refactor(hott): rename apd to apdt
This commit is contained in:
parent
b1ed69f621
commit
05b59aecf8
14 changed files with 35 additions and 35 deletions
|
@ -201,7 +201,7 @@ namespace functor
|
||||||
by (cases F; apply functor_mk_eq'_idp)
|
by (cases F; apply functor_mk_eq'_idp)
|
||||||
|
|
||||||
definition functor_eq_eta' {F₁ F₂ : C ⇒ D} (p : F₁ = F₂)
|
definition functor_eq_eta' {F₁ F₂ : C ⇒ D} (p : F₁ = F₂)
|
||||||
: functor_eq' (ap to_fun_ob p) (!tr_compose⁻¹ ⬝ apd to_fun_hom p) = p :=
|
: functor_eq' (ap to_fun_ob p) (!tr_compose⁻¹ ⬝ apdt to_fun_hom p) = p :=
|
||||||
begin
|
begin
|
||||||
cases p, cases F₁,
|
cases p, cases F₁,
|
||||||
refine _ ⬝ !functor_eq'_idp,
|
refine _ ⬝ !functor_eq'_idp,
|
||||||
|
|
|
@ -247,7 +247,7 @@ namespace category
|
||||||
definition Precategory_eq_hom [unfold 3] {C D : Precategory} (p : C = D) (a b : C)
|
definition Precategory_eq_hom [unfold 3] {C D : Precategory} (p : C = D) (a b : C)
|
||||||
: hom a b = hom (cast (ap carrier p) a) (cast (ap carrier p) b) :=
|
: hom a b = hom (cast (ap carrier p) a) (cast (ap carrier p) b) :=
|
||||||
by induction p; reflexivity
|
by induction p; reflexivity
|
||||||
--(ap10 (ap10 (apd (λx, @hom (carrier x) (Precategory.struct x)) p⁻¹ᵖ) a) b)⁻¹ᵖ ⬝ _
|
--(ap10 (ap10 (apdt (λx, @hom (carrier x) (Precategory.struct x)) p⁻¹ᵖ) a) b)⁻¹ᵖ ⬝ _
|
||||||
|
|
||||||
|
|
||||||
-- beta/eta rules
|
-- beta/eta rules
|
||||||
|
|
|
@ -35,7 +35,7 @@ namespace eq
|
||||||
apdi₀i₁...iₙ.
|
apdi₀i₁...iₙ.
|
||||||
|
|
||||||
For versions where only some arguments depend on some other arguments,
|
For versions where only some arguments depend on some other arguments,
|
||||||
or for versions with transport in the conclusion (like apd), we don't have a
|
or for versions with transport in the conclusion (like apdt), we don't have a
|
||||||
consistent naming scheme (yet).
|
consistent naming scheme (yet).
|
||||||
|
|
||||||
We don't prove each theorem systematically, but prove only the ones which we actually need.
|
We don't prove each theorem systematically, but prove only the ones which we actually need.
|
||||||
|
|
|
@ -137,7 +137,7 @@ namespace quotient
|
||||||
induction q,
|
induction q,
|
||||||
{ exact Qpt p},
|
{ exact Qpt p},
|
||||||
{ apply pi_pathover_left', esimp, intro c,
|
{ apply pi_pathover_left', esimp, intro c,
|
||||||
refine _ ⬝op apd Qpt (elim_type_eq_of_rel C f H c)⁻¹ᵖ,
|
refine _ ⬝op apdt Qpt (elim_type_eq_of_rel C f H c)⁻¹ᵖ,
|
||||||
refine _ ⬝op (tr_compose Q Ppt _ _)⁻¹ ,
|
refine _ ⬝op (tr_compose Q Ppt _ _)⁻¹ ,
|
||||||
rewrite ap_inv,
|
rewrite ap_inv,
|
||||||
refine pathover_cancel_right _ !tr_pathover⁻¹ᵒ,
|
refine pathover_cancel_right _ !tr_pathover⁻¹ᵒ,
|
||||||
|
|
|
@ -19,7 +19,7 @@ namespace core
|
||||||
export sigma (hiding pr1 pr2)
|
export sigma (hiding pr1 pr2)
|
||||||
export [notation] prod
|
export [notation] prod
|
||||||
export [notation] nat
|
export [notation] nat
|
||||||
export eq (idp idpath concat inverse transport ap ap10 cast tr_inv homotopy ap11 apd refl)
|
export eq (idp idpath concat inverse transport ap ap10 cast tr_inv homotopy ap11 apdt refl)
|
||||||
export [declaration] function
|
export [declaration] function
|
||||||
export equiv (to_inv to_right_inv to_left_inv)
|
export equiv (to_inv to_right_inv to_left_inv)
|
||||||
export is_equiv (inv right_inv left_inv adjointify)
|
export is_equiv (inv right_inv left_inv adjointify)
|
||||||
|
|
|
@ -186,7 +186,7 @@ namespace is_equiv
|
||||||
= right_inv f (f x) ▸ df (f⁻¹ (f x)) : by esimp
|
= right_inv f (f x) ▸ df (f⁻¹ (f x)) : by esimp
|
||||||
... = ap f (left_inv f x) ▸ df (f⁻¹ (f x)) : by rewrite -adj
|
... = ap f (left_inv f x) ▸ df (f⁻¹ (f x)) : by rewrite -adj
|
||||||
... = left_inv f x ▸ df (f⁻¹ (f x)) : by rewrite -tr_compose
|
... = left_inv f x ▸ df (f⁻¹ (f x)) : by rewrite -tr_compose
|
||||||
... = df x : by rewrite (apd df (left_inv f x))
|
... = df x : by rewrite (apdt df (left_inv f x))
|
||||||
|
|
||||||
theorem adj_inv (b : B) : left_inv f (f⁻¹ b) = ap f⁻¹ (right_inv f b) :=
|
theorem adj_inv (b : B) : left_inv f (f⁻¹ b) = ap f⁻¹ (right_inv f b) :=
|
||||||
is_equiv_rect f _
|
is_equiv_rect f _
|
||||||
|
@ -379,7 +379,7 @@ namespace equiv
|
||||||
= right_inv f (f x) ▸ df (f⁻¹ (f x)) : by esimp
|
= right_inv f (f x) ▸ df (f⁻¹ (f x)) : by esimp
|
||||||
... = ap f (left_inv f x) ▸ df (f⁻¹ (f x)) : by rewrite -adj
|
... = ap f (left_inv f x) ▸ df (f⁻¹ (f x)) : by rewrite -adj
|
||||||
... = left_inv f x ▸ df (f⁻¹ (f x)) : by rewrite -tr_compose
|
... = left_inv f x ▸ df (f⁻¹ (f x)) : by rewrite -tr_compose
|
||||||
... = df x : by rewrite (apd df (left_inv f x))
|
... = df x : by rewrite (apdt df (left_inv f x))
|
||||||
end
|
end
|
||||||
|
|
||||||
section
|
section
|
||||||
|
|
|
@ -235,7 +235,7 @@ axiom function_extensionality : funext
|
||||||
variables {A : Type} {P : A → Type} {f g : Π x, P x}
|
variables {A : Type} {P : A → Type} {f g : Π x, P x}
|
||||||
|
|
||||||
namespace funext
|
namespace funext
|
||||||
theorem is_equiv_apd [instance] (f g : Π x, P x) : is_equiv (@apd10 A P f g) :=
|
theorem is_equiv_apdt [instance] (f g : Π x, P x) : is_equiv (@apd10 A P f g) :=
|
||||||
function_extensionality f g
|
function_extensionality f g
|
||||||
end funext
|
end funext
|
||||||
|
|
||||||
|
|
|
@ -257,7 +257,7 @@ namespace eq
|
||||||
definition ap11 {f g : A → B} (H : f = g) {x y : A} (p : x = y) : f x = g y :=
|
definition ap11 {f g : A → B} (H : f = g) {x y : A} (p : x = y) : f x = g y :=
|
||||||
by induction H; exact ap f p
|
by induction H; exact ap f p
|
||||||
|
|
||||||
definition apd [unfold 6] (f : Πa, P a) {x y : A} (p : x = y) : p ▸ f x = f y :=
|
definition apdt [unfold 6] (f : Πa, P a) {x y : A} (p : x = y) : p ▸ f x = f y :=
|
||||||
by induction p; reflexivity
|
by induction p; reflexivity
|
||||||
|
|
||||||
definition ap011 [unfold 9] (f : A → B → C) (Ha : a = a') (Hb : b = b') : f a b = f a' b' :=
|
definition ap011 [unfold 9] (f : A → B → C) (Ha : a = a') (Hb : b = b') : f a b = f a' b' :=
|
||||||
|
@ -456,16 +456,16 @@ namespace eq
|
||||||
tr_inv_tr p (transport P p z) = ap (transport P p) (inv_tr_tr p z) :=
|
tr_inv_tr p (transport P p z) = ap (transport P p) (inv_tr_tr p z) :=
|
||||||
by induction p; reflexivity
|
by induction p; reflexivity
|
||||||
|
|
||||||
/- some properties for apd -/
|
/- some properties for apdt -/
|
||||||
|
|
||||||
definition apd_idp (x : A) (f : Πx, P x) : apd f idp = idp :> (f x = f x) := idp
|
definition apdt_idp (x : A) (f : Πx, P x) : apdt f idp = idp :> (f x = f x) := idp
|
||||||
|
|
||||||
definition apd_con (f : Πx, P x) {x y z : A} (p : x = y) (q : y = z)
|
definition apdt_con (f : Πx, P x) {x y z : A} (p : x = y) (q : y = z)
|
||||||
: apd f (p ⬝ q) = con_tr p q (f x) ⬝ ap (transport P q) (apd f p) ⬝ apd f q :=
|
: apdt f (p ⬝ q) = con_tr p q (f x) ⬝ ap (transport P q) (apdt f p) ⬝ apdt f q :=
|
||||||
by cases p; cases q; apply idp
|
by cases p; cases q; apply idp
|
||||||
|
|
||||||
definition apd_inv (f : Πx, P x) {x y : A} (p : x = y)
|
definition apdt_inv (f : Πx, P x) {x y : A} (p : x = y)
|
||||||
: apd f p⁻¹ = (eq_inv_tr_of_tr_eq (apd f p))⁻¹ :=
|
: apdt f p⁻¹ = (eq_inv_tr_of_tr_eq (apdt f p))⁻¹ :=
|
||||||
by cases p; apply idp
|
by cases p; apply idp
|
||||||
|
|
||||||
|
|
||||||
|
@ -562,11 +562,11 @@ namespace eq
|
||||||
definition tr_eq_cast_ap_fn {P : A → Type} {x y} (p : x = y) : transport P p = cast (ap P p) :=
|
definition tr_eq_cast_ap_fn {P : A → Type} {x y} (p : x = y) : transport P p = cast (ap P p) :=
|
||||||
by induction p; reflexivity
|
by induction p; reflexivity
|
||||||
|
|
||||||
/- The behavior of [ap] and [apd] -/
|
/- The behavior of [ap] and [apdt] -/
|
||||||
|
|
||||||
-- In a constant fibration, [apd] reduces to [ap], modulo [transport_const].
|
-- In a constant fibration, [apdt] reduces to [ap], modulo [transport_const].
|
||||||
definition apd_eq_tr_constant_con_ap (f : A → B) (p : x = y) :
|
definition apdt_eq_tr_constant_con_ap (f : A → B) (p : x = y) :
|
||||||
apd f p = tr_constant p (f x) ⬝ ap f p :=
|
apdt f p = tr_constant p (f x) ⬝ ap f p :=
|
||||||
by induction p; reflexivity
|
by induction p; reflexivity
|
||||||
|
|
||||||
|
|
||||||
|
@ -708,17 +708,17 @@ namespace eq
|
||||||
⬝ (ap_con f p' q')⁻¹ :=
|
⬝ (ap_con f p' q')⁻¹ :=
|
||||||
by induction r; induction s; induction q; induction p; reflexivity
|
by induction r; induction s; induction q; induction p; reflexivity
|
||||||
|
|
||||||
definition apd02 [unfold 8] {p q : x = y} (f : Π x, P x) (r : p = q) :
|
definition apdt02 [unfold 8] {p q : x = y} (f : Π x, P x) (r : p = q) :
|
||||||
apd f p = transport2 P r (f x) ⬝ apd f q :=
|
apdt f p = transport2 P r (f x) ⬝ apdt f q :=
|
||||||
by induction r; exact !idp_con⁻¹
|
by induction r; exact !idp_con⁻¹
|
||||||
|
|
||||||
-- And now for a lemma whose statement is much longer than its proof.
|
-- And now for a lemma whose statement is much longer than its proof.
|
||||||
definition apd02_con {P : A → Type} (f : Π x:A, P x) {x y : A}
|
definition apdt02_con {P : A → Type} (f : Π x:A, P x) {x y : A}
|
||||||
{p1 p2 p3 : x = y} (r1 : p1 = p2) (r2 : p2 = p3) :
|
{p1 p2 p3 : x = y} (r1 : p1 = p2) (r2 : p2 = p3) :
|
||||||
apd02 f (r1 ⬝ r2) = apd02 f r1
|
apdt02 f (r1 ⬝ r2) = apdt02 f r1
|
||||||
⬝ whisker_left (transport2 P r1 (f x)) (apd02 f r2)
|
⬝ whisker_left (transport2 P r1 (f x)) (apdt02 f r2)
|
||||||
⬝ con.assoc' _ _ _
|
⬝ con.assoc' _ _ _
|
||||||
⬝ (whisker_right (tr2_con r1 r2 (f x))⁻¹ (apd f p3)) :=
|
⬝ (whisker_right (tr2_con r1 r2 (f x))⁻¹ (apdt f p3)) :=
|
||||||
by induction r2; induction r1; induction p1; reflexivity
|
by induction r2; induction r1; induction p1; reflexivity
|
||||||
|
|
||||||
end eq
|
end eq
|
||||||
|
|
|
@ -151,7 +151,7 @@ namespace eq
|
||||||
|
|
||||||
definition transport_eq_FlFr_D {B : A → Type} {f g : Πa, B a}
|
definition transport_eq_FlFr_D {B : A → Type} {f g : Πa, B a}
|
||||||
(p : a₁ = a₂) (q : f a₁ = g a₁)
|
(p : a₁ = a₂) (q : f a₁ = g a₁)
|
||||||
: transport (λx, f x = g x) p q = (apd f p)⁻¹ ⬝ ap (transport B p) q ⬝ (apd g p) :=
|
: transport (λx, f x = g x) p q = (apdt f p)⁻¹ ⬝ ap (transport B p) q ⬝ (apdt g p) :=
|
||||||
by induction p; rewrite [▸*,idp_con,ap_id]
|
by induction p; rewrite [▸*,idp_con,ap_id]
|
||||||
|
|
||||||
definition transport_eq_FFlr (p : a₁ = a₂) (q : h (f a₁) = a₁)
|
definition transport_eq_FFlr (p : a₁ = a₂) (q : h (f a₁) = a₁)
|
||||||
|
@ -189,7 +189,7 @@ namespace eq
|
||||||
by induction p; rewrite [▸*,idp_con]; exact idpo
|
by induction p; rewrite [▸*,idp_con]; exact idpo
|
||||||
|
|
||||||
definition pathover_eq_FlFr_D {B : A → Type} {f g : Πa, B a} (p : a₁ = a₂) (q : f a₁ = g a₁)
|
definition pathover_eq_FlFr_D {B : A → Type} {f g : Πa, B a} (p : a₁ = a₂) (q : f a₁ = g a₁)
|
||||||
: q =[p] (apd f p)⁻¹ ⬝ ap (transport B p) q ⬝ (apd g p) := /-(λx, f x = g x)-/
|
: q =[p] (apdt f p)⁻¹ ⬝ ap (transport B p) q ⬝ (apdt g p) := /-(λx, f x = g x)-/
|
||||||
by induction p; rewrite [▸*,idp_con,ap_id];exact idpo
|
by induction p; rewrite [▸*,idp_con,ap_id];exact idpo
|
||||||
|
|
||||||
definition pathover_eq_FFlr (p : a₁ = a₂) (q : h (f a₁) = a₁) : q =[p] (ap h (ap f p))⁻¹ ⬝ q ⬝ p :=
|
definition pathover_eq_FFlr (p : a₁ = a₂) (q : h (f a₁) = a₁) : q =[p] (ap h (ap f p))⁻¹ ⬝ q ⬝ p :=
|
||||||
|
|
|
@ -215,12 +215,12 @@ namespace pi
|
||||||
begin
|
begin
|
||||||
intro h, apply eq_of_homotopy, intro a', esimp,
|
intro h, apply eq_of_homotopy, intro a', esimp,
|
||||||
rewrite [adj f0 a',-tr_compose,fn_tr_eq_tr_fn _ f1,right_inv (f1 _)],
|
rewrite [adj f0 a',-tr_compose,fn_tr_eq_tr_fn _ f1,right_inv (f1 _)],
|
||||||
apply apd
|
apply apdt
|
||||||
end,
|
end,
|
||||||
begin
|
begin
|
||||||
intro h, apply eq_of_homotopy, intro a, esimp,
|
intro h, apply eq_of_homotopy, intro a, esimp,
|
||||||
rewrite [left_inv (f1 _)],
|
rewrite [left_inv (f1 _)],
|
||||||
apply apd
|
apply apdt
|
||||||
end
|
end
|
||||||
end
|
end
|
||||||
|
|
||||||
|
|
|
@ -281,7 +281,7 @@ namespace is_trunc
|
||||||
(imp : Π{a b : A}, R a b → a = b) : is_set A :=
|
(imp : Π{a b : A}, R a b → a = b) : is_set A :=
|
||||||
is_set_of_axiom_K
|
is_set_of_axiom_K
|
||||||
(λa p,
|
(λa p,
|
||||||
have H2 : transport (λx, R a x → a = x) p (@imp a a) = @imp a a, from !apd,
|
have H2 : transport (λx, R a x → a = x) p (@imp a a) = @imp a a, from !apdt,
|
||||||
have H3 : Π(r : R a a), transport (λx, a = x) p (imp r)
|
have H3 : Π(r : R a a), transport (λx, a = x) p (imp r)
|
||||||
= imp (transport (λx, R a x) p r), from
|
= imp (transport (λx, R a x) p r), from
|
||||||
to_fun (equiv.symm !heq_pi) H2,
|
to_fun (equiv.symm !heq_pi) H2,
|
||||||
|
|
|
@ -52,7 +52,7 @@ namespace colimit
|
||||||
definition comp_cglue [D : diagram] {P : colimit D → Type}
|
definition comp_cglue [D : diagram] {P : colimit D → Type}
|
||||||
(Pincl : Π⦃i : Iob⦄ (x : ob i), P (ι x))
|
(Pincl : Π⦃i : Iob⦄ (x : ob i), P (ι x))
|
||||||
(Pglue : Π(j : Ihom) (x : ob (dom j)), cglue j x ▸ Pincl (hom j x) = Pincl x)
|
(Pglue : Π(j : Ihom) (x : ob (dom j)), cglue j x ▸ Pincl (hom j x) = Pincl x)
|
||||||
{j : Ihom} (x : ob (dom j)) : apd (rec Pincl Pglue) (cglue j x) = sorry ⬝ Pglue j x ⬝ sorry :=
|
{j : Ihom} (x : ob (dom j)) : apdt (rec Pincl Pglue) (cglue j x) = sorry ⬝ Pglue j x ⬝ sorry :=
|
||||||
--the sorry's in the statement can be removed when comp_incl is definitional
|
--the sorry's in the statement can be removed when comp_incl is definitional
|
||||||
sorry --idp
|
sorry --idp
|
||||||
|
|
||||||
|
|
|
@ -38,7 +38,7 @@ namespace pi
|
||||||
/- The identification of the path space of a dependent function space, up to equivalence, is of course just funext. -/
|
/- The identification of the path space of a dependent function space, up to equivalence, is of course just funext. -/
|
||||||
|
|
||||||
definition path_equiv_homotopy (H : funext) (f g : Πx, B x) : (f = g) ≃ (f ~ g) :=
|
definition path_equiv_homotopy (H : funext) (f g : Πx, B x) : (f = g) ≃ (f ~ g) :=
|
||||||
equiv.mk _ !is_equiv_apd
|
equiv.mk _ !is_equiv_apdt
|
||||||
|
|
||||||
definition is_equiv_path_pi [instance] (H : funext) (f g : Πx, B x)
|
definition is_equiv_path_pi [instance] (H : funext) (f g : Πx, B x)
|
||||||
: is_equiv (@eq_of_homotopy _ _ f g) :=
|
: is_equiv (@eq_of_homotopy _ _ f g) :=
|
||||||
|
@ -111,11 +111,11 @@ namespace pi
|
||||||
rewrite -tr_compose,
|
rewrite -tr_compose,
|
||||||
rewrite {f1 a' _}(fn_tr_eq_tr_fn _ f1 _),
|
rewrite {f1 a' _}(fn_tr_eq_tr_fn _ f1 _),
|
||||||
rewrite (right_inv (f1 _) _),
|
rewrite (right_inv (f1 _) _),
|
||||||
apply apd,
|
apply apdt,
|
||||||
intro h,
|
intro h,
|
||||||
apply eq_of_homotopy, intro a, esimp,
|
apply eq_of_homotopy, intro a, esimp,
|
||||||
apply (transport_V (λx, right_inv f0 a ▸ x = h a) (left_inv (f1 _) _)),
|
apply (transport_V (λx, right_inv f0 a ▸ x = h a) (left_inv (f1 _) _)),
|
||||||
apply apd
|
apply apdt
|
||||||
end
|
end
|
||||||
|
|
||||||
end pi
|
end pi
|
||||||
|
|
|
@ -52,7 +52,7 @@ namespace colimit
|
||||||
definition comp_cglue [D : diagram] {P : colimit D → Type}
|
definition comp_cglue [D : diagram] {P : colimit D → Type}
|
||||||
(Pincl : Π⦃i : Iob⦄ (x : ob i), P (ι x))
|
(Pincl : Π⦃i : Iob⦄ (x : ob i), P (ι x))
|
||||||
(Pglue : Π(j : Ihom) (x : ob (dom j)), cglue j x ▸ Pincl (hom j x) = Pincl x)
|
(Pglue : Π(j : Ihom) (x : ob (dom j)), cglue j x ▸ Pincl (hom j x) = Pincl x)
|
||||||
{j : Ihom} (x : ob (dom j)) : apd (rec Pincl Pglue) (cglue j x) = sorry ⬝ Pglue j x ⬝ sorry :=
|
{j : Ihom} (x : ob (dom j)) : apdt (rec Pincl Pglue) (cglue j x) = sorry ⬝ Pglue j x ⬝ sorry :=
|
||||||
--the sorry's in the statement can be removed when comp_incl is definitional
|
--the sorry's in the statement can be removed when comp_incl is definitional
|
||||||
sorry --idp
|
sorry --idp
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue