diff --git a/library/data/int/basic.lean b/library/data/int/basic.lean index d4bec859b..c17fe1adf 100644 --- a/library/data/int/basic.lean +++ b/library/data/int/basic.lean @@ -357,20 +357,6 @@ or.elim (cases_succ a) (assume H, obtain (n : ℕ) (H3 : a = of_nat n), from H, H3⁻¹ ▸ H1 n) (assume H, obtain (n : ℕ) (H3 : a = -(of_nat (succ n))), from H, H3⁻¹ ▸ H2 n) -theorem of_nat_eq_neg_of_nat {n m : ℕ} (H : n = - m) : n = 0 ∧ m = 0 := -have H2 : n = psub (pair 0 m), from - calc - n = -m : H - ... = -(psub (pair m 0)) : rfl - ... = psub (pair 0 m) : by simp, -have H3 : rel (pair n 0) (pair 0 m), from R_intro_refl quotient @rel_refl H2, -have H4 : n + m = 0, from - calc - n + m = pr1 (pair n 0) + pr2 (pair 0 m) : by simp - ... = pr2 (pair n 0) + pr1 (pair 0 m) : H3 - ... = 0 : by simp, -add_eq_zero H4 - --some of these had to be transparent for theorem cases irreducible psub proj @@ -578,7 +564,6 @@ calc theorem sub_add_add_left (a b c : ℤ) : c + a - (c + b) = a - b := add_comm b c ▸ add_comm a c ▸ sub_add_add_right a b c --- TODO: fix this theorem dist_def (n m : ℕ) : dist n m = (to_nat (of_nat n - m)) := have H : of_nat n - m = psub (pair n m), from calc @@ -586,7 +571,7 @@ have H : of_nat n - m = psub (pair n m), from ... = psub (pair n m) : by simp, calc dist n m = (to_nat (psub (pair n m))) : by simp - ... = (to_nat (of_nat n - m)) : sorry -- {symm H} + ... = (to_nat (of_nat n - m)) : {H⁻¹} -- ## mul theorem rel_mul_prep {xa ya xb yb xn yn xm ym : ℕ}