chore(library/hott) change naming in equiv_precomp

This commit is contained in:
Jakob von Raumer 2014-11-26 16:53:10 -05:00 committed by Leonardo de Moura
parent 4587e46c67
commit 0417c21bbb

View file

@ -15,14 +15,14 @@ namespace is_equiv
definition postcomp {A B : Type} (f : A → B) (C : Type) (l : C → A) : C → B := f ∘ l definition postcomp {A B : Type} (f : A → B) (C : Type) (l : C → A) : C → B := f ∘ l
--Precomposing with an equivalence is an equivalence --Precomposing with an equivalence is an equivalence
definition precompose [instance] {A B : Type} (f : A → B) [F : funext] [Hf : is_equiv f] (C : Type) definition precomp_closed [instance] {A B : Type} (f : A → B) [F : funext] [Hf : is_equiv f] (C : Type)
: is_equiv (precomp f C) := : is_equiv (precomp f C) :=
adjointify (precomp f C) (λh, h ∘ f⁻¹) adjointify (precomp f C) (λh, h ∘ f⁻¹)
(λh, path_forall _ _ (λx, ap h (sect f x))) (λh, path_forall _ _ (λx, ap h (sect f x)))
(λg, path_forall _ _ (λy, ap g (retr f y))) (λg, path_forall _ _ (λy, ap g (retr f y)))
--Postcomposing with an equivalence is an equivalence --Postcomposing with an equivalence is an equivalence
definition postcompose [instance] {A B : Type} (f : A → B) [F : funext] [Hf : is_equiv f] (C : Type) definition postcomp_closed [instance] {A B : Type} (f : A → B) [F : funext] [Hf : is_equiv f] (C : Type)
: is_equiv (postcomp f C) := : is_equiv (postcomp f C) :=
adjointify (postcomp f C) (λl, f⁻¹ ∘ l) adjointify (postcomp f C) (λl, f⁻¹ ∘ l)
(λh, path_forall _ _ (λx, retr f (h x))) (λh, path_forall _ _ (λx, retr f (h x)))
@ -42,7 +42,7 @@ namespace is_equiv
... ≈ k ∘ (invC h) : !sect, ... ≈ k ∘ (invC h) : !sect,
eq1⁻¹ eq1⁻¹
definition isequiv_precompose {A B : Type} (f : A → B) (Aeq : is_equiv (precomp f A)) definition from_isequiv_precomp {A B : Type} (f : A → B) (Aeq : is_equiv (precomp f A))
(Beq : is_equiv (precomp f B)) : (is_equiv f) := (Beq : is_equiv (precomp f B)) : (is_equiv f) :=
let invA := inv (precomp f A) in let invA := inv (precomp f A) in
let invB := inv (precomp f B) in let invB := inv (precomp f B) in
@ -64,18 +64,18 @@ end is_equiv
--Bundled versions of the previous theorems --Bundled versions of the previous theorems
namespace equiv namespace equiv
definition precompose [F : funext] {A B C : Type} {eqf : A ≃ B} definition precomp_closed [F : funext] {A B C : Type} {eqf : A ≃ B}
: (B → C) ≃ (A → C) := : (B → C) ≃ (A → C) :=
let f := to_fun eqf in let f := to_fun eqf in
let Hf := to_is_equiv eqf in let Hf := to_is_equiv eqf in
equiv.mk (is_equiv.precomp f C) equiv.mk (is_equiv.precomp f C)
(@is_equiv.precompose A B f F Hf C) (@is_equiv.precomp_closed A B f F Hf C)
definition postcompose [F : funext] {A B C : Type} {eqf : A ≃ B} definition postcomp_closed [F : funext] {A B C : Type} {eqf : A ≃ B}
: (C → A) ≃ (C → B) := : (C → A) ≃ (C → B) :=
let f := to_fun eqf in let f := to_fun eqf in
let Hf := to_is_equiv eqf in let Hf := to_is_equiv eqf in
equiv.mk (is_equiv.postcomp f C) equiv.mk (is_equiv.postcomp f C)
(@is_equiv.postcompose A B f F Hf C) (@is_equiv.postcomp_closed A B f F Hf C)
end equiv end equiv