From 01f0bb827ce13487b5791049405efba709ffa2ec Mon Sep 17 00:00:00 2001 From: Rob Lewis Date: Tue, 9 Jun 2015 16:14:52 +1000 Subject: [PATCH] feat(library/data/real): use new algebra lemmas in completeness proof --- library/data/real/complete.lean | 36 ++++++--------------------------- 1 file changed, 6 insertions(+), 30 deletions(-) diff --git a/library/data/real/complete.lean b/library/data/real/complete.lean index 70c3680b3..fee59d248 100644 --- a/library/data/real/complete.lean +++ b/library/data/real/complete.lean @@ -25,8 +25,6 @@ namespace s theorem nonneg_of_ge_neg_invs (a : ℚ) (H : ∀ n : ℕ+, -n⁻¹ ≤ a) : 0 ≤ a := sorry -theorem ineq_helper (a b c : ℚ) : c ≤ a + b → -a ≤ b - c := sorry - definition const (a : ℚ) : seq := λ n, a theorem const_reg (a : ℚ) : regular (const a) := @@ -108,7 +106,7 @@ theorem const_bound {s : seq} (Hs : regular s) (n : ℕ+) : s_le (s_abs (sadd s begin rewrite ↑[s_le, nonneg, s_abs, sadd, sneg, const], intro m, - apply ineq_helper, + apply iff.mp !rat.le_add_iff_neg_le_sub_left, apply rat.le.trans, apply Hs, apply rat.add_le_add_right, @@ -241,28 +239,6 @@ theorem rewrite_helper9 (a b c : ℝ) : b - c = (b - a) - (c - a) := sorry theorem rewrite_helper10 (a b c d : ℝ) : c - d = (c - a) + (a - b) + (b - d) := sorry -theorem r_abs_add_three (a b c : ℝ) : abs (a + b + c) ≤ abs a + abs b + abs c := - begin - apply algebra.le.trans, - apply algebra.abs_add_le_abs_add_abs, - apply algebra.le.trans, - apply algebra.add_le_add_right, - apply algebra.abs_add_le_abs_add_abs, - apply algebra.le.refl - end - -theorem r_add_le_add_three (a b c d e f : ℝ) (H1 : a ≤ d) (H2 : b ≤ e) (H3 : c ≤ f) : - a + b + c ≤ d + e + f := - begin - apply algebra.le.trans, - apply algebra.add_le_add, - apply algebra.add_le_add, - repeat assumption, - apply algebra.le.refl - end - -theorem re_add_comm_3 (a b c : ℝ) : a + b + c = c + b + a := sorry - definition rep (x : ℝ) : reg_seq := some (quot.exists_rep x) definition const (a : ℚ) : ℝ := quot.mk (s.r_const a) @@ -364,7 +340,7 @@ theorem lim_seq_reg_helper {X : r_seq} {M : ℕ+ → ℕ+} (Hc : cauchy X M) {m (X (Nb M n) - const (lim_seq Hc n)) ≤ const (m⁻¹ + n⁻¹) := begin apply algebra.le.trans, - apply r_add_le_add_three, + apply algebra.add_le_add_three, apply approx_spec', rotate 1, apply approx_spec, @@ -390,7 +366,7 @@ theorem lim_seq_reg {X : r_seq} {M : ℕ+ → ℕ+} (Hc : cauchy X M) : regular apply le_of_const_le_const, rewrite [abs_const, -sub_consts, (rewrite_helper10 (X (Nb M m)) (X (Nb M n)))], apply algebra.le.trans, - apply r_abs_add_three, + apply algebra.abs_add_three, let Hor := decidable.em (M (2 * m) ≥ M (2 * n)), apply or.elim Hor, intro Hor1, @@ -398,7 +374,7 @@ theorem lim_seq_reg {X : r_seq} {M : ℕ+ → ℕ+} (Hc : cauchy X M) : regular intro Hor2, let Hor2' := pnat.le_of_lt (pnat.lt_of_not_le Hor2), rewrite [algebra.abs_sub (X (Nb M n)), algebra.abs_sub (X (Nb M m)), algebra.abs_sub, -- ??? - rat.add.comm, re_add_comm_3], + rat.add.comm, algebra.add_comm_three], apply lim_seq_reg_helper Hc Hor2' end @@ -437,9 +413,9 @@ theorem converges_of_cauchy {X : r_seq} {M : ℕ+ → ℕ+} (Hc : cauchy X M) : intro k n Hn, rewrite (rewrite_helper10 (X (Nb M n)) (const (lim_seq Hc n))), apply algebra.le.trans, - apply r_abs_add_three, + apply algebra.abs_add_three, apply algebra.le.trans, - apply r_add_le_add_three, + apply algebra.add_le_add_three, apply Hc, apply ple.trans, rotate 1,