feat(kernel/conveter): improve support for proof irrelevant in the converter
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
parent
4a9e48d249
commit
04d9eb17d1
2 changed files with 30 additions and 2 deletions
|
@ -571,13 +571,26 @@ struct default_converter : public converter {
|
||||||
if (m_env.prop_proof_irrel()) {
|
if (m_env.prop_proof_irrel()) {
|
||||||
// Proof irrelevance support for Prop (aka Type.{0})
|
// Proof irrelevance support for Prop (aka Type.{0})
|
||||||
auto tcs = infer_type(c, t);
|
auto tcs = infer_type(c, t);
|
||||||
|
auto scs = infer_type(c, s);
|
||||||
expr t_type = tcs.first;
|
expr t_type = tcs.first;
|
||||||
|
expr s_type = scs.first;
|
||||||
|
// remark: is_prop returns true only if t_type reducible to Prop.
|
||||||
|
// If t_type contains metavariables, then reduction can get stuck, and is_prop will return false.
|
||||||
auto pcs = is_prop(t_type, c);
|
auto pcs = is_prop(t_type, c);
|
||||||
if (pcs.first) {
|
if (pcs.first) {
|
||||||
auto scs = infer_type(c, s);
|
auto dcs = is_def_eq(t_type, s_type, c, jst);
|
||||||
auto dcs = is_def_eq(t_type, scs.first, c, jst);
|
|
||||||
if (dcs.first)
|
if (dcs.first)
|
||||||
return to_bcs(true, dcs.second + scs.second + pcs.second + tcs.second);
|
return to_bcs(true, dcs.second + scs.second + pcs.second + tcs.second);
|
||||||
|
} else {
|
||||||
|
// If we can't stablish whether t_type is Prop, we try s_type.
|
||||||
|
pcs = is_prop(s_type, c);
|
||||||
|
if (pcs.first) {
|
||||||
|
auto dcs = is_def_eq(t_type, s_type, c, jst);
|
||||||
|
if (dcs.first)
|
||||||
|
return to_bcs(true, dcs.second + scs.second + pcs.second + tcs.second);
|
||||||
|
}
|
||||||
|
// This procedure will miss the case where s_type and t_type cannot be reduced to Prop
|
||||||
|
// because they contain metavariables.
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
15
tests/lean/run/matrix2.lean
Normal file
15
tests/lean/run/matrix2.lean
Normal file
|
@ -0,0 +1,15 @@
|
||||||
|
import logic
|
||||||
|
|
||||||
|
variable matrix.{l} : Type.{l} → Type.{l}
|
||||||
|
variable same_dim {A : Type} : matrix A → matrix A → Prop
|
||||||
|
variable add {A : Type} (m1 m2 : matrix A) {H : same_dim m1 m2} : matrix A
|
||||||
|
|
||||||
|
theorem same_dim_eq_args {A : Type} {m1 m2 m1' m2' : matrix A} (H1 : m1 = m1') (H2 : m2 = m2') (H : same_dim m1 m2) : same_dim m1' m2' :=
|
||||||
|
subst H1 (subst H2 H)
|
||||||
|
|
||||||
|
theorem add_congr {A : Type} (m1 m2 m1' m2' : matrix A) (H1 : m1 = m1') (H2 : m2 = m2') (H : same_dim m1 m2) : @add A m1 m2 H = @add A m1' m2' (same_dim_eq_args H1 H2 H) :=
|
||||||
|
have base : ∀ (H1 : m1 = m1) (H2 : m2 = m2), @add A m1 m2 H = @add A m1 m2 (eq_rec (eq_rec H H1) H2), from
|
||||||
|
assume H1 H2, rfl,
|
||||||
|
have general : ∀ (H1 : m1 = m1') (H2 : m2 = m2'), @add A m1 m2 H = @add A m1' m2' (eq_rec (eq_rec H H1) H2), from
|
||||||
|
subst H1 (subst H2 base),
|
||||||
|
general H1 H2
|
Loading…
Reference in a new issue