feat(builtin/cast): use heq in the cast library
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
parent
52756c50fc
commit
0660cdbdb7
6 changed files with 29 additions and 95 deletions
|
@ -93,7 +93,8 @@ add_theory("if_then_else.lean" "${CMAKE_CURRENT_BINARY_DIR}/Nat.olean")
|
|||
add_theory("Int.lean" "${CMAKE_CURRENT_BINARY_DIR}/if_then_else.olean")
|
||||
add_theory("Real.lean" "${CMAKE_CURRENT_BINARY_DIR}/Int.olean")
|
||||
add_theory("specialfn.lean" "${CMAKE_CURRENT_BINARY_DIR}/Real.olean")
|
||||
## add_theory("cast.lean" "${CMAKE_CURRENT_BINARY_DIR}/Nat.olean")
|
||||
add_theory("heq.lean" "${CMAKE_CURRENT_BINARY_DIR}/Nat.olean")
|
||||
add_theory("cast.lean" "${CMAKE_CURRENT_BINARY_DIR}/heq.olean")
|
||||
|
||||
update_interface("kernel.olean" "kernel" "-n")
|
||||
update_interface("Nat.olean" "library/arith" "-n")
|
||||
|
|
|
@ -1,90 +1,35 @@
|
|||
-- "Type casting" library.
|
||||
import heq
|
||||
|
||||
-- Heterogeneous substitution
|
||||
axiom hsubst {A B : TypeU} {a : A} {b : B} (P : ∀ T : TypeU, T → Bool) : P A a → a == b → P B b
|
||||
variable cast {A B : TypeH} : A = B → A → B
|
||||
|
||||
universe M >= 1
|
||||
universe U >= M + 1
|
||||
definition TypeM := (Type M)
|
||||
axiom cast_heq {A B : TypeH} (H : A = B) (a : A) : cast H a == a
|
||||
|
||||
-- Type equality axiom, if two values are equal, then their types are equal
|
||||
theorem type_eq {A B : TypeM} {a : A} {b : B} (H : a == b) : A == B
|
||||
:= hsubst (λ (T : TypeU) (x : T), A == T) (refl A) H
|
||||
theorem cast_app {A A' : TypeH} {B : A → TypeH} {B' : A' → TypeH} (f : ∀ x, B x) (a : A) (Ha : A = A') (Hb : (∀ x, B x) = (∀ x, B' x)) :
|
||||
cast Hb f (cast Ha a) == f a
|
||||
:= let s1 : cast Hb f == f := cast_heq Hb f,
|
||||
s2 : cast Ha a == a := cast_heq Ha a
|
||||
in hcongr s1 s2
|
||||
|
||||
-- Heterogenous symmetry
|
||||
theorem hsymm {A B : TypeU} {a : A} {b : B} (H : a == b) : b == a
|
||||
:= hsubst (λ (T : TypeU) (x : T), x == a) (refl a) H
|
||||
-- The following theorems can be used as rewriting rules
|
||||
|
||||
-- Heterogenous transitivity
|
||||
theorem htrans {A B C : TypeU} {a : A} {b : B} {c : C} (H1 : a == b) (H2 : b == c) : a == c
|
||||
:= hsubst (λ (T : TypeU) (x : T), a == x) H1 H2
|
||||
theorem cast_eq {A : TypeH} (H : A = A) (a : A) : cast H a = a
|
||||
:= to_eq (cast_heq H a)
|
||||
|
||||
-- The cast operator allows us to cast an element of type A
|
||||
-- into B if we provide a proof that types A and B are equal.
|
||||
variable cast {A B : TypeU} : A == B → A → B
|
||||
theorem cast_trans {A B C : TypeH} (Hab : A = B) (Hbc : B = C) (a : A) : cast Hbc (cast Hab a) = cast (trans Hab Hbc) a
|
||||
:= let s1 : cast Hbc (cast Hab a) == cast Hab a := cast_heq Hbc (cast Hab a),
|
||||
s2 : cast Hab a == a := cast_heq Hab a,
|
||||
s3 : cast (trans Hab Hbc) a == a := cast_heq (trans Hab Hbc) a,
|
||||
s4 : cast Hbc (cast Hab a) == cast (trans Hab Hbc) a := htrans (htrans s1 s2) (hsymm s3)
|
||||
in to_eq s4
|
||||
|
||||
-- The CastEq axiom states that for any cast of x is equal to x.
|
||||
axiom cast_eq {A B : TypeU} (H : A == B) (x : A) : x == cast H x
|
||||
theorem cast_pull {A : TypeH} {B B' : A → TypeH} (f : ∀ x, B x) (a : A) (Hb : (∀ x, B x) = (∀ x, B' x)) (Hba : (B a) = (B' a)) :
|
||||
cast Hb f a = cast Hba (f a)
|
||||
:= let s1 : cast Hb f a == f a := hcongr (cast_heq Hb f) (hrefl a),
|
||||
s2 : cast Hba (f a) == f a := cast_heq Hba (f a)
|
||||
in to_eq (htrans s1 (hsymm s2))
|
||||
|
||||
-- The CastApp axiom "propagates" the cast over application
|
||||
axiom cast_app {A A' : TypeU} {B : A → TypeU} {B' : A' → TypeU}
|
||||
(H1 : (∀ x, B x) == (∀ x, B' x)) (H2 : A == A')
|
||||
(f : ∀ x, B x) (x : A) :
|
||||
cast H1 f (cast H2 x) == f x
|
||||
|
||||
-- Heterogeneous congruence
|
||||
theorem hcongr
|
||||
{A A' : TypeM} {B : A → TypeM} {B' : A' → TypeM}
|
||||
{f : ∀ x, B x} {g : ∀ x, B' x} {a : A} {b : A'}
|
||||
(H1 : f == g)
|
||||
(H2 : a == b)
|
||||
: f a == g b
|
||||
:= let L1 : A == A' := type_eq H2,
|
||||
L2 : A' == A := symm L1,
|
||||
b' : A := cast L2 b,
|
||||
L3 : b == b' := cast_eq L2 b,
|
||||
L4 : a == b' := htrans H2 L3,
|
||||
L5 : f a == f b' := congr2 f L4,
|
||||
S1 : (∀ x, B' x) == (∀ x, B x) := symm (type_eq H1),
|
||||
g' : (∀ x, B x) := cast S1 g,
|
||||
L6 : g == g' := cast_eq S1 g,
|
||||
L7 : f == g' := htrans H1 L6,
|
||||
L8 : f b' == g' b' := congr1 b' L7,
|
||||
L9 : f a == g' b' := htrans L5 L8,
|
||||
L10 : g' b' == g b := cast_app S1 L2 g b
|
||||
in htrans L9 L10
|
||||
|
||||
theorem hfunext
|
||||
{A : TypeM} {B B' : A → TypeM} {f : ∀ x : A, B x} {g : ∀ x : A, B' x} (H : ∀ x : A, f x == g x) : f == g
|
||||
:= let L1 : (∀ x : A, B x = B' x) := λ x : A, type_eq (H x),
|
||||
L2 : (∀ x : A, B x) = (∀ x : A, B' x) := allext L1,
|
||||
g' : (∀ x : A, B x) := cast (symm L2) g,
|
||||
Hgg : g == g' := cast_eq (symm L2) g,
|
||||
Hggx : (∀ x : A, g x == g' x) := λ x : A, hcongr Hgg (refl x) ,
|
||||
L3 : (∀ x : A, f x == g' x) := λ x : A, htrans (H x) (Hggx x),
|
||||
Hfg : f == g' := funext L3
|
||||
in htrans Hfg (hsymm Hgg)
|
||||
|
||||
exit -- Stop here, the following axiom is not sound
|
||||
|
||||
-- The following axiom is unsound when we treat Pi and
|
||||
-- forall as the "same thing". The main problem is the
|
||||
-- rule that says (Pi x : A, B) has type Bool if B has type Bool instead of
|
||||
-- max(typeof(A), typeof(B))
|
||||
--
|
||||
-- Here is the problematic axiom
|
||||
-- If two (dependent) function spaces are equal, then their domains are equal.
|
||||
axiom dominj {A A' : (Type U)} {B : A → (Type U)} {B' : A' → (Type U)}
|
||||
(H : (∀ x : A, B x) == (∀ x : A', B' x)) :
|
||||
A == A'
|
||||
|
||||
-- Here is a derivation of false using the dominj axiom
|
||||
theorem unsat : false :=
|
||||
let L1 : (∀ x : true, true) := (λ x : true, trivial),
|
||||
L2 : (∀ x : false, true) := (λ x : false, trivial),
|
||||
-- When we keep Pi/forall as different things, the following two steps can't be used
|
||||
L3 : (∀ x : true, true) = true := eqt_intro L1,
|
||||
L4 : (∀ x : false, true) = true := eqt_intro L2,
|
||||
L5 : (∀ x : true, true) = (∀ x : false, true) := trans L3 (symm L4),
|
||||
L6 : true = false := dominj L5
|
||||
in L6
|
||||
|
|
|
@ -8,13 +8,13 @@ universe H ≥ 1
|
|||
universe U ≥ H + 1
|
||||
definition TypeH := (Type H)
|
||||
|
||||
axiom heq_eq {A : TypeH} (a : A) : a == a ↔ a = a
|
||||
axiom heq_eq {A : TypeH} (a b : A) : a == b ↔ a = b
|
||||
|
||||
definition to_eq {A : TypeH} {a : A} (H : a == a) : a = a
|
||||
:= (heq_eq a) ◂ H
|
||||
definition to_eq {A : TypeH} {a b : A} (H : a == b) : a = b
|
||||
:= (heq_eq a b) ◂ H
|
||||
|
||||
definition to_heq {A : TypeH} {a : A} (H : a = a) : a == a
|
||||
:= (symm (heq_eq a)) ◂ H
|
||||
definition to_heq {A : TypeH} {a b : A} (H : a = b) : a == b
|
||||
:= (symm (heq_eq a b)) ◂ H
|
||||
|
||||
theorem hrefl {A : TypeH} (a : A) : a == a
|
||||
:= to_heq (refl a)
|
||||
|
@ -34,15 +34,3 @@ axiom hpiext {A A' : TypeH} {B : A → TypeH} {B' : A' → TypeH} :
|
|||
|
||||
axiom hallext {A A' : TypeH} {B : A → Bool} {B' : A' → Bool} :
|
||||
A = A' → (∀ x x', x == x' → B x == B' x') → (∀ x, B x) == (∀ x, B' x)
|
||||
|
||||
variable cast {A B : TypeH} : A = B → A → B
|
||||
|
||||
axiom cast_eq {A B : TypeH} (H : A = B) (a : A) : a == cast H a
|
||||
|
||||
theorem cast_app {A A' : TypeH} {B : A → TypeH} {B' : A' → TypeH} {f : ∀ x, B x} {a : A} (Ha : A = A') (Hb : (∀ x, B x) = (∀ x, B' x)) :
|
||||
cast Hb f (cast Ha a) == f a
|
||||
:= let s1 : cast Hb f == f := hsymm (cast_eq Hb f),
|
||||
s2 : cast Ha a == a := hsymm (cast_eq Ha a)
|
||||
in hcongr s1 s2
|
||||
|
||||
|
||||
|
|
Binary file not shown.
BIN
src/builtin/obj/heq.olean
Normal file
BIN
src/builtin/obj/heq.olean
Normal file
Binary file not shown.
Binary file not shown.
Loading…
Reference in a new issue