feat(library/tactic): add apply_tactic

Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
Leonardo de Moura 2013-12-05 03:22:12 -08:00
parent 7b4ea75dee
commit 029ef57abd
8 changed files with 211 additions and 4 deletions

View file

@ -10,9 +10,7 @@ Author: Leonardo de Moura
#include "kernel/metavar.h"
namespace lean {
expr instantiate_with_closed(expr const & a, unsigned n, expr const * s) {
lean_assert(std::all_of(s, s+n, closed));
expr instantiate_with_closed_relaxed(expr const & a, unsigned n, expr const * s) {
auto f = [=](expr const & m, unsigned offset) -> expr {
if (is_var(m)) {
unsigned vidx = var_idx(m);
@ -35,6 +33,12 @@ expr instantiate_with_closed(expr const & a, unsigned n, expr const * s) {
};
return replace_fn<decltype(f)>(f)(a);
}
expr instantiate_with_closed(expr const & a, unsigned n, expr const * s) {
lean_assert(std::all_of(s, s+n, closed));
return instantiate_with_closed_relaxed(a, n, s);
}
expr instantiate(expr const & a, unsigned s, unsigned n, expr const * subst) {
auto f = [=](expr const & m, unsigned offset) -> expr {
if (is_var(m)) {

View file

@ -18,6 +18,12 @@ inline expr instantiate_with_closed(expr const & e, std::initializer_list<expr>
return instantiate_with_closed(e, l.size(), l.begin());
}
inline expr instantiate_with_closed(expr const & e, expr const & s) { return instantiate_with_closed(e, 1, &s); }
/**
\brief Similar to instantiate_with_closed, but does not use an assertion for
testing whether arguments are close or not.
This version is useful, for example, when we want to treat metavariables as closed terms.
*/
expr instantiate_with_closed_relaxed(expr const & a, unsigned n, expr const * s);
/**
\brief Replace the free variables with indices 0, ..., n-1 with s[n-1], ..., s[0] in e.

View file

@ -1,4 +1,4 @@
add_library(tactic goal.cpp proof_builder.cpp cex_builder.cpp
proof_state.cpp tactic.cpp boolean.cpp)
proof_state.cpp tactic.cpp boolean.cpp apply_tactic.cpp)
target_link_libraries(tactic ${LEAN_LIBS})

View file

@ -0,0 +1,154 @@
/*
Copyright (c) 2013 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Leonardo de Moura
*/
#include <utility>
#include <algorithm>
#include "kernel/environment.h"
#include "kernel/instantiate.h"
#include "library/fo_unify.h"
#include "library/kernel_bindings.h"
#include "library/type_inferer.h"
#include "library/tactic/goal.h"
#include "library/tactic/proof_builder.h"
#include "library/tactic/proof_state.h"
#include "library/tactic/tactic.h"
#include "library/tactic/apply_tactic.h"
namespace lean {
static name g_tmp_mvar_name = name::mk_internal_unique_name();
static optional<proof_state> apply_tactic(environment const & env, proof_state const & s,
expr const & th, expr const & th_type, bool all) {
precision prec = s.get_precision();
if (prec != precision::Precise && prec != precision::Over) {
// it is pointless to apply this tactic, since it will produce UnderOver
return none_proof_state();
}
unsigned num = 0;
expr th_type_c = th_type;
while (is_pi(th_type_c)) {
num++;
th_type_c = abst_body(th_type_c);
}
buffer<expr> mvars;
for (unsigned i = 0; i < num; i++)
mvars.push_back(mk_metavar(name(g_tmp_mvar_name, i)));
th_type_c = instantiate_with_closed_relaxed(th_type_c, mvars.size(), mvars.data());
bool found = false;
buffer<std::pair<name, goal>> new_goals_buf;
// The proof is based on an application of th.
// There are two kinds of arguments:
// 1) regular arguments computed using unification.
// 2) propostions that generate new subgoals.
// We use a pair to simulate this "union" type.
typedef list<std::pair<expr, name>> arg_list;
// We may solve more than one goal.
// We store the solved goals using a list of pairs
// name, args. Where the 'name' is the name of the solved goal.
type_inferer inferer(env);
metavar_env new_menv = s.get_menv();
list<std::pair<name, arg_list>> proof_info;
for (auto const & p : s.get_goals()) {
check_interrupted();
if (all || !found) {
name const & gname = p.first;
goal const & g = p.second;
expr const & c = g.get_conclusion();
optional<substitution> subst = fo_unify(th_type_c, c);
if (subst) {
found = true;
th_type_c = th_type;
arg_list l;
unsigned new_goal_idx = 1;
for (auto const & mvar : mvars) {
expr mvar_sol = apply(*subst, mvar);
if (mvar_sol != mvar) {
l.emplace_front(mvar_sol, name());
th_type_c = instantiate(abst_body(th_type_c), mvar_sol);
} else {
if (inferer.is_proposition(abst_domain(th_type_c))) {
name new_gname(gname, new_goal_idx);
new_goal_idx++;
l.emplace_front(expr(), new_gname);
new_goals_buf.emplace_back(new_gname, update(g, abst_domain(th_type_c)));
th_type_c = instantiate(abst_body(th_type_c), mk_constant(new_gname, abst_domain(th_type_c)));
} else {
// we have to create a new metavar in menv
// since we do not have a substitution for mvar, and
// it is not a proposition
expr new_m = new_menv.mk_metavar(context(), abst_domain(th_type_c));
l.emplace_front(new_m, name());
// we use instantiate_with_closed_relaxed because we do not want
// to introduce a lift operator in the new_m
th_type_c = instantiate_with_closed_relaxed(abst_body(th_type_c), 1, &new_m);
}
}
}
proof_info.emplace_front(gname, l);
} else {
new_goals_buf.push_back(p);
}
} else {
new_goals_buf.push_back(p);
}
}
if (found) {
proof_builder pb = s.get_proof_builder();
proof_builder new_pb = mk_proof_builder([=](proof_map const & m, assignment const & a) -> expr {
proof_map new_m(m);
for (auto const & p1 : proof_info) {
name const & gname = p1.first;
arg_list const & l = p1.second;
buffer<expr> args;
args.push_back(th);
for (auto const & p2 : l) {
expr const & arg = p2.first;
if (arg) {
// TODO(Leo): decide if we instantiate the metavars in the end or not.
args.push_back(arg);
} else {
name const & subgoal_name = p2.second;
args.push_back(find(m, subgoal_name));
new_m.erase(subgoal_name);
}
}
std::reverse(args.begin() + 1, args.end());
new_m.insert(gname, mk_app(args));
}
return pb(new_m, a);
});
goals new_gs = to_list(new_goals_buf.begin(), new_goals_buf.end());
return some(proof_state(precision::Over, new_gs, new_menv, new_pb, s.get_cex_builder()));
} else {
return none_proof_state();
}
}
tactic apply_tactic(expr const & th, expr const & th_type, bool all) {
return mk_tactic01([=](environment const & env, io_state const &, proof_state const & s) -> optional<proof_state> {
return apply_tactic(env, s, th, th_type, all);
});
}
tactic apply_tactic(name const & th_name, bool all) {
return mk_tactic01([=](environment const & env, io_state const &, proof_state const & s) -> optional<proof_state> {
object const & obj = env.find_object(th_name);
if (obj && (obj.is_theorem() || obj.is_axiom()))
return apply_tactic(env, s, mk_constant(th_name), obj.get_type(), all);
else
return none_proof_state();
});
}
int mk_apply_tactic(lua_State * L) {
int nargs = lua_gettop(L);
return push_tactic(L, apply_tactic(to_name_ext(L, 1), nargs >= 2 ? lua_toboolean(L, 2) : true));
}
void open_apply_tactic(lua_State * L) {
SET_GLOBAL_FUN(mk_apply_tactic, "apply_tactic");
}
}

View file

@ -0,0 +1,13 @@
/*
Copyright (c) 2013 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Leonardo de Moura
*/
#pragma once
#include "library/tactic/tactic.h"
namespace lean {
tactic apply_tactic(expr const & th, expr const & th_type, bool all = true);
tactic apply_tactic(name const & th_name, bool all = true);
void open_apply_tactic(lua_State * L);
}

View file

@ -12,6 +12,7 @@ Author: Leonardo de Moura
#include "library/tactic/proof_state.h"
#include "library/tactic/tactic.h"
#include "library/tactic/boolean.h"
#include "library/tactic/apply_tactic.h"
namespace lean {
inline void open_tactic_module(lua_State * L) {
@ -21,6 +22,7 @@ inline void open_tactic_module(lua_State * L) {
open_proof_state(L);
open_tactic(L);
open_boolean(L);
open_apply_tactic(L);
}
inline void register_tactic_module() {
script_state::register_module(open_tactic_module);

View file

@ -0,0 +1,18 @@
Variable f : Int -> Int -> Bool
Variable P : Int -> Int -> Bool
Axiom Ax1 (x y : Int) (H : P x y) : (f x y)
Theorem T1 (a : Int) : (P a a) => (f a a).
apply imp_tactic
apply (** apply_tactic("Ax1") **)
apply assumption_tactic
done
Variable b : Int
Axiom Ax2 (x : Int) : (f x b)
(**
simple_tac = REPEAT(ORELSE(imp_tactic, assumption_tactic, apply_tactic("Ax2"), apply_tactic("Ax1")))
**)
Theorem T2 (a : Int) : (P a a) => (f a a).
apply simple_tac
done
Show Environment 1.

View file

@ -0,0 +1,10 @@
Set: pp::colors
Set: pp::unicode
Assumed: f
Assumed: P
Assumed: Ax1
Proved: T1
Assumed: b
Assumed: Ax2
Proved: T2
Theorem T2 (a : ) : (P a a) ⇒ (f a a) := Discharge (λ H : P a a, Ax1 a a H)