feat(library/data/list): add "erase" function lemmas
This commit is contained in:
parent
fc0ed5e46c
commit
01f5dd9fa8
1 changed files with 39 additions and 0 deletions
|
@ -258,6 +258,12 @@ list.rec_on l
|
||||||
theorem mem_of_ne_of_mem {x y : T} {l : list T} (H₁ : x ≠ y) (H₂ : x ∈ y :: l) : x ∈ l :=
|
theorem mem_of_ne_of_mem {x y : T} {l : list T} (H₁ : x ≠ y) (H₂ : x ∈ y :: l) : x ∈ l :=
|
||||||
or.elim H₂ (λe, absurd e H₁) (λr, r)
|
or.elim H₂ (λe, absurd e H₁) (λr, r)
|
||||||
|
|
||||||
|
theorem not_eq_of_not_mem {a b : T} {l : list T} : a ∉ b::l → a ≠ b :=
|
||||||
|
assume nin aeqb, absurd (or.inl aeqb) nin
|
||||||
|
|
||||||
|
theorem not_mem_of_not_mem {a b : T} {l : list T} : a ∉ b::l → a ∉ l :=
|
||||||
|
assume nin nainl, absurd (or.inr nainl) nin
|
||||||
|
|
||||||
definition sublist (l₁ l₂ : list T) := ∀ ⦃a : T⦄, a ∈ l₁ → a ∈ l₂
|
definition sublist (l₁ l₂ : list T) := ∀ ⦃a : T⦄, a ∈ l₁ → a ∈ l₂
|
||||||
|
|
||||||
infix `⊆`:50 := sublist
|
infix `⊆`:50 := sublist
|
||||||
|
@ -619,6 +625,39 @@ lemma length_erase_of_not_mem (a : A) : ∀ l, a ∉ l → length (erase a l) =
|
||||||
assert aninxs : a ∉ xs, from λ ainxs : a ∈ xs, absurd (or.inr ainxs) h,
|
assert aninxs : a ∉ xs, from λ ainxs : a ∈ xs, absurd (or.inr ainxs) h,
|
||||||
by rewrite [erase_cons_tail _ anex, length_cons, length_erase_of_not_mem xs aninxs]
|
by rewrite [erase_cons_tail _ anex, length_cons, length_erase_of_not_mem xs aninxs]
|
||||||
|
|
||||||
|
lemma erase_append_left {a : A} : ∀ {l₁} (l₂), a ∈ l₁ → erase a (l₁++l₂) = erase a l₁ ++ l₂
|
||||||
|
| [] l₂ h := absurd h !not_mem_nil
|
||||||
|
| (x::xs) l₂ h :=
|
||||||
|
by_cases
|
||||||
|
(λ aeqx : a = x, by rewrite [aeqx, append_cons, *erase_cons_head])
|
||||||
|
(λ anex : a ≠ x,
|
||||||
|
assert ainxs : a ∈ xs, from mem_of_ne_of_mem anex h,
|
||||||
|
by rewrite [append_cons, *erase_cons_tail _ anex, erase_append_left l₂ ainxs])
|
||||||
|
|
||||||
|
lemma erase_append_right {a : A} : ∀ {l₁} (l₂), a ∉ l₁ → erase a (l₁++l₂) = l₁ ++ erase a l₂
|
||||||
|
| [] l₂ h := _
|
||||||
|
| (x::xs) l₂ h :=
|
||||||
|
by_cases
|
||||||
|
(λ aeqx : a = x, by rewrite aeqx at h; exact (absurd !mem_cons h))
|
||||||
|
(λ anex : a ≠ x,
|
||||||
|
assert nainxs : a ∉ xs, from not_mem_of_not_mem h,
|
||||||
|
by rewrite [append_cons, *erase_cons_tail _ anex, erase_append_right l₂ nainxs])
|
||||||
|
|
||||||
|
lemma erase_sub (a : A) : ∀ l, erase a l ⊆ l
|
||||||
|
| [] := λ x xine, xine
|
||||||
|
| (x::xs) := λ y xine,
|
||||||
|
by_cases
|
||||||
|
(λ aeqx : a = x, by rewrite [aeqx at xine, erase_cons_head at xine]; exact (or.inr xine))
|
||||||
|
(λ anex : a ≠ x,
|
||||||
|
assert yinxe : y ∈ x :: erase a xs, by rewrite [erase_cons_tail _ anex at xine]; exact xine,
|
||||||
|
assert subxs : erase a xs ⊆ xs, from erase_sub xs,
|
||||||
|
by_cases
|
||||||
|
(λ yeqx : y = x, by rewrite yeqx; apply mem_cons)
|
||||||
|
(λ ynex : y ≠ x,
|
||||||
|
assert yine : y ∈ erase a xs, from mem_of_ne_of_mem ynex yinxe,
|
||||||
|
assert yinxs : y ∈ xs, from subxs yine,
|
||||||
|
or.inr yinxs))
|
||||||
|
|
||||||
end erase
|
end erase
|
||||||
end list
|
end list
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue