S : Monoid)
|
||||
definition carrier : Type := Monoid.rec (λc s, c) S
|
||||
definition struc : monoid carrier := Monoid.rec (λc s, s) S
|
||||
end
|
||||
end Monoid
|
||||
coercion Monoid.carrier
|
||||
instance Monoid.struc
|
||||
section
|
||||
parameter S : Monoid
|
||||
definition Monoid.carrier [coercion] : Type := Monoid.rec (λc s, c) S
|
||||
definition Monoid.struc [instance] : monoid S := Monoid.rec (λc s, s) S
|
||||
end
|
||||
|
||||
inductive CommMonoid : Type := mk : Π carrier : Type, comm_monoid carrier → CommMonoid
|
||||
namespace CommMonoid
|
||||
section
|
||||
parameter (S : CommMonoid)
|
||||
definition carrier : Type := CommMonoid.rec (λc s, c) S
|
||||
definition struc : comm_monoid carrier := CommMonoid.rec (λc s, s) S
|
||||
end
|
||||
end CommMonoid
|
||||
coercion CommMonoid.carrier
|
||||
instance CommMonoid.struc
|
||||
|
||||
section
|
||||
parameter S : CommMonoid
|
||||
definition CommMonoid.carrier [coercion] : Type := CommMonoid.rec (λc s, c) S
|
||||
definition CommMonoid.struc [instance] : comm_monoid S := CommMonoid.rec (λc s, s) S
|
||||
end
|
||||
end algebra
|
||||
|
||||
|
||||
open algebra
|
||||
|
||||
section examples
|
||||
|
||||
theorem test1 {S : Semigroup} (a b c d : S) : a * (b * c) * d = a * b * (c * d) :=
|
||||
calc
|
||||
a * (b * c) * d = a * b * c * d : {symm mul_assoc}
|
||||
... = a * b * (c * d) : mul_assoc
|
||||
a * (b * c) * d = a * b * c * d : {symm !mul_assoc}
|
||||
... = a * b * (c * d) : !mul_assoc
|
||||
|
||||
theorem test2 {M : CommSemigroup} (a b : M) : a * b = a * b := rfl
|
||||
|
||||
theorem test3 {M : Monoid} (a b c d : M) : a * (b * c) * d = a * b * (c * d) :=
|
||||
calc
|
||||
a * (b * c) * d = a * b * c * d : {symm mul_assoc}
|
||||
... = a * b * (c * d) : mul_assoc
|
||||
a * (b * c) * d = a * b * c * d : {symm !mul_assoc}
|
||||
... = a * b * (c * d) : !mul_assoc
|
||||
|
||||
-- for test4b to work, we need instances at the level of the bundled structures as well
|
||||
definition Monoid_Semigroup [instance] (M : Monoid) : Semigroup :=
|
||||
|
@ -238,21 +228,21 @@ test1 a b c d
|
|||
|
||||
theorem test5 {M : Monoid} (a b c : M) : a * 1 * b * c = a * (b * c) :=
|
||||
calc
|
||||
a * 1 * b * c = a * b * c : {mul_right_id}
|
||||
... = a * (b * c) : mul_assoc
|
||||
a * 1 * b * c = a * b * c : {!mul_right_id}
|
||||
... = a * (b * c) : !mul_assoc
|
||||
|
||||
theorem test5a {M : Monoid} (a b c : M) : a * 1 * b * c = a * (b * c) :=
|
||||
calc
|
||||
a * 1 * b * c = a * b * c : {mul_right_id}
|
||||
... = a * (b * c) : mul_assoc
|
||||
a * 1 * b * c = a * b * c : {!mul_right_id}
|
||||
... = a * (b * c) : !mul_assoc
|
||||
|
||||
theorem test5b {A : Type} {M : monoid A} (a b c : A) : a * 1 * b * c = a * (b * c) :=
|
||||
calc
|
||||
a * 1 * b * c = a * b * c : {mul_right_id}
|
||||
... = a * (b * c) : mul_assoc
|
||||
a * 1 * b * c = a * b * c : {!mul_right_id}
|
||||
... = a * (b * c) : !mul_assoc
|
||||
|
||||
theorem test6 {M : CommMonoid} (a b c : M) : a * 1 * b * c = a * (b * c) :=
|
||||
calc
|
||||
a * 1 * b * c = a * b * c : {mul_right_id}
|
||||
... = a * (b * c) : mul_assoc
|
||||
a * 1 * b * c = a * b * c : {!mul_right_id}
|
||||
... = a * (b * c) : !mul_assoc
|
||||
end examples
|
||||
|
|
Loading…
Reference in a new issue