add psquares with two constant sides
This commit is contained in:
parent
86c375b0c4
commit
04c80c477f
2 changed files with 16 additions and 11 deletions
|
@ -197,7 +197,7 @@ namespace pointed
|
||||||
definition pconst [constructor] (A B : Type*) : A →* B :=
|
definition pconst [constructor] (A B : Type*) : A →* B :=
|
||||||
!ppi_const
|
!ppi_const
|
||||||
|
|
||||||
-- the pointed type of pointed maps -- TODO: remove
|
-- the pointed type of pointed maps
|
||||||
definition ppmap [constructor] (A B : Type*) : Type* :=
|
definition ppmap [constructor] (A B : Type*) : Type* :=
|
||||||
@pppi A (λa, B)
|
@pppi A (λa, B)
|
||||||
|
|
||||||
|
@ -327,6 +327,12 @@ namespace pointed
|
||||||
definition is_equiv_pcast [instance] {A B : Type*} (p : A = B) : is_equiv (pcast p) :=
|
definition is_equiv_pcast [instance] {A B : Type*} (p : A = B) : is_equiv (pcast p) :=
|
||||||
!is_equiv_cast
|
!is_equiv_cast
|
||||||
|
|
||||||
|
definition pcompose_pconst [constructor] (f : B →* C) : f ∘* pconst A B ~* pconst A C :=
|
||||||
|
phomotopy.mk (λa, respect_pt f) (idp_con _)⁻¹
|
||||||
|
|
||||||
|
definition pconst_pcompose [constructor] (f : A →* B) : pconst B C ∘* f ~* pconst A C :=
|
||||||
|
phomotopy.mk (λa, rfl) !ap_constant⁻¹
|
||||||
|
|
||||||
/- categorical properties of pointed homotopies -/
|
/- categorical properties of pointed homotopies -/
|
||||||
|
|
||||||
variable (k)
|
variable (k)
|
||||||
|
@ -1211,10 +1217,10 @@ namespace pointed
|
||||||
|
|
||||||
variables {A' A₀₀ A₂₀ A₄₀ A₀₂ A₂₂ A₄₂ A₀₄ A₂₄ A₄₄ : Type*}
|
variables {A' A₀₀ A₂₀ A₄₀ A₀₂ A₂₂ A₄₂ A₀₄ A₂₄ A₄₄ : Type*}
|
||||||
{f₁₀ f₁₀' : A₀₀ →* A₂₀} {f₃₀ : A₂₀ →* A₄₀}
|
{f₁₀ f₁₀' : A₀₀ →* A₂₀} {f₃₀ : A₂₀ →* A₄₀}
|
||||||
{f₀₁ f₀₁' : A₀₀ →* A₀₂} {f₂₁ f₂₁' : A₂₀ →* A₂₂} {f₄₁ : A₄₀ →* A₄₂}
|
|
||||||
{f₁₂ f₁₂' : A₀₂ →* A₂₂} {f₃₂ : A₂₂ →* A₄₂}
|
{f₁₂ f₁₂' : A₀₂ →* A₂₂} {f₃₂ : A₂₂ →* A₄₂}
|
||||||
{f₀₃ : A₀₂ →* A₀₄} {f₂₃ : A₂₂ →* A₂₄} {f₄₃ : A₄₂ →* A₄₄}
|
|
||||||
{f₁₄ : A₀₄ →* A₂₄} {f₃₄ : A₂₄ →* A₄₄}
|
{f₁₄ : A₀₄ →* A₂₄} {f₃₄ : A₂₄ →* A₄₄}
|
||||||
|
{f₀₁ f₀₁' : A₀₀ →* A₀₂} {f₂₁ f₂₁' : A₂₀ →* A₂₂} {f₄₁ : A₄₀ →* A₄₂}
|
||||||
|
{f₀₃ : A₀₂ →* A₀₄} {f₂₃ : A₂₂ →* A₂₄} {f₄₃ : A₄₂ →* A₄₄}
|
||||||
|
|
||||||
definition psquare [reducible] (f₁₀ : A₀₀ →* A₂₀) (f₁₂ : A₀₂ →* A₂₂)
|
definition psquare [reducible] (f₁₀ : A₀₀ →* A₂₀) (f₁₂ : A₀₂ →* A₂₂)
|
||||||
(f₀₁ : A₀₀ →* A₀₂) (f₂₁ : A₂₀ →* A₂₂) : Type :=
|
(f₀₁ : A₀₀ →* A₀₂) (f₂₁ : A₂₀ →* A₂₂) : Type :=
|
||||||
|
@ -1231,10 +1237,15 @@ namespace pointed
|
||||||
definition pvdeg_square {f f' : A →* A'} (p : f ~* f') : psquare f f' !pid !pid :=
|
definition pvdeg_square {f f' : A →* A'} (p : f ~* f') : psquare f f' !pid !pid :=
|
||||||
!pid_pcompose ⬝* p ⬝* !pcompose_pid⁻¹*
|
!pid_pcompose ⬝* p ⬝* !pcompose_pid⁻¹*
|
||||||
|
|
||||||
variables (f₀₁ f₁₀)
|
|
||||||
|
variables (f₁₀ f₁₂ f₀₁ f₂₁)
|
||||||
|
definition hpconst_square : psquare !pconst !pconst f₀₁ f₂₁ :=
|
||||||
|
!pcompose_pconst ⬝* !pconst_pcompose⁻¹*
|
||||||
|
definition vpconst_square : psquare f₁₀ f₁₂ !pconst !pconst :=
|
||||||
|
!pconst_pcompose ⬝* !pcompose_pconst⁻¹*
|
||||||
definition phrefl : psquare !pid !pid f₀₁ f₀₁ := phdeg_square phomotopy.rfl
|
definition phrefl : psquare !pid !pid f₀₁ f₀₁ := phdeg_square phomotopy.rfl
|
||||||
definition pvrefl : psquare f₁₀ f₁₀ !pid !pid := pvdeg_square phomotopy.rfl
|
definition pvrefl : psquare f₁₀ f₁₀ !pid !pid := pvdeg_square phomotopy.rfl
|
||||||
variables {f₀₁ f₁₀}
|
variables {f₁₀ f₁₂ f₀₁ f₂₁}
|
||||||
definition phrfl : psquare !pid !pid f₀₁ f₀₁ := phrefl f₀₁
|
definition phrfl : psquare !pid !pid f₀₁ f₀₁ := phrefl f₀₁
|
||||||
definition pvrfl : psquare f₁₀ f₁₀ !pid !pid := pvrefl f₁₀
|
definition pvrfl : psquare f₁₀ f₁₀ !pid !pid := pvrefl f₁₀
|
||||||
|
|
||||||
|
|
|
@ -454,12 +454,6 @@ namespace pointed
|
||||||
end
|
end
|
||||||
|
|
||||||
/- properties of ppmap, the pointed type of pointed maps -/
|
/- properties of ppmap, the pointed type of pointed maps -/
|
||||||
definition pcompose_pconst [constructor] (f : B →* C) : f ∘* pconst A B ~* pconst A C :=
|
|
||||||
phomotopy.mk (λa, respect_pt f) (idp_con _)⁻¹
|
|
||||||
|
|
||||||
definition pconst_pcompose [constructor] (f : A →* B) : pconst B C ∘* f ~* pconst A C :=
|
|
||||||
phomotopy.mk (λa, rfl) !ap_constant⁻¹
|
|
||||||
|
|
||||||
definition ppcompose_left [constructor] (g : B →* C) : ppmap A B →* ppmap A C :=
|
definition ppcompose_left [constructor] (g : B →* C) : ppmap A B →* ppmap A C :=
|
||||||
pmap.mk (pcompose g) (eq_of_phomotopy (pcompose_pconst g))
|
pmap.mk (pcompose g) (eq_of_phomotopy (pcompose_pconst g))
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue