feat(library/data/int): replace int definition with structure and better computational behavior
This commit is contained in:
parent
133f935fce
commit
057615532e
2 changed files with 659 additions and 461 deletions
File diff suppressed because it is too large
Load diff
|
@ -1,11 +1,12 @@
|
|||
-- Copyright (c) 2014 Floris van Doorn. All rights reserved.
|
||||
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||||
-- Author: Floris van Doorn
|
||||
/-
|
||||
Copyright (c) 2014 Floris van Doorn. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
|
||||
-- int.order
|
||||
-- =========
|
||||
Module: data.int.order
|
||||
Authors: Floris van Doorn, Jeremy Avigad
|
||||
|
||||
-- The order relation on the integers, and the sign function.
|
||||
The order relation on the integers, and the sign function.
|
||||
-/
|
||||
|
||||
import .basic
|
||||
|
||||
|
@ -16,16 +17,17 @@ open int eq.ops
|
|||
|
||||
namespace int
|
||||
|
||||
-- ## le
|
||||
definition le (a b : ℤ) : Prop := ∃n : ℕ, a + n = b
|
||||
notation a <= b := int.le a b
|
||||
notation a ≤ b := int.le a b
|
||||
theorem nonneg_elim {a : ℤ} : nonneg a → ∃n : ℕ, a = n :=
|
||||
cases_on a (take n H, exists_intro n rfl) (take n' H, false_elim H)
|
||||
|
||||
theorem le_intro {a b : ℤ} {n : ℕ} (H : a + n = b) : a ≤ b :=
|
||||
exists_intro n H
|
||||
have H1 : b - a = n, from add_imp_sub_right (!add_comm ▸ H),
|
||||
have H2 : nonneg n, from true.intro,
|
||||
show nonneg (b - a), from H1⁻¹ ▸ H2
|
||||
|
||||
theorem le_elim {a b : ℤ} (H : a ≤ b) : ∃n : ℕ, a + n = b :=
|
||||
H
|
||||
obtain (n : ℕ) (H1 : b - a = n), from nonneg_elim H,
|
||||
exists_intro n (!add_comm ▸ sub_imp_add H1)
|
||||
|
||||
-- ### partial order
|
||||
|
||||
|
@ -174,14 +176,16 @@ le_neg_inv (add_le_cancel_left (!add_neg_right⁻¹ ▸ !add_neg_right⁻¹ ▸
|
|||
theorem le_iff_sub_nonneg (a b : ℤ) : a ≤ b ↔ 0 ≤ b - a :=
|
||||
iff.intro
|
||||
(assume H, !sub_self ▸ sub_le_right H a)
|
||||
(assume H, !sub_add_inverse ▸ !add_zero_left ▸ add_le_right H a)
|
||||
(assume H,
|
||||
have H1 : a ≤ b - a + a, from add_zero_left a ▸ add_le_right H a,
|
||||
!sub_add_inverse ▸ H1)
|
||||
|
||||
-- TODO: this no longer works:
|
||||
--!sub_add_inverse ▸ add_zero_left a ▸ add_le_right H a)
|
||||
|
||||
-- Less than, Greater than, Greater than or equal
|
||||
-- ----------------------------------------------
|
||||
|
||||
definition lt (a b : ℤ) := a + 1 ≤ b
|
||||
notation a < b := int.lt a b
|
||||
|
||||
definition ge (a b : ℤ) := b ≤ a
|
||||
notation a >= b := int.ge a b
|
||||
notation a ≥ b := int.ge a b
|
||||
|
@ -290,8 +294,9 @@ le_imp_not_gt (lt_imp_le H)
|
|||
|
||||
-- ### interaction with addition
|
||||
|
||||
-- TODO: note: no longer works without the "show"
|
||||
theorem add_lt_left {a b : ℤ} (H : a < b) (c : ℤ) : c + a < c + b :=
|
||||
(add_assoc c a 1)⁻¹ ▸ add_le_left H c
|
||||
show (c + a) + 1 ≤ c + b, from (add_assoc c a 1)⁻¹ ▸ add_le_left H c
|
||||
|
||||
theorem add_lt_right {a b : ℤ} (H : a < b) (c : ℤ) : a + c < b + c :=
|
||||
add_comm c b ▸ add_comm c a ▸ add_lt_left H c
|
||||
|
@ -306,7 +311,7 @@ theorem add_lt {a b c d : ℤ} (H1 : a < c) (H2 : b < d) : a + b < c + d :=
|
|||
add_lt_le H1 (lt_imp_le H2)
|
||||
|
||||
theorem add_lt_cancel_left {a b c : ℤ} (H : c + a < c + b) : a < b :=
|
||||
add_le_cancel_left (add_assoc c a 1 ▸ H)
|
||||
show a + 1 ≤ b, from add_le_cancel_left (add_assoc c a 1 ▸ H)
|
||||
|
||||
theorem add_lt_cancel_right {a b c : ℤ} (H : a + c < b + c) : a < b :=
|
||||
add_lt_cancel_left (add_comm b c ▸ add_comm a c ▸ H)
|
||||
|
@ -358,7 +363,7 @@ have H2 : -n ≤ 0, by simp,
|
|||
le_trans H2 H1
|
||||
|
||||
theorem le_or_gt (a b : ℤ) : a ≤ b ∨ a > b :=
|
||||
int_by_cases a
|
||||
by_cases a
|
||||
(take n : ℕ,
|
||||
int_by_cases_succ b
|
||||
(take m : ℕ,
|
||||
|
@ -374,7 +379,7 @@ int_by_cases a
|
|||
show -n ≤ m ∨ -n > m, from
|
||||
or.inl (neg_le_pos n m))
|
||||
(take m : ℕ,
|
||||
show -n ≤ -succ m ∨ -n > -succ m, from
|
||||
show -n ≤ -succ m ∨ -n > -succ m, from
|
||||
or.imp_or le_or_gt
|
||||
(assume H : succ m ≤ n,
|
||||
le_neg (iff.elim_left (iff.symm (le_of_nat (succ m) n)) H))
|
||||
|
@ -413,9 +418,9 @@ obtain (n : ℕ) (Hn : -a = n), from pos_imp_exists_nat H2,
|
|||
have H3 : a = -n, from (neg_move Hn)⁻¹,
|
||||
exists_intro n H3
|
||||
|
||||
theorem to_nat_nonneg_eq {a : ℤ} (H : a ≥ 0) : (to_nat a) = a :=
|
||||
theorem nat_abs_nonneg_eq {a : ℤ} (H : a ≥ 0) : (nat_abs a) = a :=
|
||||
obtain (n : ℕ) (Hn : a = n), from pos_imp_exists_nat H,
|
||||
Hn⁻¹ ▸ congr_arg of_nat (to_nat_of_nat n)
|
||||
Hn⁻¹ ▸ congr_arg of_nat (nat_abs_of_nat n)
|
||||
|
||||
theorem of_nat_nonneg (n : ℕ) : of_nat n ≥ 0 :=
|
||||
iff.mp (iff.symm !le_of_nat) !zero_le
|
||||
|
@ -423,10 +428,10 @@ iff.mp (iff.symm !le_of_nat) !zero_le
|
|||
definition le_decidable [instance] {a b : ℤ} : decidable (a ≤ b) :=
|
||||
have aux : Πx, decidable (0 ≤ x), from
|
||||
take x,
|
||||
have H : 0 ≤ x ↔ of_nat (to_nat x) = x, from
|
||||
have H : 0 ≤ x ↔ of_nat (nat_abs x) = x, from
|
||||
iff.intro
|
||||
(assume H1, to_nat_nonneg_eq H1)
|
||||
(assume H1, H1 ▸ of_nat_nonneg (to_nat x)),
|
||||
(assume H1, nat_abs_nonneg_eq H1)
|
||||
(assume H1, H1 ▸ of_nat_nonneg (nat_abs x)),
|
||||
decidable_iff_equiv _ (iff.symm H),
|
||||
decidable_iff_equiv !aux (iff.symm (le_iff_sub_nonneg a b))
|
||||
|
||||
|
@ -434,28 +439,28 @@ definition ge_decidable [instance] {a b : ℤ} : decidable (a ≥ b) := _
|
|||
definition lt_decidable [instance] {a b : ℤ} : decidable (a < b) := _
|
||||
definition gt_decidable [instance] {a b : ℤ} : decidable (a > b) := _
|
||||
|
||||
--to_nat_neg is already taken... rename?
|
||||
theorem to_nat_negative {a : ℤ} (H : a ≤ 0) : (to_nat a) = -a :=
|
||||
--nat_abs_neg is already taken... rename?
|
||||
theorem nat_abs_negative {a : ℤ} (H : a ≤ 0) : (nat_abs a) = -a :=
|
||||
obtain (n : ℕ) (Hn : a = -n), from neg_imp_exists_nat H,
|
||||
calc
|
||||
(to_nat a) = (to_nat ( -n)) : {Hn}
|
||||
... = (to_nat n) : {to_nat_neg n}
|
||||
... = n : {to_nat_of_nat n}
|
||||
(nat_abs a) = (nat_abs (-n)) : {Hn}
|
||||
... = (nat_abs n) : nat_abs_neg
|
||||
... = n : {nat_abs_of_nat n}
|
||||
... = -a : (neg_move (Hn⁻¹))⁻¹
|
||||
|
||||
theorem to_nat_cases (a : ℤ) : a = (to_nat a) ∨ a = - (to_nat a) :=
|
||||
theorem nat_abs_cases (a : ℤ) : a = (nat_abs a) ∨ a = - (nat_abs a) :=
|
||||
or.imp_or (le_total 0 a)
|
||||
(assume H : a ≥ 0, (to_nat_nonneg_eq H)⁻¹)
|
||||
(assume H : a ≤ 0, (neg_move ((to_nat_negative H)⁻¹))⁻¹)
|
||||
(assume H : a ≥ 0, (nat_abs_nonneg_eq H)⁻¹)
|
||||
(assume H : a ≤ 0, (neg_move ((nat_abs_negative H)⁻¹))⁻¹)
|
||||
|
||||
-- ### interaction of mul with le and lt
|
||||
|
||||
theorem mul_le_left_nonneg {a b c : ℤ} (Ha : a ≥ 0) (H : b ≤ c) : a * b ≤ a * c :=
|
||||
obtain (n : ℕ) (Hn : b + n = c), from le_elim H,
|
||||
have H2 : a * b + of_nat ((to_nat a) * n) = a * c, from
|
||||
have H2 : a * b + of_nat ((nat_abs a) * n) = a * c, from
|
||||
calc
|
||||
a * b + of_nat ((to_nat a) * n) = a * b + (to_nat a) * of_nat n : by simp
|
||||
... = a * b + a * n : {to_nat_nonneg_eq Ha}
|
||||
a * b + of_nat ((nat_abs a) * n) = a * b + (nat_abs a) * of_nat n : by simp
|
||||
... = a * b + a * n : {nat_abs_nonneg_eq Ha}
|
||||
... = a * (b + n) : by simp
|
||||
... = a * c : by simp,
|
||||
le_intro H2
|
||||
|
@ -554,15 +559,15 @@ theorem mul_le_cancel_right_neg {a b c : ℤ} (Hc : c < 0) (H : b * c ≤ a * c)
|
|||
mul_le_cancel_left_neg Hc (!mul_comm ▸ !mul_comm ▸ H)
|
||||
|
||||
theorem mul_eq_one_left {a b : ℤ} (H : a * b = 1) : a = 1 ∨ a = - 1 :=
|
||||
have H2 : (to_nat a) * (to_nat b) = 1, from
|
||||
have H2 : (nat_abs a) * (nat_abs b) = 1, from
|
||||
calc
|
||||
(to_nat a) * (to_nat b) = (to_nat (a * b)) : !mul_to_nat⁻¹
|
||||
... = (to_nat 1) : {H}
|
||||
... = 1 : to_nat_of_nat 1,
|
||||
have H3 : (to_nat a) = 1, from mul_eq_one_left H2,
|
||||
or.imp_or (to_nat_cases a)
|
||||
(assume H4 : a = (to_nat a), H3 ▸ H4)
|
||||
(assume H4 : a = - (to_nat a), H3 ▸ H4)
|
||||
(nat_abs a) * (nat_abs b) = (nat_abs (a * b)) : !mul_nat_abs⁻¹
|
||||
... = (nat_abs 1) : {H}
|
||||
... = 1 : nat_abs_of_nat 1,
|
||||
have H3 : (nat_abs a) = 1, from mul_eq_one_left H2,
|
||||
or.imp_or (nat_abs_cases a)
|
||||
(assume H4 : a = (nat_abs a), H3 ▸ H4)
|
||||
(assume H4 : a = - (nat_abs a), H3 ▸ H4)
|
||||
|
||||
theorem mul_eq_one_right {a b : ℤ} (H : a * b = 1) : b = 1 ∨ b = - 1 :=
|
||||
mul_eq_one_left (!mul_comm ▸ H)
|
||||
|
@ -582,9 +587,9 @@ if_neg (lt_antisym H) ⬝ if_pos H
|
|||
theorem sign_zero : sign 0 = 0 :=
|
||||
if_neg (lt_irrefl 0) ⬝ if_neg (lt_irrefl 0)
|
||||
|
||||
-- add_rewrite sign_negative sign_pos to_nat_negative to_nat_nonneg_eq sign_zero mul_to_nat
|
||||
-- add_rewrite sign_negative sign_pos nat_abs_negative nat_abs_nonneg_eq sign_zero mul_nat_abs
|
||||
|
||||
theorem mul_sign_to_nat (a : ℤ) : sign a * (to_nat a) = a :=
|
||||
theorem mul_sign_nat_abs (a : ℤ) : sign a * (nat_abs a) = a :=
|
||||
have temp1 : ∀a : ℤ, a < 0 → a ≤ 0, from take a, lt_imp_le,
|
||||
have temp2 : ∀a : ℤ, a > 0 → a ≥ 0, from take a, lt_imp_le,
|
||||
or.elim3 (trichotomy a 0)
|
||||
|
@ -600,15 +605,15 @@ or.elim (em (a = 0))
|
|||
or.elim (em (b = 0))
|
||||
(assume Hb : b = 0, by simp)
|
||||
(assume Hb : b ≠ 0,
|
||||
have H : sign (a * b) * (to_nat (a * b)) = sign a * sign b * (to_nat (a * b)), from
|
||||
have H : sign (a * b) * (nat_abs (a * b)) = sign a * sign b * (nat_abs (a * b)), from
|
||||
calc
|
||||
sign (a * b) * (to_nat (a * b)) = a * b : mul_sign_to_nat (a * b)
|
||||
... = sign a * (to_nat a) * b : {(mul_sign_to_nat a)⁻¹}
|
||||
... = sign a * (to_nat a) * (sign b * (to_nat b)) : {(mul_sign_to_nat b)⁻¹}
|
||||
... = sign a * sign b * (to_nat (a * b)) : by simp,
|
||||
have H2 : (to_nat (a * b)) ≠ 0, from
|
||||
take H2', mul_ne_zero Ha Hb (to_nat_eq_zero H2'),
|
||||
have H3 : (to_nat (a * b)) ≠ of_nat 0, from mt of_nat_inj H2,
|
||||
sign (a * b) * (nat_abs (a * b)) = a * b : mul_sign_nat_abs (a * b)
|
||||
... = sign a * (nat_abs a) * b : {(mul_sign_nat_abs a)⁻¹}
|
||||
... = sign a * (nat_abs a) * (sign b * (nat_abs b)) : {(mul_sign_nat_abs b)⁻¹}
|
||||
... = sign a * sign b * (nat_abs (a * b)) : by simp,
|
||||
have H2 : (nat_abs (a * b)) ≠ 0, from
|
||||
take H2', mul_ne_zero Ha Hb (nat_abs_eq_zero H2'),
|
||||
have H3 : (nat_abs (a * b)) ≠ of_nat 0, from mt of_nat_inj H2,
|
||||
mul_cancel_right H3 H))
|
||||
|
||||
theorem sign_idempotent (a : ℤ) : sign (sign a) = sign a :=
|
||||
|
@ -633,14 +638,14 @@ or.elim3 (trichotomy a 0) sorry sorry sorry
|
|||
|
||||
-- add_rewrite sign_neg
|
||||
|
||||
theorem to_nat_sign_ne_zero {a : ℤ} (H : a ≠ 0) : (to_nat (sign a)) = 1 :=
|
||||
theorem nat_abs_sign_ne_zero {a : ℤ} (H : a ≠ 0) : (nat_abs (sign a)) = 1 :=
|
||||
or.elim3 (trichotomy a 0) sorry
|
||||
-- (by simp)
|
||||
(assume H2 : a = 0, absurd H2 H)
|
||||
sorry
|
||||
-- (by simp)
|
||||
|
||||
theorem sign_to_nat (a : ℤ) : sign (to_nat a) = to_nat (sign a) :=
|
||||
theorem sign_nat_abs (a : ℤ) : sign (nat_abs a) = nat_abs (sign a) :=
|
||||
have temp1 : ∀a : ℤ, a < 0 → a ≤ 0, from take a, lt_imp_le,
|
||||
have temp2 : ∀a : ℤ, a > 0 → a ≥ 0, from take a, lt_imp_le,
|
||||
or.elim3 (trichotomy a 0) sorry sorry sorry
|
||||
|
|
Loading…
Reference in a new issue