feat(library/logic/{connectives,identities},library/algebra/function): cleanup and some additions from Haitao Zhang

This commit is contained in:
Jeremy Avigad 2015-06-04 13:41:52 +10:00 committed by Leonardo de Moura
parent 134740182d
commit 03952ae12c
3 changed files with 43 additions and 14 deletions

View file

@ -37,7 +37,7 @@ definition dcompose [reducible] [unfold-f] {B : A → Type} {C : Π {x : A}, B x
(f : Π {x : A} (y : B x), C y) (g : Πx, B x) : Πx, C (g x) := (f : Π {x : A} (y : B x), C y) (g : Πx, B x) : Πx, C (g x) :=
λx, f (g x) λx, f (g x)
definition flip [reducible] [unfold-f] {C : A → B → Type} (f : Πx y, C x y) : Πy x, C x y := definition swap [reducible] [unfold-f] {C : A → B → Type} (f : Πx y, C x y) : Πy x, C x y :=
λy x, f x y λy x, f x y
definition app [reducible] {B : A → Type} (f : Πx, B x) (x : A) : B x := definition app [reducible] {B : A → Type} (f : Πx, B x) (x : A) : B x :=

View file

@ -1,7 +1,7 @@
/- /-
Copyright (c) 2014 Microsoft Corporation. All rights reserved. Copyright (c) 2014 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE. Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jeremy Avigad, Leonardo de Moura Authors: Jeremy Avigad, Leonardo de Moura, Haitao Zhang
The propositional connectives. See also init.datatypes and init.logic. The propositional connectives. See also init.datatypes and init.logic.
-/ -/
@ -41,6 +41,9 @@ theorem not.intro (H : a → false) : ¬a := H
theorem not_not_intro (Ha : a) : ¬¬a := theorem not_not_intro (Ha : a) : ¬¬a :=
assume Hna : ¬a, absurd Ha Hna assume Hna : ¬a, absurd Ha Hna
theorem not_imp_not_of_imp {a b : Prop} : (a → b) → ¬b → ¬a :=
assume Pimp Pnb Pa, absurd (Pimp Pa) Pnb
theorem not_not_of_not_implies (H : ¬(a → b)) : ¬¬a := theorem not_not_of_not_implies (H : ¬(a → b)) : ¬¬a :=
assume Hna : ¬a, absurd (assume Ha : a, absurd Ha Hna) H assume Hna : ¬a, absurd (assume Ha : a, absurd Ha Hna) H
@ -106,6 +109,21 @@ iff.intro (assume H, and.left H) (assume H, false.elim H)
theorem and_self (a : Prop) : a ∧ a ↔ a := theorem and_self (a : Prop) : a ∧ a ↔ a :=
iff.intro (assume H, and.left H) (assume H, and.intro H H) iff.intro (assume H, and.left H) (assume H, and.intro H H)
theorem and_imp_eq (a b c : Prop) : (a ∧ b → c) = (a → b → c) :=
propext
(iff.intro (λ Pl a b, Pl (and.intro a b))
(λ Pr Pand, Pr (and.left Pand) (and.right Pand)))
theorem and_eq_right {a b : Prop} (Ha : a) : (a ∧ b) = b :=
propext (iff.intro
(assume Hab, and.elim_right Hab)
(assume Hb, and.intro Ha Hb))
theorem and_eq_left {a b : Prop} (Hb : b) : (a ∧ b) = a :=
propext (iff.intro
(assume Hab, and.elim_left Hab)
(assume Ha, and.intro Ha Hb))
/- or -/ /- or -/
definition not_or (Hna : ¬a) (Hnb : ¬b) : ¬(a b) := definition not_or (Hna : ¬a) (Hnb : ¬b) : ¬(a b) :=

View file

@ -94,20 +94,31 @@ assume H, by_contradiction (assume Hna : ¬a,
have Hnna : ¬¬a, from not_not_of_not_implies (mt H Hna), have Hnna : ¬¬a, from not_not_of_not_implies (mt H Hna),
absurd (not_not_elim Hnna) Hna) absurd (not_not_elim Hnna) Hna)
theorem forall_not_of_not_exists {A : Type} {P : A → Prop} [D : ∀x, decidable (P x)] theorem forall_not_of_not_exists {A : Type} {p : A → Prop} [D : ∀x, decidable (p x)]
(H : ¬∃x, P x) : ∀x, ¬P x := (H : ¬∃x, p x) : ∀x, ¬p x :=
take x, or.elim (em (P x)) take x, or.elim (em (p x))
(assume Hp : P x, absurd (exists.intro x Hp) H) (assume Hp : p x, absurd (exists.intro x Hp) H)
(assume Hn : ¬P x, Hn) (assume Hnp : ¬p x, Hnp)
theorem exists_not_of_not_forall {A : Type} {P : A → Prop} [D : ∀x, decidable (P x)] theorem forall_of_not_exists_not {A : Type} {p : A → Prop} [D : decidable_pred p] :
[D' : decidable (∃x, ¬P x)] (H : ¬∀x, P x) : ¬(∃ x, ¬p x) → ∀ x, p x :=
∃x, ¬P x := assume Hne, take x, by_contradiction (assume Hnp : ¬ p x, Hne (exists.intro x Hnp))
@by_contradiction _ D' (assume H1 : ¬∃x, ¬P x,
have H2 : ∀x, ¬¬P x, from @forall_not_of_not_exists _ _ (take x, decidable_not) H1, theorem exists_not_of_not_forall {A : Type} {p : A → Prop} [D : ∀x, decidable (p x)]
have H3 : ∀x, P x, from take x, @not_not_elim _ (D x) (H2 x), [D' : decidable (∃x, ¬p x)] (H : ¬∀x, p x) :
∃x, ¬p x :=
by_contradiction
(assume H1 : ¬∃x, ¬p x,
have H2 : ∀x, ¬¬p x, from forall_not_of_not_exists H1,
have H3 : ∀x, p x, from take x, not_not_elim (H2 x),
absurd H3 H) absurd H3 H)
theorem exists_of_not_forall_not {A : Type} {p : A → Prop} [D : ∀x, decidable (p x)]
[D' : decidable (∃x, ¬¬p x)] (H : ¬∀x, ¬ p x) :
∃x, p x :=
obtain x (H : ¬¬ p x), from exists_not_of_not_forall H,
exists.intro x (not_not_elim H)
theorem ne_self_iff_false {A : Type} (a : A) : (a ≠ a) ↔ false := theorem ne_self_iff_false {A : Type} (a : A) : (a ≠ a) ↔ false :=
iff.intro iff.intro
(assume H, false.of_ne H) (assume H, false.of_ne H)