chore(library/hott) change naming in equiv_precomp
This commit is contained in:
parent
4587e46c67
commit
0417c21bbb
1 changed files with 7 additions and 7 deletions
|
@ -15,14 +15,14 @@ namespace is_equiv
|
|||
definition postcomp {A B : Type} (f : A → B) (C : Type) (l : C → A) : C → B := f ∘ l
|
||||
|
||||
--Precomposing with an equivalence is an equivalence
|
||||
definition precompose [instance] {A B : Type} (f : A → B) [F : funext] [Hf : is_equiv f] (C : Type)
|
||||
definition precomp_closed [instance] {A B : Type} (f : A → B) [F : funext] [Hf : is_equiv f] (C : Type)
|
||||
: is_equiv (precomp f C) :=
|
||||
adjointify (precomp f C) (λh, h ∘ f⁻¹)
|
||||
(λh, path_forall _ _ (λx, ap h (sect f x)))
|
||||
(λg, path_forall _ _ (λy, ap g (retr f y)))
|
||||
|
||||
--Postcomposing with an equivalence is an equivalence
|
||||
definition postcompose [instance] {A B : Type} (f : A → B) [F : funext] [Hf : is_equiv f] (C : Type)
|
||||
definition postcomp_closed [instance] {A B : Type} (f : A → B) [F : funext] [Hf : is_equiv f] (C : Type)
|
||||
: is_equiv (postcomp f C) :=
|
||||
adjointify (postcomp f C) (λl, f⁻¹ ∘ l)
|
||||
(λh, path_forall _ _ (λx, retr f (h x)))
|
||||
|
@ -42,7 +42,7 @@ namespace is_equiv
|
|||
... ≈ k ∘ (invC h) : !sect,
|
||||
eq1⁻¹
|
||||
|
||||
definition isequiv_precompose {A B : Type} (f : A → B) (Aeq : is_equiv (precomp f A))
|
||||
definition from_isequiv_precomp {A B : Type} (f : A → B) (Aeq : is_equiv (precomp f A))
|
||||
(Beq : is_equiv (precomp f B)) : (is_equiv f) :=
|
||||
let invA := inv (precomp f A) in
|
||||
let invB := inv (precomp f B) in
|
||||
|
@ -64,18 +64,18 @@ end is_equiv
|
|||
--Bundled versions of the previous theorems
|
||||
namespace equiv
|
||||
|
||||
definition precompose [F : funext] {A B C : Type} {eqf : A ≃ B}
|
||||
definition precomp_closed [F : funext] {A B C : Type} {eqf : A ≃ B}
|
||||
: (B → C) ≃ (A → C) :=
|
||||
let f := to_fun eqf in
|
||||
let Hf := to_is_equiv eqf in
|
||||
equiv.mk (is_equiv.precomp f C)
|
||||
(@is_equiv.precompose A B f F Hf C)
|
||||
(@is_equiv.precomp_closed A B f F Hf C)
|
||||
|
||||
definition postcompose [F : funext] {A B C : Type} {eqf : A ≃ B}
|
||||
definition postcomp_closed [F : funext] {A B C : Type} {eqf : A ≃ B}
|
||||
: (C → A) ≃ (C → B) :=
|
||||
let f := to_fun eqf in
|
||||
let Hf := to_is_equiv eqf in
|
||||
equiv.mk (is_equiv.postcomp f C)
|
||||
(@is_equiv.postcompose A B f F Hf C)
|
||||
(@is_equiv.postcomp_closed A B f F Hf C)
|
||||
|
||||
end equiv
|
||||
|
|
Loading…
Reference in a new issue