feat(library): clean up "sorry"s in library

Breaking changes: pnat was redefined to use subtype instead of a custom inductive type, which affects the notation for pnat 2 and 3
This commit is contained in:
Mario Carneiro 2015-07-24 11:56:18 -04:00
parent bcf057f4f3
commit 066b0fcdf9
28 changed files with 1005 additions and 1465 deletions

View file

@ -58,6 +58,12 @@ namespace binary
(a*b)*c = a*(b*c) : H_assoc (a*b)*c = a*(b*c) : H_assoc
... = a*(c*b) : H_comm ... = a*(c*b) : H_comm
... = (a*c)*b : H_assoc ... = (a*c)*b : H_assoc
theorem comm4 (a b c d : A) : a*b*(c*d) = a*c*(b*d) :=
calc
a*b*(c*d) = a*b*c*d : H_assoc
... = a*c*b*d : right_comm H_comm H_assoc
... = a*c*(b*d) : H_assoc
end end
section section

View file

@ -6,8 +6,8 @@ Author: Jeremy Avigad, Floris van Doorn
import logic.cast import logic.cast
namespace empty namespace empty
protected theorem elim (A : Type) (H : empty) : A := protected theorem elim (A : Type) : empty → A :=
empty.rec (λe, A) H empty.rec (λe, A)
protected theorem subsingleton [instance] : subsingleton empty := protected theorem subsingleton [instance] : subsingleton empty :=
subsingleton.intro (λ a b, !empty.elim a) subsingleton.intro (λ a b, !empty.elim a)

View file

@ -26,8 +26,8 @@ lemma veq_of_eq : ∀ {i j : fin n}, i = j → (val i) = j
| (mk iv ilt) (mk jv jlt) := assume Peq, | (mk iv ilt) (mk jv jlt) := assume Peq,
show iv = jv, from fin.no_confusion Peq (λ Pe Pqe, Pe) show iv = jv, from fin.no_confusion Peq (λ Pe Pqe, Pe)
lemma eq_iff_veq : ∀ {i j : fin n}, (val i) = j ↔ i = j := lemma eq_iff_veq {i j : fin n} : (val i) = j ↔ i = j :=
take i j, iff.intro eq_of_veq veq_of_eq iff.intro eq_of_veq veq_of_eq
definition val_inj := @eq_of_veq n definition val_inj := @eq_of_veq n
@ -37,10 +37,7 @@ section
open decidable open decidable
protected definition has_decidable_eq [instance] (n : nat) : ∀ (i j : fin n), decidable (i = j) protected definition has_decidable_eq [instance] (n : nat) : ∀ (i j : fin n), decidable (i = j)
| (mk ival ilt) (mk jval jlt) := | (mk ival ilt) (mk jval jlt) :=
match nat.has_decidable_eq ival jval with decidable_of_decidable_of_iff (nat.has_decidable_eq ival jval) eq_iff_veq
| inl veq := inl (by substvars)
| inr vne := inr (by intro h; injection h; contradiction)
end
end end
lemma dinj_lt (n : nat) : dinj (λ i, i < n) fin.mk := lemma dinj_lt (n : nat) : dinj (λ i, i < n) fin.mk :=

View file

@ -28,10 +28,10 @@ private definition eqv.refl (l : nodup_list A) : l ~ l :=
!perm.refl !perm.refl
private definition eqv.symm {l₁ l₂ : nodup_list A} : l₁ ~ l₂ → l₂ ~ l₁ := private definition eqv.symm {l₁ l₂ : nodup_list A} : l₁ ~ l₂ → l₂ ~ l₁ :=
assume p, perm.symm p perm.symm
private definition eqv.trans {l₁ l₂ l₃ : nodup_list A} : l₁ ~ l₂ → l₂ ~ l₃ → l₁ ~ l₃ := private definition eqv.trans {l₁ l₂ l₃ : nodup_list A} : l₁ ~ l₂ → l₂ ~ l₃ → l₁ ~ l₃ :=
assume p₁ p₂, perm.trans p₁ p₂ perm.trans
definition finset.nodup_list_setoid [instance] (A : Type) : setoid (nodup_list A) := definition finset.nodup_list_setoid [instance] (A : Type) : setoid (nodup_list A) :=
setoid.mk (@eqv A) (mk_equivalence (@eqv A) (@eqv.refl A) (@eqv.symm A) (@eqv.trans A)) setoid.mk (@eqv A) (mk_equivalence (@eqv A) (@eqv.refl A) (@eqv.symm A) (@eqv.trans A))
@ -123,7 +123,7 @@ theorem not_mem_empty [simp] (a : A) : a ∉ ∅ :=
λ aine : a ∈ ∅, aine λ aine : a ∈ ∅, aine
theorem mem_empty_iff [simp] (x : A) : x ∈ ∅ ↔ false := theorem mem_empty_iff [simp] (x : A) : x ∈ ∅ ↔ false :=
iff.mpr !iff_false_iff_not !not_mem_empty iff_false_intro !not_mem_empty
theorem mem_empty_eq (x : A) : x ∈ ∅ = false := theorem mem_empty_eq (x : A) : x ∈ ∅ = false :=
propext !mem_empty_iff propext !mem_empty_iff
@ -177,30 +177,18 @@ quot.induction_on s
theorem eq_or_mem_of_mem_insert {x a : A} {s : finset A} : x ∈ insert a s → x = a x ∈ s := theorem eq_or_mem_of_mem_insert {x a : A} {s : finset A} : x ∈ insert a s → x = a x ∈ s :=
quot.induction_on s (λ l : nodup_list A, λ H, list.eq_or_mem_of_mem_insert H) quot.induction_on s (λ l : nodup_list A, λ H, list.eq_or_mem_of_mem_insert H)
theorem mem_of_mem_insert_of_ne {x a : A} {s : finset A} : x ∈ insert a s → x ≠ a → x ∈ s := theorem mem_of_mem_insert_of_ne {x a : A} {s : finset A} (xin : x ∈ insert a s) : x ≠ a → x ∈ s :=
λ xin xne, or.elim (eq_or_mem_of_mem_insert xin) (by contradiction) id or_resolve_right (eq_or_mem_of_mem_insert xin)
theorem mem_insert_eq (x a : A) (s : finset A) : x ∈ insert a s = (x = a x ∈ s) := theorem mem_insert_eq (x a : A) (s : finset A) : x ∈ insert a s = (x = a x ∈ s) :=
propext (iff.intro propext (iff.intro !eq_or_mem_of_mem_insert
(!eq_or_mem_of_mem_insert) (or.rec (λH', (eq.substr H' !mem_insert)) !mem_insert_of_mem))
(suppose x = a x ∈ s, or.elim this
(suppose x = a, eq.subst (eq.symm this) !mem_insert)
(suppose x ∈ s, !mem_insert_of_mem this)))
theorem insert_empty_eq (a : A) : '{a} = singleton a := rfl theorem insert_empty_eq (a : A) : '{a} = singleton a := rfl
theorem insert_eq_of_mem {a : A} {s : finset A} (H : a ∈ s) : insert a s = s := theorem insert_eq_of_mem {a : A} {s : finset A} (H : a ∈ s) : insert a s = s :=
ext ext (λ x, eq.substr (mem_insert_eq x a s)
take x, (or_iff_right_of_imp (λH1, eq.substr H1 H)))
begin
rewrite [!mem_insert_eq],
show x = a x ∈ s ↔ x ∈ s, from
iff.intro
(assume H1, or.elim H1
(suppose x = a, eq.subst (eq.symm this) H)
(suppose x ∈ s, this))
(suppose x ∈ s, or.inr this)
end
theorem card_insert_of_mem {a : A} {s : finset A} : a ∈ s → card (insert a s) = card s := theorem card_insert_of_mem {a : A} {s : finset A} : a ∈ s → card (insert a s) = card s :=
quot.induction_on s quot.induction_on s
@ -212,9 +200,8 @@ quot.induction_on s
theorem card_insert_le (a : A) (s : finset A) : theorem card_insert_le (a : A) (s : finset A) :
card (insert a s) ≤ card s + 1 := card (insert a s) ≤ card s + 1 :=
decidable.by_cases if H : a ∈ s then by rewrite [card_insert_of_mem H]; apply le_succ
(suppose a ∈ s, by rewrite [card_insert_of_mem this]; apply le_succ) else by rewrite [card_insert_of_not_mem H]
(suppose a ∉ s, by rewrite [card_insert_of_not_mem this])
lemma ne_empty_of_card_eq_succ {s : finset A} {n : nat} : card s = succ n → s ≠ ∅ := lemma ne_empty_of_card_eq_succ {s : finset A} {n : nat} : card s = succ n → s ≠ ∅ :=
by intros; substvars; contradiction by intros; substvars; contradiction

View file

@ -45,49 +45,39 @@ namespace int
attribute int.of_nat [coercion] attribute int.of_nat [coercion]
notation `-[1+` n `]` := int.neg_succ_of_nat n -- for pretty-printing output
/- definitions of basic functions -/ /- definitions of basic functions -/
definition neg_of_nat (m : ) : := definition neg_of_nat :
nat.cases_on m 0 (take m', neg_succ_of_nat m') | 0 := 0
| (succ m) := -[1+ m]
definition sub_nat_nat (m n : ) : := definition sub_nat_nat (m n : ) : :=
nat.cases_on (n - m) match n - m with
(of_nat (m - n)) -- m ≥ n | 0 := m - n -- m ≥ n
(take k, neg_succ_of_nat k) -- m < n, and n - m = succ k | (succ k) := -[1+ k] -- m < n, and n - m = succ k
end
definition neg (a : ) : := definition neg (a : ) : :=
int.cases_on a int.cases_on a neg_of_nat succ
(take m, -- a = of_nat m
nat.cases_on m 0 (take m', neg_succ_of_nat m'))
(take m, of_nat (succ m)) -- a = neg_succ_of_nat m
definition add (a b : ) : := definition add :
int.cases_on a | (of_nat m) (of_nat n) := m + n
(take m, -- a = of_nat m | (of_nat m) -[1+ n] := sub_nat_nat m (succ n)
int.cases_on b | -[1+ m] (of_nat n) := sub_nat_nat n (succ m)
(take n, of_nat (m + n)) -- b = of_nat n | -[1+ m] -[1+ n] := neg_of_nat (succ m + succ n)
(take n, sub_nat_nat m (succ n))) -- b = neg_succ_of_nat n
(take m, -- a = neg_succ_of_nat m
int.cases_on b
(take n, sub_nat_nat n (succ m)) -- b = of_nat n
(take n, neg_of_nat (succ m + succ n))) -- b = neg_succ_of_nat n
definition mul (a b : ) : := definition mul :
int.cases_on a | (of_nat m) (of_nat n) := m * n
(take m, -- a = of_nat m | (of_nat m) -[1+ n] := neg_of_nat (m * succ n)
int.cases_on b | -[1+ m] (of_nat n) := neg_of_nat (succ m * n)
(take n, of_nat (m * n)) -- b = of_nat n | -[1+ m] -[1+ n] := succ m * succ n
(take n, neg_of_nat (m * succ n))) -- b = neg_succ_of_nat n
(take m, -- a = neg_succ_of_nat m
int.cases_on b
(take n, neg_of_nat (succ m * n)) -- b = of_nat n
(take n, of_nat (succ m * succ n))) -- b = neg_succ_of_nat n
/- notation -/ /- notation -/
protected definition prio : num := num.pred std.priority.default protected definition prio : num := num.pred std.priority.default
notation `-[1+` n `]` := int.neg_succ_of_nat n -- for pretty-printing output
prefix [priority int.prio] - := int.neg prefix [priority int.prio] - := int.neg
infix [priority int.prio] + := int.add infix [priority int.prio] + := int.add
infix [priority int.prio] * := int.mul infix [priority int.prio] * := int.mul
@ -95,30 +85,25 @@ infix [priority int.prio] * := int.mul
/- some basic functions and properties -/ /- some basic functions and properties -/
theorem of_nat.inj {m n : } (H : of_nat m = of_nat n) : m = n := theorem of_nat.inj {m n : } (H : of_nat m = of_nat n) : m = n :=
by injection H; assumption int.no_confusion H imp.id
theorem of_nat_eq_of_nat (m n : ) : of_nat m = of_nat n ↔ m = n := theorem of_nat_eq_of_nat (m n : ) : of_nat m = of_nat n ↔ m = n :=
iff.intro of_nat.inj !congr_arg iff.intro of_nat.inj !congr_arg
theorem neg_succ_of_nat.inj {m n : } (H : neg_succ_of_nat m = neg_succ_of_nat n) : m = n := theorem neg_succ_of_nat.inj {m n : } (H : neg_succ_of_nat m = neg_succ_of_nat n) : m = n :=
by injection H; assumption int.no_confusion H imp.id
theorem neg_succ_of_nat_eq (n : ) : -[1+ n] = -(n + 1) := rfl theorem neg_succ_of_nat_eq (n : ) : -[1+ n] = -(n + 1) := rfl
definition has_decidable_eq [instance] : decidable_eq := private definition has_decidable_eq₂ : Π (a b : ), decidable (a = b)
take a b, | (of_nat m) (of_nat n) := decidable_of_decidable_of_iff
int.cases_on a (nat.has_decidable_eq m n) (iff.symm (of_nat_eq_of_nat m n))
(take m, | (of_nat m) -[1+ n] := inr (by contradiction)
int.cases_on b | -[1+ m] (of_nat n) := inr (by contradiction)
(take n, | -[1+ m] -[1+ n] := if H : m = n then
if H : m = n then inl (congr_arg of_nat H) else inr (take H1, H (of_nat.inj H1))) inl (congr_arg neg_succ_of_nat H) else inr (not.mto neg_succ_of_nat.inj H)
(take n', inr (by contradiction)))
(take m', definition has_decidable_eq [instance] : decidable_eq := has_decidable_eq₂
int.cases_on b
(take n, inr (by contradiction))
(take n',
(if H : m' = n' then inl (congr_arg neg_succ_of_nat H) else
inr (take H1, H (neg_succ_of_nat.inj H1)))))
theorem of_nat_add (n m : nat) : of_nat (n + m) = of_nat n + of_nat m := rfl theorem of_nat_add (n m : nat) : of_nat (n + m) = of_nat n + of_nat m := rfl
@ -127,30 +112,23 @@ theorem of_nat_succ (n : ) : of_nat (succ n) = of_nat n + 1 := rfl
theorem of_nat_mul (n m : ) : of_nat (n * m) = of_nat n * of_nat m := rfl theorem of_nat_mul (n m : ) : of_nat (n * m) = of_nat n * of_nat m := rfl
theorem sub_nat_nat_of_ge {m n : } (H : m ≥ n) : sub_nat_nat m n = of_nat (m - n) := theorem sub_nat_nat_of_ge {m n : } (H : m ≥ n) : sub_nat_nat m n = of_nat (m - n) :=
have H1 : n - m = 0, from sub_eq_zero_of_le H, show sub_nat_nat m n = nat.cases_on 0 (m - n) _, from (sub_eq_zero_of_le H) ▸ rfl
calc
sub_nat_nat m n = nat.cases_on 0 (of_nat (m - n)) _ : H1 ▸ rfl
... = of_nat (m - n) : rfl
section section
local attribute sub_nat_nat [reducible] local attribute sub_nat_nat [reducible]
theorem sub_nat_nat_of_lt {m n : } (H : m < n) : theorem sub_nat_nat_of_lt {m n : } (H : m < n) :
sub_nat_nat m n = neg_succ_of_nat (pred (n - m)) := sub_nat_nat m n = -[1+ pred (n - m)] :=
have H1 : n - m = succ (pred (n - m)), from (succ_pred_of_pos (sub_pos_of_lt H))⁻¹, have H1 : n - m = succ (pred (n - m)), from (succ_pred_of_pos (sub_pos_of_lt H))⁻¹,
calc show sub_nat_nat m n = nat.cases_on (succ (pred (n - m))) (m - n) _, from H1 ▸ rfl
sub_nat_nat m n = nat.cases_on (succ (pred (n - m))) (of_nat (m - n))
(take k, neg_succ_of_nat k) : H1 ▸ rfl
... = neg_succ_of_nat (pred (n - m)) : rfl
end end
definition nat_abs (a : ) : := int.cases_on a (take n, n) (take n', succ n') definition nat_abs (a : ) : := int.cases_on a function.id succ
theorem nat_abs_of_nat (n : ) : nat_abs (of_nat n) = n := rfl theorem nat_abs_of_nat (n : ) : nat_abs n = n := rfl
theorem nat_abs_eq_zero {a : } : nat_abs a = 0 → a = 0 := theorem nat_abs_eq_zero : Π {a : }, nat_abs a = 0 → a = 0
int.cases_on a | (of_nat m) H := congr_arg of_nat H
(take m, suppose nat_abs (of_nat m) = 0, congr_arg of_nat this) | -[1+ m'] H := absurd H !succ_ne_zero
(take m', suppose nat_abs (neg_succ_of_nat m') = 0, absurd this (succ_ne_zero _))
/- int is a quotient of ordered pairs of natural numbers -/ /- int is a quotient of ordered pairs of natural numbers -/
@ -162,24 +140,23 @@ protected theorem equiv.refl [refl] {p : × } : p ≡ p := !add.comm
protected theorem equiv.symm [symm] {p q : × } (H : p ≡ q) : q ≡ p := protected theorem equiv.symm [symm] {p q : × } (H : p ≡ q) : q ≡ p :=
calc calc
pr1 q + pr2 p = pr2 p + pr1 q : !add.comm pr1 q + pr2 p = pr2 p + pr1 q : add.comm
... = pr1 p + pr2 q : H⁻¹ ... = pr1 p + pr2 q : H⁻¹
... = pr2 q + pr1 p : !add.comm ... = pr2 q + pr1 p : add.comm
protected theorem equiv.trans [trans] {p q r : × } (H1 : p ≡ q) (H2 : q ≡ r) : p ≡ r := protected theorem equiv.trans [trans] {p q r : × } (H1 : p ≡ q) (H2 : q ≡ r) : p ≡ r :=
have H3 : pr1 p + pr2 r + pr2 q = pr2 p + pr1 r + pr2 q, from add.cancel_right (calc
calc pr1 p + pr2 r + pr2 q = pr1 p + pr2 q + pr2 r : add.right_comm
pr1 p + pr2 r + pr2 q = pr1 p + pr2 q + pr2 r : by rewrite [*add.assoc, add.comm (pr₂ q)]
... = pr2 p + pr1 q + pr2 r : {H1} ... = pr2 p + pr1 q + pr2 r : {H1}
... = pr2 p + (pr1 q + pr2 r) : add.assoc ... = pr2 p + (pr1 q + pr2 r) : add.assoc
... = pr2 p + (pr2 q + pr1 r) : {H2} ... = pr2 p + (pr2 q + pr1 r) : {H2}
... = pr2 p + pr1 r + pr2 q : by rewrite [add.assoc, add.comm (pr₂ q)], ... = pr2 p + pr2 q + pr1 r : add.assoc
show pr1 p + pr2 r = pr2 p + pr1 r, from add.cancel_right H3 ... = pr2 p + pr1 r + pr2 q : add.right_comm)
protected theorem equiv_equiv : is_equivalence int.equiv := protected theorem equiv_equiv : is_equivalence int.equiv :=
is_equivalence.mk @equiv.refl @equiv.symm @equiv.trans is_equivalence.mk @equiv.refl @equiv.symm @equiv.trans
protected theorem equiv_cases {p q : × } (H : int.equiv p q) : protected theorem equiv_cases {p q : × } (H : p ≡ q) :
(pr1 p ≥ pr2 p ∧ pr1 q ≥ pr2 q) (pr1 p < pr2 p ∧ pr1 q < pr2 q) := (pr1 p ≥ pr2 p ∧ pr1 q ≥ pr2 q) (pr1 p < pr2 p ∧ pr1 q < pr2 q) :=
or.elim (@le_or_gt (pr2 p) (pr1 p)) or.elim (@le_or_gt (pr2 p) (pr1 p))
(suppose pr1 p ≥ pr2 p, (suppose pr1 p ≥ pr2 p,
@ -199,109 +176,83 @@ theorem abstr_of_ge {p : × } (H : pr1 p ≥ pr2 p) : abstr p = of_nat (p
sub_nat_nat_of_ge H sub_nat_nat_of_ge H
theorem abstr_of_lt {p : × } (H : pr1 p < pr2 p) : theorem abstr_of_lt {p : × } (H : pr1 p < pr2 p) :
abstr p = neg_succ_of_nat (pred (pr2 p - pr1 p)) := abstr p = -[1+ pred (pr2 p - pr1 p)] :=
sub_nat_nat_of_lt H sub_nat_nat_of_lt H
definition repr (a : ) : × := int.cases_on a (take m, (m, 0)) (take m, (0, succ m)) definition repr : ×
| (of_nat m) := (m, 0)
| -[1+ m] := (0, succ m)
theorem abstr_repr (a : ) : abstr (repr a) = a := theorem abstr_repr : Π (a : ), abstr (repr a) = a
int.cases_on a (take m, (sub_nat_nat_of_ge (zero_le m))) (take m, rfl) | (of_nat m) := (sub_nat_nat_of_ge (zero_le m))
| -[1+ m] := rfl
theorem repr_sub_nat_nat (m n : ) : repr (sub_nat_nat m n) ≡ (m, n) := theorem repr_sub_nat_nat (m n : ) : repr (sub_nat_nat m n) ≡ (m, n) :=
or.elim (@le_or_gt n m) lt_ge_by_cases
(suppose m ≥ n, (take H : m < n,
have repr (sub_nat_nat m n) = (m - n, 0), from sub_nat_nat_of_ge this ▸ rfl, have H1 : repr (sub_nat_nat m n) = (0, n - m), by
this⁻¹ ▸ rewrite [sub_nat_nat_of_lt H, -(succ_pred_of_pos (sub_pos_of_lt H))],
(calc H1⁻¹ ▸ (!zero_add ⬝ (sub_add_cancel (le_of_lt H))⁻¹))
m - n + n = m : sub_add_cancel `m ≥ n` (take H : m ≥ n,
... = 0 + m : zero_add)) have H1 : repr (sub_nat_nat m n) = (m - n, 0), from sub_nat_nat_of_ge H ▸ rfl,
(suppose H : m < n, H1⁻¹ ▸ ((sub_add_cancel H) ⬝ !zero_add⁻¹))
have repr (sub_nat_nat m n) = (0, succ (pred (n - m))), from sub_nat_nat_of_lt H ▸ rfl,
this⁻¹ ▸
(calc
0 + n = n : zero_add
... = n - m + m : sub_add_cancel (le_of_lt H)
... = succ (pred (n - m)) + m : (succ_pred_of_pos (sub_pos_of_lt H))⁻¹))
theorem repr_abstr (p : × ) : repr (abstr p) ≡ p := theorem repr_abstr (p : × ) : repr (abstr p) ≡ p :=
!prod.eta ▸ !repr_sub_nat_nat !prod.eta ▸ !repr_sub_nat_nat
theorem abstr_eq {p q : × } (Hequiv : p ≡ q) : abstr p = abstr q := theorem abstr_eq {p q : × } (Hequiv : p ≡ q) : abstr p = abstr q :=
or.elim (int.equiv_cases Hequiv) or.elim (int.equiv_cases Hequiv)
(assume H2, (and.rec (assume (Hp : pr1 p ≥ pr2 p) (Hq : pr1 q ≥ pr2 q),
have H3 : pr1 p ≥ pr2 p, from and.elim_left H2, have H : pr1 p - pr2 p = pr1 q - pr2 q, from
have H4 : pr1 q ≥ pr2 q, from and.elim_right H2, calc pr1 p - pr2 p
have H5 : pr1 p = pr1 q - pr2 q + pr2 p, from = pr1 p + pr2 q - pr2 q - pr2 p : add_sub_cancel
calc ... = pr2 p + pr1 q - pr2 q - pr2 p : Hequiv
pr1 p = pr1 p + pr2 q - pr2 q : add_sub_cancel ... = pr2 p + (pr1 q - pr2 q) - pr2 p : add_sub_assoc Hq
... = pr2 p + pr1 q - pr2 q : Hequiv ... = pr1 q - pr2 q + pr2 p - pr2 p : add.comm
... = pr2 p + (pr1 q - pr2 q) : add_sub_assoc H4
... = pr1 q - pr2 q + pr2 p : add.comm,
have H6 : pr1 p - pr2 p = pr1 q - pr2 q, from
calc
pr1 p - pr2 p = pr1 q - pr2 q + pr2 p - pr2 p : H5
... = pr1 q - pr2 q : add_sub_cancel, ... = pr1 q - pr2 q : add_sub_cancel,
abstr_of_ge H3 ⬝ congr_arg of_nat H6 ⬝ (abstr_of_ge H4)⁻¹) abstr_of_ge Hp ⬝ (H ▸ rfl) ⬝ (abstr_of_ge Hq)⁻¹))
(assume H2, (and.rec (assume (Hp : pr1 p < pr2 p) (Hq : pr1 q < pr2 q),
have H3 : pr1 p < pr2 p, from and.elim_left H2, have H : pr2 p - pr1 p = pr2 q - pr1 q, from
have H4 : pr1 q < pr2 q, from and.elim_right H2, calc pr2 p - pr1 p
have H5 : pr2 p = pr2 q - pr1 q + pr1 p, from = pr2 p + pr1 q - pr1 q - pr1 p : add_sub_cancel
calc ... = pr1 p + pr2 q - pr1 q - pr1 p : Hequiv
pr2 p = pr2 p + pr1 q - pr1 q : add_sub_cancel ... = pr1 p + (pr2 q - pr1 q) - pr1 p : add_sub_assoc (le_of_lt Hq)
... = pr1 p + pr2 q - pr1 q : Hequiv ... = pr2 q - pr1 q + pr1 p - pr1 p : add.comm
... = pr1 p + (pr2 q - pr1 q) : add_sub_assoc (le_of_lt H4)
... = pr2 q - pr1 q + pr1 p : add.comm,
have H6 : pr2 p - pr1 p = pr2 q - pr1 q, from
calc
pr2 p - pr1 p = pr2 q - pr1 q + pr1 p - pr1 p : H5
... = pr2 q - pr1 q : add_sub_cancel, ... = pr2 q - pr1 q : add_sub_cancel,
abstr_of_lt H3 ⬝ congr_arg neg_succ_of_nat (congr_arg pred H6)⬝ (abstr_of_lt H4)⁻¹) abstr_of_lt Hp ⬝ (H ▸ rfl) ⬝ (abstr_of_lt Hq)⁻¹))
theorem equiv_iff (p q : × ) : (p ≡ q) ↔ ((p ≡ p) ∧ (q ≡ q) ∧ (abstr p = abstr q)) := theorem equiv_iff (p q : × ) : (p ≡ q) ↔ (abstr p = abstr q) :=
iff.intro iff.intro abstr_eq (assume H, equiv.trans (H ▸ equiv.symm (repr_abstr p)) (repr_abstr q))
(assume H : int.equiv p q,
and.intro !equiv.refl (and.intro !equiv.refl (abstr_eq H))) theorem equiv_iff3 (p q : × ) : (p ≡ q) ↔ ((p ≡ p) ∧ (q ≡ q) ∧ (abstr p = abstr q)) :=
(assume H : int.equiv p p ∧ int.equiv q q ∧ abstr p = abstr q, iff.trans !equiv_iff (iff.symm
have H1 : abstr p = abstr q, from and.elim_right (and.elim_right H), (iff.trans (and_iff_right !equiv.refl) (and_iff_right !equiv.refl)))
equiv.trans (H1 ▸ equiv.symm (repr_abstr p)) (repr_abstr q))
theorem eq_abstr_of_equiv_repr {a : } {p : × } (Hequiv : repr a ≡ p) : a = abstr p := theorem eq_abstr_of_equiv_repr {a : } {p : × } (Hequiv : repr a ≡ p) : a = abstr p :=
calc !abstr_repr⁻¹ ⬝ abstr_eq Hequiv
a = abstr (repr a) : abstr_repr
... = abstr p : abstr_eq Hequiv
theorem eq_of_repr_equiv_repr {a b : } (H : repr a ≡ repr b) : a = b := theorem eq_of_repr_equiv_repr {a b : } (H : repr a ≡ repr b) : a = b :=
calc eq_abstr_of_equiv_repr H ⬝ !abstr_repr
a = abstr (repr a) : abstr_repr
... = abstr (repr b) : abstr_eq H
... = b : abstr_repr
section section
local attribute abstr [reducible] local attribute abstr [reducible]
local attribute dist [reducible] local attribute dist [reducible]
theorem nat_abs_abstr (p : × ) : nat_abs (abstr p) = dist (pr1 p) (pr2 p) := theorem nat_abs_abstr : Π (p : × ), nat_abs (abstr p) = dist (pr1 p) (pr2 p)
let m := pr1 p, n := pr2 p in | (m, n) := lt_ge_by_cases
or.elim (@le_or_gt n m)
(assume H : m ≥ n,
calc
nat_abs (abstr (m, n)) = nat_abs (of_nat (m - n)) : int.abstr_of_ge H
... = dist m n : dist_eq_sub_of_ge H)
(assume H : m < n, (assume H : m < n,
calc calc
nat_abs (abstr (m, n)) = nat_abs (neg_succ_of_nat (pred (n - m))) : int.abstr_of_lt H nat_abs (abstr (m, n)) = nat_abs (-[1+ pred (n - m)]) : int.abstr_of_lt H
... = succ (pred (n - m)) : rfl
... = n - m : succ_pred_of_pos (sub_pos_of_lt H) ... = n - m : succ_pred_of_pos (sub_pos_of_lt H)
... = dist m n : dist_eq_sub_of_le (le_of_lt H)) ... = dist m n : dist_eq_sub_of_le (le_of_lt H))
(assume H : m ≥ n, (abstr_of_ge H)⁻¹ ▸ (dist_eq_sub_of_ge H)⁻¹)
end end
theorem cases_of_nat (a : ) : (∃n : , a = of_nat n) (∃n : , a = - of_nat n) :=
int.cases_on a
(take n, or.inl (exists.intro n rfl))
(take n', or.inr (exists.intro (succ n') rfl))
theorem cases_of_nat_succ (a : ) : (∃n : , a = of_nat n) (∃n : , a = - (of_nat (succ n))) := theorem cases_of_nat_succ (a : ) : (∃n : , a = of_nat n) (∃n : , a = - (of_nat (succ n))) :=
int.cases_on a (take m, or.inl (exists.intro _ rfl)) (take m, or.inr (exists.intro _ rfl)) int.cases_on a (take m, or.inl (exists.intro _ rfl)) (take m, or.inr (exists.intro _ rfl))
theorem cases_of_nat (a : ) : (∃n : , a = of_nat n) (∃n : , a = - of_nat n) :=
or.imp_right (Exists.rec (take n, (exists.intro _))) !cases_of_nat_succ
theorem by_cases_of_nat {P : → Prop} (a : ) theorem by_cases_of_nat {P : → Prop} (a : )
(H1 : ∀n : , P (of_nat n)) (H2 : ∀n : , P (- of_nat n)) : (H1 : ∀n : , P (of_nat n)) (H2 : ∀n : , P (- of_nat n)) :
P a := P a :=
@ -324,87 +275,55 @@ or.elim (cases_of_nat_succ a)
definition padd (p q : × ) : × := (pr1 p + pr1 q, pr2 p + pr2 q) definition padd (p q : × ) : × := (pr1 p + pr1 q, pr2 p + pr2 q)
theorem repr_add (a b : ) : repr (add a b) ≡ padd (repr a) (repr b) := theorem repr_add : Π (a b : ), repr (add a b) ≡ padd (repr a) (repr b)
int.cases_on a | (of_nat m) (of_nat n) := !equiv.refl
(take m, | (of_nat m) -[1+ n] := (!zero_add ▸ rfl)⁻¹ ▸ !repr_sub_nat_nat
int.cases_on b | -[1+ m] (of_nat n) := (!zero_add ▸ rfl)⁻¹ ▸ !repr_sub_nat_nat
(take n, !equiv.refl) | -[1+ m] -[1+ n] := !repr_sub_nat_nat
(take n',
have H1 : int.equiv (repr (add (of_nat m) (neg_succ_of_nat n'))) (m, succ n'),
from !repr_sub_nat_nat,
have H2 : padd (repr (of_nat m)) (repr (neg_succ_of_nat n')) = (m, 0 + succ n'),
from rfl,
(!zero_add ▸ H2)⁻¹ ▸ H1))
(take m',
int.cases_on b
(take n,
have H1 : int.equiv (repr (add (neg_succ_of_nat m') (of_nat n))) (n, succ m'),
from !repr_sub_nat_nat,
have H2 : padd (repr (neg_succ_of_nat m')) (repr (of_nat n)) = (0 + n, succ m'),
from rfl,
(!zero_add ▸ H2)⁻¹ ▸ H1)
(take n',!repr_sub_nat_nat))
theorem padd_congr {p p' q q' : × } (Ha : p ≡ p') (Hb : q ≡ q') : padd p q ≡ padd p' q' := theorem padd_congr {p p' q q' : × } (Ha : p ≡ p') (Hb : q ≡ q') : padd p q ≡ padd p' q' :=
calc calc pr1 p + pr1 q + (pr2 p' + pr2 q')
pr1 (padd p q) + pr2 (padd p' q') = pr1 p + pr2 p' + (pr1 q + pr2 q') : = pr1 p + pr2 p' + (pr1 q + pr2 q') : add.comm4
by rewrite [↑padd, *add.assoc, add.left_comm (pr₁ q)]
... = pr2 p + pr1 p' + (pr1 q + pr2 q') : {Ha} ... = pr2 p + pr1 p' + (pr1 q + pr2 q') : {Ha}
... = pr2 p + pr1 p' + (pr2 q + pr1 q') : {Hb} ... = pr2 p + pr1 p' + (pr2 q + pr1 q') : {Hb}
... = pr2 (padd p q) + pr1 (padd p' q') : by rewrite [↑padd, *add.assoc, add.left_comm (pr₁ p')] ... = pr2 p + pr2 q + (pr1 p' + pr1 q') : add.comm4
theorem padd_comm (p q : × ) : padd p q = padd q p := theorem padd_comm (p q : × ) : padd p q = padd q p :=
calc calc (pr1 p + pr1 q, pr2 p + pr2 q)
padd p q = (pr1 p + pr1 q, pr2 p + pr2 q) : rfl = (pr1 q + pr1 p, pr2 p + pr2 q) : add.comm
... = (pr1 q + pr1 p, pr2 p + pr2 q) : add.comm
... = (pr1 q + pr1 p, pr2 q + pr2 p) : add.comm ... = (pr1 q + pr1 p, pr2 q + pr2 p) : add.comm
... = padd q p : rfl
theorem padd_assoc (p q r : × ) : padd (padd p q) r = padd p (padd q r) := theorem padd_assoc (p q r : × ) : padd (padd p q) r = padd p (padd q r) :=
calc calc (pr1 p + pr1 q + pr1 r, pr2 p + pr2 q + pr2 r)
padd (padd p q) r = (pr1 p + pr1 q + pr1 r, pr2 p + pr2 q + pr2 r) : rfl = (pr1 p + (pr1 q + pr1 r), pr2 p + pr2 q + pr2 r) : add.assoc
... = (pr1 p + (pr1 q + pr1 r), pr2 p + pr2 q + pr2 r) : add.assoc
... = (pr1 p + (pr1 q + pr1 r), pr2 p + (pr2 q + pr2 r)) : add.assoc ... = (pr1 p + (pr1 q + pr1 r), pr2 p + (pr2 q + pr2 r)) : add.assoc
... = padd p (padd q r) : rfl
theorem add.comm (a b : ) : a + b = b + a := theorem add.comm (a b : ) : a + b = b + a :=
begin eq_of_repr_equiv_repr (equiv.trans !repr_add
apply eq_of_repr_equiv_repr, (equiv.symm (!padd_comm ▸ !repr_add)))
apply equiv.trans,
apply repr_add,
apply equiv.symm,
apply eq.subst (padd_comm (repr b) (repr a)),
apply repr_add
end
theorem add.assoc (a b c : ) : a + b + c = a + (b + c) := theorem add.assoc (a b c : ) : a + b + c = a + (b + c) :=
assert H1 : repr (a + b + c) ≡ padd (padd (repr a) (repr b)) (repr c), from eq_of_repr_equiv_repr (calc
equiv.trans (repr_add (a + b) c) (padd_congr !repr_add !equiv.refl), repr (a + b + c)
assert H2 : repr (a + (b + c)) ≡ padd (repr a) (padd (repr b) (repr c)), from ≡ padd (repr (a + b)) (repr c) : repr_add
equiv.trans (repr_add a (b + c)) (padd_congr !equiv.refl !repr_add), ... ≡ padd (padd (repr a) (repr b)) (repr c) : padd_congr !repr_add !equiv.refl
begin ... = padd (repr a) (padd (repr b) (repr c)) : !padd_assoc
apply eq_of_repr_equiv_repr, ... ≡ padd (repr a) (repr (b + c)) : padd_congr !equiv.refl !repr_add
apply equiv.trans, ... ≡ repr (a + (b + c)) : repr_add)
apply H1,
apply eq.subst (padd_assoc _ _ _)⁻¹,
apply equiv.symm,
apply H2
end
theorem add_zero (a : ) : a + 0 = a := int.cases_on a (take m, rfl) (take m', rfl) theorem add_zero : Π (a : ), a + 0 = a := int.rec (λm, rfl) (λm, rfl)
theorem zero_add (a : ) : 0 + a = a := add.comm a 0 ▸ add_zero a theorem zero_add (a : ) : 0 + a = a := !add.comm ▸ !add_zero
/- negation -/ /- negation -/
definition pneg (p : × ) : × := (pr2 p, pr1 p) definition pneg (p : × ) : × := (pr2 p, pr1 p)
-- note: this is =, not just ≡ -- note: this is =, not just ≡
theorem repr_neg (a : ) : repr (- a) = pneg (repr a) := theorem repr_neg : Π (a : ), repr (- a) = pneg (repr a)
int.cases_on a | 0 := rfl
(take m, | (succ m) := rfl
nat.cases_on m rfl (take m', rfl)) | -[1+ m] := rfl
(take m', rfl)
theorem pneg_congr {p p' : × } (H : p ≡ p') : pneg p ≡ pneg p' := eq.symm H theorem pneg_congr {p p' : × } (H : p ≡ p') : pneg p ≡ pneg p' := eq.symm H
@ -423,8 +342,13 @@ theorem padd_pneg (p : × ) : padd p (pneg p) ≡ (0, 0) :=
show pr1 p + pr2 p + 0 = pr2 p + pr1 p + 0, from !nat.add.comm ▸ rfl show pr1 p + pr2 p + 0 = pr2 p + pr1 p + 0, from !nat.add.comm ▸ rfl
theorem padd_padd_pneg (p q : × ) : padd (padd p q) (pneg q) ≡ p := theorem padd_padd_pneg (p q : × ) : padd (padd p q) (pneg q) ≡ p :=
show pr1 p + pr1 q + pr2 q + pr2 p = pr2 p + pr2 q + pr1 q + pr1 p, calc pr1 p + pr1 q + pr2 q + pr2 p
from sorry -- by simp = pr1 p + (pr1 q + pr2 q) + pr2 p : nat.add.assoc
... = pr1 p + (pr1 q + pr2 q + pr2 p) : nat.add.assoc
... = pr1 p + (pr2 q + pr1 q + pr2 p) : nat.add.comm
... = pr1 p + (pr2 q + pr2 p + pr1 q) : add.right_comm
... = pr1 p + (pr2 p + pr2 q + pr1 q) : nat.add.comm
... = pr2 p + pr2 q + pr1 q + pr1 p : nat.add.comm
theorem add.left_inv (a : ) : -a + a = 0 := theorem add.left_inv (a : ) : -a + a = 0 :=
have H : repr (-a + a) ≡ repr 0, from have H : repr (-a + a) ≡ repr 0, from
@ -450,28 +374,20 @@ calc
... = pabs (repr a) : nat_abs_abstr ... = pabs (repr a) : nat_abs_abstr
theorem nat_abs_add_le (a b : ) : nat_abs (a + b) ≤ nat_abs a + nat_abs b := theorem nat_abs_add_le (a b : ) : nat_abs (a + b) ≤ nat_abs a + nat_abs b :=
have H : nat_abs (a + b) = pabs (padd (repr a) (repr b)), from
calc calc
nat_abs (a + b) = pabs (repr (a + b)) : nat_abs_eq_pabs_repr nat_abs (a + b) = pabs (repr (a + b)) : nat_abs_eq_pabs_repr
... = pabs (padd (repr a) (repr b)) : pabs_congr !repr_add, ... = pabs (padd (repr a) (repr b)) : pabs_congr !repr_add
have H1 : nat_abs a = pabs (repr a), from !nat_abs_eq_pabs_repr, ... ≤ pabs (repr a) + pabs (repr b) : dist_add_add_le_add_dist_dist
have H2 : nat_abs b = pabs (repr b), from !nat_abs_eq_pabs_repr, ... = pabs (repr a) + nat_abs b : nat_abs_eq_pabs_repr
have H3 : pabs (padd (repr a) (repr b)) ≤ pabs (repr a) + pabs (repr b), ... = nat_abs a + nat_abs b : nat_abs_eq_pabs_repr
from !dist_add_add_le_add_dist_dist,
H⁻¹ ▸ H1⁻¹ ▸ H2⁻¹ ▸ H3
section section
local attribute nat_abs [reducible] local attribute nat_abs [reducible]
theorem nat_abs_mul (a b : ) : nat_abs (a * b) = #nat (nat_abs a) * (nat_abs b) := theorem nat_abs_mul : Π (a b : ), nat_abs (a * b) = (nat_abs a) * (nat_abs b)
int.cases_on a | (of_nat m) (of_nat n) := rfl
(take m, | (of_nat m) -[1+ n] := !nat_abs_neg ▸ rfl
int.cases_on b | -[1+ m] (of_nat n) := !nat_abs_neg ▸ rfl
(take n, rfl) | -[1+ m] -[1+ n] := rfl
(take n', !nat_abs_neg ▸ rfl))
(take m',
int.cases_on b
(take n, !nat_abs_neg ▸ rfl)
(take n', rfl))
end end
/- multiplication -/ /- multiplication -/
@ -483,65 +399,41 @@ theorem repr_neg_of_nat (m : ) : repr (neg_of_nat m) = (0, m) :=
nat.cases_on m rfl (take m', rfl) nat.cases_on m rfl (take m', rfl)
-- note: we have =, not just ≡ -- note: we have =, not just ≡
theorem repr_mul (a b : ) : repr (mul a b) = pmul (repr a) (repr b) := theorem repr_mul : Π (a b : ), repr (a * b) = pmul (repr a) (repr b)
int.cases_on a | (of_nat m) (of_nat n) := calc
(take m, (m * n + 0 * 0, m * 0 + 0) = (m * n + 0 * 0, m * 0 + 0 * n) : zero_mul
int.cases_on b | (of_nat m) -[1+ n] := calc
(take n, repr (m * -[1+ n]) = (m * 0 + 0, m * succ n + 0 * 0) : repr_neg_of_nat
(calc ... = (m * 0 + 0 * succ n, m * succ n + 0 * 0) : zero_mul
pmul (repr m) (repr n) = (m * n + 0 * 0, m * 0 + 0 * n) : rfl | -[1+ m] (of_nat n) := calc
... = (m * n + 0 * 0, m * 0 + 0) : zero_mul)⁻¹) repr (-[1+ m] * n) = (0 + succ m * 0, succ m * n) : repr_neg_of_nat
(take n', ... = (0 + succ m * 0, 0 + succ m * n) : nat.zero_add
(calc ... = (0 * n + succ m * 0, 0 + succ m * n) : zero_mul
pmul (repr m) (repr (neg_succ_of_nat n')) = | -[1+ m] -[1+ n] := calc
(m * 0 + 0 * succ n', m * succ n' + 0 * 0) : rfl (succ m * succ n, 0) = (succ m * succ n, 0 * succ n) : zero_mul
... = (m * 0 + 0, m * succ n' + 0 * 0) : zero_mul ... = (0 + succ m * succ n, 0 * succ n) : nat.zero_add
... = repr (mul m (neg_succ_of_nat n')) : repr_neg_of_nat)⁻¹))
(take m',
int.cases_on b
(take n,
(calc
pmul (repr (neg_succ_of_nat m')) (repr n) =
(0 * n + succ m' * 0, 0 * 0 + succ m' * n) : rfl
... = (0 + succ m' * 0, 0 * 0 + succ m' * n) : zero_mul
... = (0 + succ m' * 0, succ m' * n) : {!nat.zero_add}
... = repr (mul (neg_succ_of_nat m') n) : repr_neg_of_nat)⁻¹)
(take n',
(calc
pmul (repr (neg_succ_of_nat m')) (repr (neg_succ_of_nat n')) =
(0 + succ m' * succ n', 0 * succ n') : rfl
... = (succ m' * succ n', 0 * succ n') : nat.zero_add
... = (succ m' * succ n', 0) : zero_mul
... = repr (mul (neg_succ_of_nat m') (neg_succ_of_nat n')) : rfl)⁻¹))
theorem equiv_mul_prep {xa ya xb yb xn yn xm ym : } theorem equiv_mul_prep {xa ya xb yb xn yn xm ym : }
(H1 : xa + yb = ya + xb) (H2 : xn + ym = yn + xm) (H1 : xa + yb = ya + xb) (H2 : xn + ym = yn + xm)
: xa*xn+ya*yn+(xb*ym+yb*xm) = xa*yn+ya*xn+(xb*xm+yb*ym) := : xa*xn+ya*yn+(xb*ym+yb*xm) = xa*yn+ya*xn+(xb*xm+yb*ym) :=
have H3 : xa * xn + ya * yn + (xb * ym + yb * xm) + (yb * xn + xb * yn + (xb * xn + yb * yn)) nat.add.cancel_right (calc
= xa * yn + ya * xn + (xb * xm + yb * ym) + (yb * xn + xb * yn + (xb * xn + yb * yn)), from
calc
xa*xn+ya*yn + (xb*ym+yb*xm) + (yb*xn+xb*yn + (xb*xn+yb*yn)) xa*xn+ya*yn + (xb*ym+yb*xm) + (yb*xn+xb*yn + (xb*xn+yb*yn))
= xa * xn + yb * xn + (ya * yn + xb * yn) + (xb * xn + xb * ym + (yb * yn + yb * xm)) = xa*xn+ya*yn + (yb*xn+xb*yn) + (xb*ym+yb*xm + (xb*xn+yb*yn)) : add.comm4
: sorry -- by simp ... = xa*xn+ya*yn + (yb*xn+xb*yn) + (xb*xn+yb*yn + (xb*ym+yb*xm)) : nat.add.comm
... = (xa + yb) * xn + (ya + xb) * yn + (xb * (xn + ym) + yb * (yn + xm)) : sorry -- by simp ... = xa*xn+yb*xn + (ya*yn+xb*yn) + (xb*xn+xb*ym + (yb*yn+yb*xm)) : !congr_arg2 add.comm4 add.comm4
... = (ya + xb) * xn + (xa + yb) * yn + (xb * (yn + xm) + yb * (xn + ym)) : sorry -- by simp
... = ya*xn+xb*xn + (xa*yn+yb*yn) + (xb*yn+xb*xm + (yb*xn+yb*ym)) ... = ya*xn+xb*xn + (xa*yn+yb*yn) + (xb*yn+xb*xm + (yb*xn+yb*ym))
: sorry -- by simp : by rewrite[-+mul.left_distrib,-+mul.right_distrib]; exact H1 ▸ H2 ▸ rfl
... = xa * yn + ya * xn + (xb * xm + yb * ym) + (yb * xn + xb * yn + (xb * xn + yb * yn)) ... = ya*xn+xa*yn + (xb*xn+yb*yn) + (xb*yn+yb*xn + (xb*xm+yb*ym)) : !congr_arg2 add.comm4 add.comm4
: sorry, -- by simp, ... = xa*yn+ya*xn + (xb*xn+yb*yn) + (yb*xn+xb*yn + (xb*xm+yb*ym)) : !nat.add.comm ▸ !nat.add.comm ▸ rfl
nat.add.cancel_right H3 ... = xa*yn+ya*xn + (yb*xn+xb*yn) + (xb*xn+yb*yn + (xb*xm+yb*ym)) : add.comm4
... = xa*yn+ya*xn + (yb*xn+xb*yn) + (xb*xm+yb*ym + (xb*xn+yb*yn)) : nat.add.comm
... = xa*yn+ya*xn + (xb*xm+yb*ym) + (yb*xn+xb*yn + (xb*xn+yb*yn)) : add.comm4)
theorem pmul_congr {p p' q q' : × } (H1 : p ≡ p') (H2 : q ≡ q') : pmul p q ≡ pmul p' q' := theorem pmul_congr {p p' q q' : × } : p ≡ p' → q ≡ q' → pmul p q ≡ pmul p' q' := equiv_mul_prep
equiv_mul_prep H1 H2
theorem pmul_comm (p q : × ) : pmul p q = pmul q p := theorem pmul_comm (p q : × ) : pmul p q = pmul q p :=
calc show (_,_) = (_,_), from !congr_arg2
(pr1 p * pr1 q + pr2 p * pr2 q, pr1 p * pr2 q + pr2 p * pr1 q) = (!congr_arg2 !mul.comm !mul.comm) (!nat.add.comm ⬝ (!congr_arg2 !mul.comm !mul.comm))
(pr1 q * pr1 p + pr2 p * pr2 q, pr1 p * pr2 q + pr2 p * pr1 q) : mul.comm
... = (pr1 q * pr1 p + pr2 q * pr2 p, pr1 p * pr2 q + pr2 p * pr1 q) : mul.comm
... = (pr1 q * pr1 p + pr2 q * pr2 p, pr2 q * pr1 p + pr2 p * pr1 q) : mul.comm
... = (pr1 q * pr1 p + pr2 q * pr2 p, pr2 q * pr1 p + pr1 q * pr2 p) : mul.comm
... = (pr1 q * pr1 p + pr2 q * pr2 p, pr1 q * pr2 p + pr2 q * pr1 p) : nat.add.comm
theorem mul.comm (a b : ) : a * b = b * a := theorem mul.comm (a b : ) : a * b = b * a :=
eq_of_repr_equiv_repr eq_of_repr_equiv_repr
@ -550,10 +442,14 @@ eq_of_repr_equiv_repr
... = pmul (repr b) (repr a) : pmul_comm ... = pmul (repr b) (repr a) : pmul_comm
... = repr (b * a) : repr_mul) ▸ !equiv.refl) ... = repr (b * a) : repr_mul) ▸ !equiv.refl)
theorem pmul_assoc (p q r: × ) : pmul (pmul p q) r = pmul p (pmul q r) := private theorem pmul_assoc_prep {p1 p2 q1 q2 r1 r2 : } :
begin ((p1*q1+p2*q2)*r1+(p1*q2+p2*q1)*r2, (p1*q1+p2*q2)*r2+(p1*q2+p2*q1)*r1) =
unfold pmul, apply sorry -- simp (p1*(q1*r1+q2*r2)+p2*(q1*r2+q2*r1), p1*(q1*r2+q2*r1)+p2*(q1*r1+q2*r2)) :=
end by rewrite[+mul.left_distrib,+mul.right_distrib,*mul.assoc];
exact (congr_arg2 pair (!add.comm4 ⬝ (!congr_arg !nat.add.comm))
(!add.comm4 ⬝ (!congr_arg !nat.add.comm)))
theorem pmul_assoc (p q r: × ) : pmul (pmul p q) r = pmul p (pmul q r) := pmul_assoc_prep
theorem mul.assoc (a b c : ) : (a * b) * c = a * (b * c) := theorem mul.assoc (a b c : ) : (a * b) * c = a * (b * c) :=
eq_of_repr_equiv_repr eq_of_repr_equiv_repr
@ -564,54 +460,41 @@ eq_of_repr_equiv_repr
... = pmul (repr a) (repr (b * c)) : repr_mul ... = pmul (repr a) (repr (b * c)) : repr_mul
... = repr (a * (b * c)) : repr_mul) ▸ !equiv.refl) ... = repr (a * (b * c)) : repr_mul) ▸ !equiv.refl)
set_option pp.coercions true theorem mul_one : Π (a : ), a * 1 = a
| (of_nat m) := !zero_add -- zero_add happens to be def. = to this thm
| -[1+ m] := !nat.zero_add ▸ rfl
theorem mul_one (a : ) : a * 1 = a :=
eq_of_repr_equiv_repr (int.equiv_of_eq
((calc
repr (a * 1) = pmul (repr a) (repr 1) : repr_mul
... = (pr1 (repr a), pr2 (repr a)) :
begin
esimp [pmul, nat.of_num, num.to.int, repr],
rewrite [+mul_zero, +mul_one, nat.zero_add]
end
... = repr a : prod.eta)))
theorem one_mul (a : ) : 1 * a = a := theorem one_mul (a : ) : 1 * a = a :=
mul.comm a 1 ▸ mul_one a mul.comm a 1 ▸ mul_one a
private theorem mul_distrib_prep {a1 a2 b1 b2 c1 c2 : } :
((a1+b1)*c1+(a2+b2)*c2, (a1+b1)*c2+(a2+b2)*c1) =
(a1*c1+a2*c2+(b1*c1+b2*c2), a1*c2+a2*c1+(b1*c2+b2*c1)) :=
by rewrite[+mul.right_distrib] ⬝ (!congr_arg2 !add.comm4 !add.comm4)
theorem mul.right_distrib (a b c : ) : (a + b) * c = a * c + b * c := theorem mul.right_distrib (a b c : ) : (a + b) * c = a * c + b * c :=
eq_of_repr_equiv_repr eq_of_repr_equiv_repr
(calc (calc
repr ((a + b) * c) = pmul (repr (a + b)) (repr c) : repr_mul repr ((a + b) * c) = pmul (repr (a + b)) (repr c) : repr_mul
... ≡ pmul (padd (repr a) (repr b)) (repr c) : pmul_congr !repr_add equiv.refl ... ≡ pmul (padd (repr a) (repr b)) (repr c) : pmul_congr !repr_add equiv.refl
... = padd (pmul (repr a) (repr c)) (pmul (repr b) (repr c)) : sorry -- by simp ... = padd (pmul (repr a) (repr c)) (pmul (repr b) (repr c)) : mul_distrib_prep
... = padd (repr (a * c)) (pmul (repr b) (repr c)) : {(repr_mul a c)⁻¹} ... = padd (repr (a * c)) (pmul (repr b) (repr c)) : repr_mul
... = padd (repr (a * c)) (repr (b * c)) : repr_mul ... = padd (repr (a * c)) (repr (b * c)) : repr_mul
... ≡ repr (a * c + b * c) : equiv.symm !repr_add) ... ≡ repr (a * c + b * c) : repr_add)
theorem mul.left_distrib (a b c : ) : a * (b + c) = a * b + a * c := theorem mul.left_distrib (a b c : ) : a * (b + c) = a * b + a * c :=
calc calc
a * (b + c) = (b + c) * a : mul.comm a (b + c) a * (b + c) = (b + c) * a : mul.comm
... = b * a + c * a : mul.right_distrib b c a ... = b * a + c * a : mul.right_distrib
... = a * b + c * a : {mul.comm b a} ... = a * b + c * a : mul.comm
... = a * b + a * c : {mul.comm c a} ... = a * b + a * c : mul.comm
theorem zero_ne_one : (0 : int) ≠ 1 := theorem zero_ne_one : (0 : int) ≠ 1 :=
assume H : 0 = 1, assume H : 0 = 1, !succ_ne_zero (of_nat.inj H)⁻¹
show false, from succ_ne_zero 0 ((of_nat.inj H)⁻¹)
theorem eq_zero_or_eq_zero_of_mul_eq_zero {a b : } (H : a * b = 0) : a = 0 b = 0 := theorem eq_zero_or_eq_zero_of_mul_eq_zero {a b : } (H : a * b = 0) : a = 0 b = 0 :=
have H2 : (nat_abs a) * (nat_abs b) = nat.zero, from or.imp nat_abs_eq_zero nat_abs_eq_zero (eq_zero_or_eq_zero_of_mul_eq_zero (H ▸ (nat_abs_mul a b)⁻¹))
calc
(nat_abs a) * (nat_abs b) = (nat_abs (a * b)) : (nat_abs_mul a b)⁻¹
... = (nat_abs 0) : {H}
... = nat.zero : nat_abs_of_nat nat.zero,
have H3 : (nat_abs a) = nat.zero (nat_abs b) = nat.zero,
from eq_zero_or_eq_zero_of_mul_eq_zero H2,
or_of_or_of_imp_of_imp H3
(assume H : (nat_abs a) = nat.zero, nat_abs_eq_zero H)
(assume H : (nat_abs b) = nat.zero, nat_abs_eq_zero H)
section migrate_algebra section migrate_algebra
open [classes] algebra open [classes] algebra
@ -628,7 +511,7 @@ section migrate_algebra
add_comm := add.comm, add_comm := add.comm,
mul := mul, mul := mul,
mul_assoc := mul.assoc, mul_assoc := mul.assoc,
one := (of_num 1), one := 1,
one_mul := one_mul, one_mul := one_mul,
mul_one := mul_one, mul_one := mul_one,
left_distrib := mul.left_distrib, left_distrib := mul.left_distrib,
@ -647,17 +530,14 @@ section migrate_algebra
end migrate_algebra end migrate_algebra
/- additional properties -/ /- additional properties -/
theorem of_nat_sub {m n : } (H : m ≥ n) : m - n = sub m n :=
theorem of_nat_sub {m n : } (H : #nat m ≥ n) : of_nat (#nat m - n) = of_nat m - of_nat n := (sub_eq_of_eq_add (!congr_arg (nat.sub_add_cancel H)⁻¹))⁻¹
have H1 : m = (#nat m - n + n), from (nat.sub_add_cancel H)⁻¹,
have H2 : m = (#nat m - n) + n, from congr_arg of_nat H1,
(sub_eq_of_eq_add H2)⁻¹
theorem neg_succ_of_nat_eq' (m : ) : -[1+ m] = -m - 1 := theorem neg_succ_of_nat_eq' (m : ) : -[1+ m] = -m - 1 :=
by rewrite [neg_succ_of_nat_eq, of_nat_add, neg_add] by rewrite [neg_succ_of_nat_eq, of_nat_add, neg_add]
definition succ (a : ) := a + (nat.succ zero) definition succ (a : ) := a + (succ zero)
definition pred (a : ) := a - (nat.succ zero) definition pred (a : ) := a - (succ zero)
theorem pred_succ (a : ) : pred (succ a) = a := !sub_add_cancel theorem pred_succ (a : ) : pred (succ a) = a := !sub_add_cancel
theorem succ_pred (a : ) : succ (pred a) = a := !add_sub_cancel theorem succ_pred (a : ) : succ (pred a) = a := !add_sub_cancel
theorem neg_succ (a : ) : -succ a = pred (-a) := theorem neg_succ (a : ) : -succ a = pred (-a) :=
@ -675,18 +555,12 @@ theorem succ_neg_nat_succ (n : ) : succ (-nat.succ n) = -n := !succ_neg_succ
definition rec_nat_on [unfold 2] {P : → Type} (z : ) (H0 : P 0) definition rec_nat_on [unfold 2] {P : → Type} (z : ) (H0 : P 0)
(Hsucc : Π⦃n : ℕ⦄, P n → P (succ n)) (Hpred : Π⦃n : ℕ⦄, P (-n) → P (-nat.succ n)) : P z := (Hsucc : Π⦃n : ℕ⦄, P n → P (succ n)) (Hpred : Π⦃n : ℕ⦄, P (-n) → P (-nat.succ n)) : P z :=
begin int.rec (nat.rec H0 Hsucc) (λn, nat.rec H0 Hpred (nat.succ n)) z
induction z with n n,
{exact nat.rec_on n H0 Hsucc},
{induction n with m ih,
exact Hpred H0,
exact Hpred ih}
end
--the only computation rule of rec_nat_on which is not definitional --the only computation rule of rec_nat_on which is not definitional
theorem rec_nat_on_neg {P : → Type} (n : nat) (H0 : P zero) theorem rec_nat_on_neg {P : → Type} (n : nat) (H0 : P zero)
(Hsucc : Π⦃n : nat⦄, P n → P (succ n)) (Hpred : Π⦃n : nat⦄, P (-n) → P (-nat.succ n)) (Hsucc : Π⦃n : nat⦄, P n → P (succ n)) (Hpred : Π⦃n : nat⦄, P (-n) → P (-nat.succ n))
: rec_nat_on (-nat.succ n) H0 Hsucc Hpred = Hpred (rec_nat_on (-n) H0 Hsucc Hpred) := : rec_nat_on (-nat.succ n) H0 Hsucc Hpred = Hpred (rec_nat_on (-n) H0 Hsucc Hpred) :=
nat.rec_on n rfl (λn H, rfl) nat.rec rfl (λn H, rfl) n
end int end int

View file

@ -14,8 +14,8 @@ open int eq.ops
namespace int namespace int
private definition nonneg (a : ) : Prop := int.cases_on a (take n, true) (take n, false) private definition nonneg (a : ) : Prop := int.cases_on a (take n, true) (take n, false)
definition le (a b : ) : Prop := nonneg (sub b a) definition le (a b : ) : Prop := nonneg (b - a)
definition lt (a b : ) : Prop := le (add a 1) b definition lt (a b : ) : Prop := le (a + 1) b
infix [priority int.prio] - := int.sub infix [priority int.prio] - := int.sub
infix [priority int.prio] <= := int.le infix [priority int.prio] <= := int.le
@ -28,27 +28,25 @@ definition decidable_le [instance] (a b : ) : decidable (a ≤ b) := decidabl
definition decidable_lt [instance] (a b : ) : decidable (a < b) := decidable_nonneg _ definition decidable_lt [instance] (a b : ) : decidable (a < b) := decidable_nonneg _
private theorem nonneg.elim {a : } : nonneg a → ∃n : , a = n := private theorem nonneg.elim {a : } : nonneg a → ∃n : , a = n :=
int.cases_on a (take n H, exists.intro n rfl) (take n' H, false.elim H) int.cases_on a (take n H, exists.intro n rfl) (take n', false.elim)
private theorem nonneg_or_nonneg_neg (a : ) : nonneg a nonneg (-a) := private theorem nonneg_or_nonneg_neg (a : ) : nonneg a nonneg (-a) :=
int.cases_on a (take n, or.inl trivial) (take n, or.inr trivial) int.cases_on a (take n, or.inl trivial) (take n, or.inr trivial)
theorem le.intro {a b : } {n : } (H : a + n = b) : a ≤ b := theorem le.intro {a b : } {n : } (H : a + n = b) : a ≤ b :=
have b - a = n, from (eq_add_neg_of_add_eq (!add.comm ▸ H))⁻¹, have n = b - a, from eq_add_neg_of_add_eq (!add.comm ▸ H),
have nonneg n, from true.intro, show nonneg (b - a), from this ▸ trivial
show nonneg (b - a), from `b - a = n`⁻¹ ▸ this
theorem le.elim {a b : } (H : a ≤ b) : ∃n : , a + n = b := theorem le.elim {a b : } (H : a ≤ b) : ∃n : , a + n = b :=
obtain (n : ) (H1 : b - a = n), from nonneg.elim H, obtain (n : ) (H1 : b - a = n), from nonneg.elim H,
exists.intro n (!add.comm ▸ iff.mpr !add_eq_iff_eq_add_neg (H1⁻¹)) exists.intro n (!add.comm ▸ iff.mpr !add_eq_iff_eq_add_neg (H1⁻¹))
theorem le.total (a b : ) : a ≤ b b ≤ a := theorem le.total (a b : ) : a ≤ b b ≤ a :=
or.elim (nonneg_or_nonneg_neg (b - a)) or.imp_right
(assume H, or.inl H)
(assume H : nonneg (-(b - a)), (assume H : nonneg (-(b - a)),
have -(b - a) = a - b, from neg_sub b a, have -(b - a) = a - b, from !neg_sub,
have nonneg (a - b), from this ▸ H, show nonneg (a - b), from this ▸ H) -- too bad: can't do it in one step
or.inr this) (nonneg_or_nonneg_neg (b - a))
theorem of_nat_le_of_nat_of_le {m n : } (H : #nat m ≤ n) : of_nat m ≤ of_nat n := theorem of_nat_le_of_nat_of_le {m n : } (H : #nat m ≤ n) : of_nat m ≤ of_nat n :=
obtain (k : ) (Hk : m + k = n), from nat.le.elim H, obtain (k : ) (Hk : m + k = n), from nat.le.elim H,
@ -133,12 +131,8 @@ theorem lt.irrefl (a : ) : ¬ a < a :=
(suppose a < a, (suppose a < a,
obtain (n : ) (Hn : a + succ n = a), from lt.elim this, obtain (n : ) (Hn : a + succ n = a), from lt.elim this,
have a + succ n = a + 0, from have a + succ n = a + 0, from
calc Hn ⬝ !add_zero⁻¹,
a + succ n = a : Hn !succ_ne_zero (of_nat.inj (add.left_cancel this)))
... = a + 0 : by rewrite [add_zero],
have nat.succ n = 0, from add.left_cancel this,
have nat.succ n = 0, from of_nat.inj this,
absurd this !succ_ne_zero)
theorem ne_of_lt {a b : } (H : a < b) : a ≠ b := theorem ne_of_lt {a b : } (H : a < b) : a ≠ b :=
(suppose a = b, absurd (this ▸ H) (lt.irrefl b)) (suppose a = b, absurd (this ▸ H) (lt.irrefl b))

View file

@ -461,7 +461,7 @@ lemma mem_of_dinj_of_mem_dmap (Pdi : dinj p f) :
lemma not_mem_dmap_of_dinj_of_not_mem (Pdi : dinj p f) {l : list A} {a} (Pa : p a) : lemma not_mem_dmap_of_dinj_of_not_mem (Pdi : dinj p f) {l : list A} {a} (Pa : p a) :
a ∉ l → (f a Pa) ∉ dmap p f l := a ∉ l → (f a Pa) ∉ dmap p f l :=
not_imp_not_of_imp (mem_of_dinj_of_mem_dmap Pdi Pa) not.mto (mem_of_dinj_of_mem_dmap Pdi Pa)
end dmap end dmap

View file

@ -65,7 +65,7 @@ theorem exists_eq_succ_of_ne_zero {n : } (H : n ≠ 0) : ∃k : , n = succ
exists.intro _ (or_resolve_right !eq_zero_or_eq_succ_pred H) exists.intro _ (or_resolve_right !eq_zero_or_eq_succ_pred H)
theorem succ.inj {n m : } (H : succ n = succ m) : n = m := theorem succ.inj {n m : } (H : succ n = succ m) : n = m :=
nat.no_confusion H (λe, e) nat.no_confusion H imp.id
abbreviation eq_of_succ_eq_succ := @succ.inj abbreviation eq_of_succ_eq_succ := @succ.inj
@ -93,8 +93,7 @@ have stronger : P a ∧ P (succ a), from
theorem sub_induction {P : → Prop} (n m : ) (H1 : ∀m, P 0 m) theorem sub_induction {P : → Prop} (n m : ) (H1 : ∀m, P 0 m)
(H2 : ∀n, P (succ n) 0) (H3 : ∀n m, P n m → P (succ n) (succ m)) : P n m := (H2 : ∀n, P (succ n) 0) (H3 : ∀n m, P n m → P (succ n) (succ m)) : P n m :=
have general : ∀m, P n m, from nat.induction_on n have general : ∀m, P n m, from nat.induction_on n H1
(take m : , H1 m)
(take k : , (take k : ,
assume IH : ∀m, P k m, assume IH : ∀m, P k m,
take m : , take m : ,
@ -146,11 +145,14 @@ nat.induction_on k
... = n + succ (m + l) : add_succ ... = n + succ (m + l) : add_succ
... = n + (m + succ l) : add_succ) ... = n + (m + succ l) : add_succ)
theorem add.left_comm [simp] (n m k : ) : n + (m + k) = m + (n + k) := theorem add.left_comm [simp] : Π (n m k : ), n + (m + k) = m + (n + k) :=
left_comm add.comm add.assoc n m k left_comm add.comm add.assoc
theorem add.right_comm (n m k : ) : n + m + k = n + k + m := theorem add.right_comm : Π (n m k : ), n + m + k = n + k + m :=
right_comm add.comm add.assoc n m k right_comm add.comm add.assoc
theorem add.comm4 : Π {n m k l : }, n + m + (k + l) = n + k + (m + l) :=
comm4 add.comm add.assoc
theorem add.cancel_left {n m k : } : n + m = n + k → m = k := theorem add.cancel_left {n m k : } : n + m = n + k → m = k :=
nat.induction_on n nat.induction_on n

View file

@ -13,13 +13,13 @@ namespace nat
/- div -/ /- div -/
-- auxiliary lemma used to justify div -- auxiliary lemma used to justify div
private definition div_rec_lemma {x y : nat} (H : 0 < y ∧ y ≤ x) : x - y < x := private definition div_rec_lemma {x y : nat} : 0 < y ∧ y ≤ x → x - y < x :=
and.rec_on H (λ ypos ylex, sub_lt (lt_of_lt_of_le ypos ylex) ypos) and.rec (λ ypos ylex, sub_lt (lt_of_lt_of_le ypos ylex) ypos)
private definition div.F (x : nat) (f : Π x₁, x₁ < x → nat → nat) (y : nat) : nat := private definition div.F (x : nat) (f : Π x₁, x₁ < x → nat → nat) (y : nat) : nat :=
if H : 0 < y ∧ y ≤ x then f (x - y) (div_rec_lemma H) y + 1 else zero if H : 0 < y ∧ y ≤ x then f (x - y) (div_rec_lemma H) y + 1 else zero
definition divide (x y : nat) := fix div.F x y definition divide := fix div.F
notation a div b := divide a b notation a div b := divide a b
theorem divide_def (x y : nat) : divide x y = if 0 < y ∧ y ≤ x then divide (x - y) y + 1 else 0 := theorem divide_def (x y : nat) : divide x y = if 0 < y ∧ y ≤ x then divide (x - y) y + 1 else 0 :=
@ -32,7 +32,7 @@ theorem div_eq_zero_of_lt {a b : } (h : a < b) : a div b = 0 :=
divide_def a b ⬝ if_neg (!not_and_of_not_right (not_le_of_gt h)) divide_def a b ⬝ if_neg (!not_and_of_not_right (not_le_of_gt h))
theorem zero_div (b : ) : 0 div b = 0 := theorem zero_div (b : ) : 0 div b = 0 :=
divide_def 0 b ⬝ if_neg (λ h, and.rec_on h (λ l r, absurd (lt_of_lt_of_le l r) (lt.irrefl 0))) divide_def 0 b ⬝ if_neg (and.rec not_le_of_gt)
theorem div_eq_succ_sub_div {a b : } (h₁ : b > 0) (h₂ : a ≥ b) : a div b = succ ((a - b) div b) := theorem div_eq_succ_sub_div {a b : } (h₁ : b > 0) (h₂ : a ≥ b) : a div b = succ ((a - b) div b) :=
divide_def a b ⬝ if_pos (and.intro h₁ h₂) divide_def a b ⬝ if_pos (and.intro h₁ h₂)
@ -53,9 +53,10 @@ nat.induction_on y
... = x div z + zero : add_zero) ... = x div z + zero : add_zero)
(take y, (take y,
assume IH : (x + y * z) div z = x div z + y, calc assume IH : (x + y * z) div z = x div z + y, calc
(x + succ y * z) div z = (x + y * z + z) div z : by rewrite [-add_one, mul.right_distrib, one_mul, add.assoc] (x + succ y * z) div z = (x + (y * z + z)) div z : succ_mul
... = (x + y * z + z) div z : add.assoc
... = succ ((x + y * z) div z) : !add_div_self H ... = succ ((x + y * z) div z) : !add_div_self H
... = x div z + succ y : by rewrite [IH]) ... = succ (x div z + y) : IH)
theorem add_mul_div_self_left (x z : ) {y : } (H : y > 0) : (x + y * z) div y = x div y + z := theorem add_mul_div_self_left (x z : ) {y : } (H : y > 0) : (x + y * z) div y = x div y + z :=
!mul.comm ▸ add_mul_div_self H !mul.comm ▸ add_mul_div_self H
@ -75,7 +76,7 @@ theorem mul_div_cancel_left {m : } (n : ) (H : m > 0) : m * n div m = n :=
private definition mod.F (x : nat) (f : Π x₁, x₁ < x → nat → nat) (y : nat) : nat := private definition mod.F (x : nat) (f : Π x₁, x₁ < x → nat → nat) (y : nat) : nat :=
if H : 0 < y ∧ y ≤ x then f (x - y) (div_rec_lemma H) y else x if H : 0 < y ∧ y ≤ x then f (x - y) (div_rec_lemma H) y else x
definition modulo (x y : nat) := fix mod.F x y definition modulo := fix mod.F
notation a mod b := modulo a b notation a mod b := modulo a b
notation a `≡` b `[mod`:100 c `]`:0 := a mod c = b mod c notation a `≡` b `[mod`:100 c `]`:0 := a mod c = b mod c
@ -166,12 +167,11 @@ by_cases_zero_pos y
(take x, (take x,
assume IH : ∀x', x' ≤ x → x' = x' div y * y + x' mod y, assume IH : ∀x', x' ≤ x → x' = x' div y * y + x' mod y,
show succ x = succ x div y * y + succ x mod y, from show succ x = succ x div y * y + succ x mod y, from
by_cases -- (succ x < y) if H1 : succ x < y then
(assume H1 : succ x < y, have H2 : succ x div y = 0, from div_eq_zero_of_lt H1,
assert H2 : succ x div y = 0, from div_eq_zero_of_lt H1, have H3 : succ x mod y = succ x, from mod_eq_of_lt H1,
assert H3 : succ x mod y = succ x, from mod_eq_of_lt H1, H2⁻¹ ▸ H3⁻¹ ▸ !zero_mul⁻¹ ▸ !zero_add⁻¹
by rewrite [H2, H3, zero_mul, zero_add]) else
(assume H1 : ¬ succ x < y,
have H2 : y ≤ succ x, from le_of_not_gt H1, have H2 : y ≤ succ x, from le_of_not_gt H1,
have H3 : succ x div y = succ ((succ x - y) div y), from div_eq_succ_sub_div H H2, have H3 : succ x div y = succ ((succ x - y) div y), from div_eq_succ_sub_div H H2,
have H4 : succ x mod y = (succ x - y) mod y, from mod_eq_sub_mod H H2, have H4 : succ x mod y = (succ x - y) mod y, from mod_eq_sub_mod H H2,
@ -184,7 +184,7 @@ by_cases_zero_pos y
... = ((succ x - y) div y) * y + y + (succ x - y) mod y : H4 ... = ((succ x - y) div y) * y + y + (succ x - y) mod y : H4
... = ((succ x - y) div y) * y + (succ x - y) mod y + y : add.right_comm ... = ((succ x - y) div y) * y + (succ x - y) mod y + y : add.right_comm
... = succ x - y + y : {!(IH _ H6)⁻¹} ... = succ x - y + y : {!(IH _ H6)⁻¹}
... = succ x : sub_add_cancel H2)⁻¹))) ... = succ x : sub_add_cancel H2)⁻¹))
theorem mod_eq_sub_div_mul (x y : ) : x mod y = x - x div y * y := theorem mod_eq_sub_div_mul (x y : ) : x mod y = x - x div y * y :=
eq_sub_of_add_eq (!add.comm ▸ !eq_div_mul_add_mod)⁻¹ eq_sub_of_add_eq (!add.comm ▸ !eq_div_mul_add_mod)⁻¹
@ -244,10 +244,9 @@ have H6 : y > 0, from lt_of_le_of_lt !zero_le H1,
show q1 = q2, from eq_of_mul_eq_mul_right H6 H5 show q1 = q2, from eq_of_mul_eq_mul_right H6 H5
theorem mul_div_mul_left {z : } (x y : ) (zpos : z > 0) : (z * x) div (z * y) = x div y := theorem mul_div_mul_left {z : } (x y : ) (zpos : z > 0) : (z * x) div (z * y) = x div y :=
by_cases if H : y = 0 then H⁻¹ ▸ !mul_zero⁻¹ ▸ !div_zero⁻¹ ▸ !div_zero
(suppose y = 0, by rewrite [this, mul_zero, *div_zero]) else
(suppose y ≠ 0, have ypos : y > 0, from pos_of_ne_zero H,
have ypos : y > 0, from pos_of_ne_zero this,
have zypos : z * y > 0, from mul_pos zpos ypos, have zypos : z * y > 0, from mul_pos zpos ypos,
have H1 : (z * x) mod (z * y) < z * y, from !mod_lt zypos, have H1 : (z * x) mod (z * y) < z * y, from !mod_lt zypos,
have H2 : z * (x mod y) < z * y, from mul_lt_mul_of_pos_left (!mod_lt ypos) zpos, have H2 : z * (x mod y) < z * y, from mul_lt_mul_of_pos_left (!mod_lt ypos) zpos,
@ -256,20 +255,17 @@ by_cases
((z * x) div (z * y)) * (z * y) + (z * x) mod (z * y) = z * x : eq_div_mul_add_mod ((z * x) div (z * y)) * (z * y) + (z * x) mod (z * y) = z * x : eq_div_mul_add_mod
... = z * (x div y * y + x mod y) : eq_div_mul_add_mod ... = z * (x div y * y + x mod y) : eq_div_mul_add_mod
... = z * (x div y * y) + z * (x mod y) : mul.left_distrib ... = z * (x div y * y) + z * (x mod y) : mul.left_distrib
... = (x div y) * (z * y) + z * (x mod y) : mul.left_comm)) ... = (x div y) * (z * y) + z * (x mod y) : mul.left_comm)
theorem mul_div_mul_right {x z y : } (zpos : z > 0) : (x * z) div (y * z) = x div y := theorem mul_div_mul_right {x z y : } (zpos : z > 0) : (x * z) div (y * z) = x div y :=
!mul.comm ▸ !mul.comm ▸ !mul_div_mul_left zpos !mul.comm ▸ !mul.comm ▸ !mul_div_mul_left zpos
theorem mul_mod_mul_left (z x y : ) : (z * x) mod (z * y) = z * (x mod y) := theorem mul_mod_mul_left (z x y : ) : (z * x) mod (z * y) = z * (x mod y) :=
or.elim (eq_zero_or_pos z) or.elim (eq_zero_or_pos z)
(assume H : z = 0, (assume H : z = 0, H⁻¹ ▸ calc
calc (0 * x) mod (z * y) = 0 mod (z * y) : zero_mul
(z * x) mod (z * y) = (0 * x) mod (z * y) : by subst z
... = 0 mod (z * y) : zero_mul
... = 0 : zero_mod ... = 0 : zero_mod
... = 0 * (x mod y) : zero_mul ... = 0 * (x mod y) : zero_mul)
... = z * (x mod y) : by subst z)
(assume zpos : z > 0, (assume zpos : z > 0,
or.elim (eq_zero_or_pos y) or.elim (eq_zero_or_pos y)
(assume H : y = 0, by rewrite [H, mul_zero, *mod_zero]) (assume H : y = 0, by rewrite [H, mul_zero, *mod_zero])
@ -288,12 +284,8 @@ theorem mul_mod_mul_right (x z y : ) : (x * z) mod (y * z) = (x mod y) * z :=
mul.comm z x ▸ mul.comm z y ▸ !mul.comm ▸ !mul_mod_mul_left mul.comm z x ▸ mul.comm z y ▸ !mul.comm ▸ !mul_mod_mul_left
theorem mod_self (n : ) : n mod n = 0 := theorem mod_self (n : ) : n mod n = 0 :=
nat.cases_on n (by unfold modulo) nat.cases_on n !zero_mod
(take n, (take n, !mul_zero ▸ !mul_one ▸ !mul_mod_mul_left)
assert (succ n * 1) mod (succ n * 1) = succ n * (1 mod 1),
from !mul_mod_mul_left,
assert (succ n) mod (succ n) = succ n * (1 mod 1), by rewrite [*mul_one at this]; exact this,
by rewrite this)
theorem mul_mod_eq_mod_mul_mod (m n k : nat) : (m * n) mod k = ((m mod k) * n) mod k := theorem mul_mod_eq_mod_mul_mod (m n k : nat) : (m * n) mod k = ((m mod k) * n) mod k :=
calc calc
@ -309,8 +301,7 @@ assert n div 1 * 1 + n mod 1 = n, from !eq_div_mul_add_mod⁻¹,
begin rewrite [-this at {2}, mul_one, mod_one] end begin rewrite [-this at {2}, mul_one, mod_one] end
theorem div_self {n : } (H : n > 0) : n div n = 1 := theorem div_self {n : } (H : n > 0) : n div n = 1 :=
assert (n * 1) div (n * 1) = 1, from !mul_div_mul_left H, !mul_one ▸ (!mul_div_mul_left H)
by rewrite [-this, *mul_one]
theorem div_mul_cancel_of_mod_eq_zero {m n : } (H : m mod n = 0) : m div n * n = m := theorem div_mul_cancel_of_mod_eq_zero {m n : } (H : m mod n = 0) : m div n * n = m :=
by rewrite [eq_div_mul_add_mod m n at {2}, H, add_zero] by rewrite [eq_div_mul_add_mod m n at {2}, H, add_zero]

View file

@ -22,47 +22,37 @@ local infixl `≺`:50 := pair_nat.lt
private definition gcd.lt.dec (x y₁ : nat) : (succ y₁, x mod succ y₁) ≺ (x, succ y₁) := private definition gcd.lt.dec (x y₁ : nat) : (succ y₁, x mod succ y₁) ≺ (x, succ y₁) :=
!mod_lt (succ_pos y₁) !mod_lt (succ_pos y₁)
definition gcd.F (p₁ : nat × nat) : (Π p₂ : nat × nat, p₂ ≺ p₁ → nat) → nat := definition gcd.F : Π (p₁ : nat × nat), (Π p₂ : nat × nat, p₂ ≺ p₁ → nat) → nat
prod.cases_on p₁ (λx y, nat.cases_on y | (x, 0) f := x
(λ f, x) | (x, succ y) f := f (succ y, x mod succ y) !gcd.lt.dec
(λ y₁ (f : Πp₂, p₂ ≺ (x, succ y₁) → nat), f (succ y₁, x mod succ y₁) !gcd.lt.dec))
definition gcd (x y : nat) := fix gcd.F (pair x y) definition gcd (x y : nat) := fix gcd.F (x, y)
theorem gcd_zero_right (x : nat) : gcd x 0 = x := theorem gcd_zero_right (x : nat) : gcd x 0 = x := rfl
well_founded.fix_eq gcd.F (x, 0)
theorem gcd_succ (x y : nat) : gcd x (succ y) = gcd (succ y) (x mod succ y) := theorem gcd_succ (x y : nat) : gcd x (succ y) = gcd (succ y) (x mod succ y) :=
well_founded.fix_eq gcd.F (x, succ y) well_founded.fix_eq gcd.F (x, succ y)
theorem gcd_one_right (n : ) : gcd n 1 = 1 := theorem gcd_one_right (n : ) : gcd n 1 = 1 :=
calc gcd n 1 = gcd 1 (n mod 1) : gcd_succ n zero calc gcd n 1 = gcd 1 (n mod 1) : gcd_succ
... = gcd 1 0 : mod_one ... = gcd 1 0 : mod_one
... = 1 : gcd_zero_right
theorem gcd_def (x y : ) : gcd x y = if y = 0 then x else gcd y (x mod y) := theorem gcd_def (x : ) : Π (y : ), gcd x y = if y = 0 then x else gcd y (x mod y)
nat.cases_on y | 0 := !gcd_zero_right
(calc gcd x 0 = x : gcd_zero_right x | (succ y) := !gcd_succ ⬝ (if_neg !succ_ne_zero)⁻¹
... = if 0 = 0 then x else gcd zero (x mod zero) : (if_pos rfl)⁻¹)
(λy₁, calc
gcd x (succ y₁) = gcd (succ y₁) (x mod succ y₁) : gcd_succ x y₁
... = if succ y₁ = 0 then x else gcd (succ y₁) (x mod succ y₁) : (if_neg (succ_ne_zero y₁))⁻¹)
theorem gcd_self (n : ) : gcd n n = n :=
nat.cases_on n
rfl
(λn₁, calc
gcd (succ n₁) (succ n₁) = gcd (succ n₁) (succ n₁ mod succ n₁) : gcd_succ (succ n₁) n₁
... = gcd (succ n₁) 0 : mod_self (succ n₁)
... = succ n₁ : gcd_zero_right)
theorem gcd_zero_left (n : nat) : gcd 0 n = n := theorem gcd_self : Π (n : ), gcd n n = n
nat.cases_on n | 0 := rfl
rfl | (succ n₁) := calc
(λ n₁, calc gcd (succ n₁) (succ n₁) = gcd (succ n₁) (succ n₁ mod succ n₁) : gcd_succ
... = gcd (succ n₁) 0 : mod_self
theorem gcd_zero_left : Π (n : ), gcd 0 n = n
| 0 := rfl
| (succ n₁) := calc
gcd 0 (succ n₁) = gcd (succ n₁) (0 mod succ n₁) : gcd_succ gcd 0 (succ n₁) = gcd (succ n₁) (0 mod succ n₁) : gcd_succ
... = gcd (succ n₁) 0 : zero_mod ... = gcd (succ n₁) 0 : zero_mod
... = (succ n₁) : gcd_zero_right)
theorem gcd_of_pos (m : ) {n : } (H : n > 0) : gcd m n = gcd n (m mod n) := theorem gcd_of_pos (m : ) {n : } (H : n > 0) : gcd m n = gcd n (m mod n) :=
gcd_def m n ⬝ if_neg (ne_zero_of_pos H) gcd_def m n ⬝ if_neg (ne_zero_of_pos H)
@ -70,8 +60,7 @@ gcd_def m n ⬝ if_neg (ne_zero_of_pos H)
theorem gcd_rec (m n : ) : gcd m n = gcd n (m mod n) := theorem gcd_rec (m n : ) : gcd m n = gcd n (m mod n) :=
by_cases_zero_pos n by_cases_zero_pos n
(calc (calc
gcd m 0 = m : gcd_zero_right m = gcd 0 m : gcd_zero_left
... = gcd 0 m : gcd_zero_left
... = gcd 0 (m mod 0) : mod_zero) ... = gcd 0 (m mod 0) : mod_zero)
(take n, assume H : 0 < n, gcd_of_pos m H) (take n, assume H : 0 < n, gcd_of_pos m H)
@ -80,49 +69,32 @@ theorem gcd.induction {P : → Prop}
(H0 : ∀m, P m 0) (H0 : ∀m, P m 0)
(H1 : ∀m n, 0 < n → P n (m mod n) → P m n) : (H1 : ∀m n, 0 < n → P n (m mod n) → P m n) :
P m n := P m n :=
let Q : nat × nat → Prop := λ p : nat × nat, P (pr₁ p) (pr₂ p) in induction (m, n) (prod.rec (λm, nat.rec (λ IH, H0 m)
have aux : Q (m, n), from (λ n₁ v (IH : ∀p₂, p₂ ≺ (m, succ n₁) → P (pr₁ p₂) (pr₂ p₂)),
well_founded.induction (m, n) (λp, prod.cases_on p H1 m (succ n₁) !succ_pos (IH _ !gcd.lt.dec))))
(λm n, nat.cases_on n
(λ ih, show P (pr₁ (m, 0)) (pr₂ (m, 0)), from H0 m)
(λ n₁ (ih : ∀p₂, p₂ ≺ (m, succ n₁) → P (pr₁ p₂) (pr₂ p₂)),
have hlt₁ : 0 < succ n₁, from succ_pos n₁,
have hlt₂ : (succ n₁, m mod succ n₁) ≺ (m, succ n₁), from gcd.lt.dec _ _,
have hp : P (succ n₁) (m mod succ n₁), from ih _ hlt₂,
show P m (succ n₁), from
H1 m (succ n₁) hlt₁ hp))),
aux
theorem gcd_dvd (m n : ) : (gcd m n m) ∧ (gcd m n n) := theorem gcd_dvd (m n : ) : (gcd m n m) ∧ (gcd m n n) :=
gcd.induction m n gcd.induction m n
(take m, (take m, and.intro (!one_mul ▸ !dvd_mul_left) !dvd_zero)
show (gcd m 0 m) ∧ (gcd m 0 0), by rewrite [*gcd_zero_right]; split; apply dvd.refl; apply dvd_zero) (take m n (npos : 0 < n), and.rec
(take m n, (assume (IH₁ : gcd n (m mod n) n) (IH₂ : gcd n (m mod n) (m mod n)),
assume npos : 0 < n,
assume IH : (gcd n (m mod n) n) ∧ (gcd n (m mod n) (m mod n)),
have H : (gcd n (m mod n) (m div n * n + m mod n)), from have H : (gcd n (m mod n) (m div n * n + m mod n)), from
dvd_add (dvd.trans (and.elim_left IH) !dvd_mul_left) (and.elim_right IH), dvd_add (dvd.trans IH₁ !dvd_mul_left) IH₂,
have H1 : (gcd n (m mod n) m), from !eq_div_mul_add_mod⁻¹ ▸ H, have H1 : (gcd n (m mod n) m), from !eq_div_mul_add_mod⁻¹ ▸ H,
have gcd_eq : gcd n (m mod n) = gcd m n, from !gcd_rec⁻¹, show (gcd m n m) ∧ (gcd m n n), from !gcd_rec⁻¹ ▸ (and.intro H1 IH₁)))
show (gcd m n m) ∧ (gcd m n n), from gcd_eq ▸ (and.intro H1 (and.elim_left IH)))
theorem gcd_dvd_left (m n : ) : gcd m n m := and.elim_left !gcd_dvd theorem gcd_dvd_left (m n : ) : gcd m n m := and.left !gcd_dvd
theorem gcd_dvd_right (m n : ) : gcd m n n := and.elim_right !gcd_dvd theorem gcd_dvd_right (m n : ) : gcd m n n := and.right !gcd_dvd
theorem dvd_gcd {m n k : } : k m → k n → k gcd m n := theorem dvd_gcd {m n k : } : k m → k n → k gcd m n :=
gcd.induction m n gcd.induction m n (take m, imp.intro)
(take m, assume (h₁ : k m) (h₂ : k 0), (take m n (npos : n > 0)
show k gcd m 0, from !gcd_zero_right⁻¹ ▸ h₁) (IH : k n → k m mod n → k gcd n (m mod n))
(take m n, (H1 : k m) (H2 : k n),
assume npos : n > 0, have H3 : k m div n * n + m mod n, from !eq_div_mul_add_mod ▸ H1,
assume IH : k n → k m mod n → k gcd n (m mod n), have H4 : k m mod n, from dvd_of_dvd_add_left H3 (dvd.trans H2 !dvd_mul_left),
assume H1 : k m, !gcd_rec⁻¹ ▸ IH H2 H4)
assume H2 : k n,
assert k m div n * n + m mod n, from !eq_div_mul_add_mod ▸ H1,
assert k m mod n, from nat.dvd_of_dvd_add_left this (dvd.trans H2 !dvd_mul_left),
have gcd_eq : gcd n (m mod n) = gcd m n, from !gcd_rec⁻¹,
show k gcd m n, from gcd_eq ▸ IH H2 `k m mod n`)
theorem gcd.comm (m n : ) : gcd m n = gcd n m := theorem gcd.comm (m n : ) : gcd m n = gcd n m :=
dvd.antisymm dvd.antisymm
@ -143,11 +115,7 @@ theorem gcd_one_left (m : ) : gcd 1 m = 1 :=
theorem gcd_mul_left (m n k : ) : gcd (m * n) (m * k) = m * gcd n k := theorem gcd_mul_left (m n k : ) : gcd (m * n) (m * k) = m * gcd n k :=
gcd.induction n k gcd.induction n k
(take n, (take n, calc gcd (m * n) (m * 0) = gcd (m * n) 0 : mul_zero)
calc
gcd (m * n) (m * 0) = gcd (m * n) 0 : mul_zero
... = m * n : gcd_zero_right
... = m * gcd n 0 : gcd_zero_right)
(take n k, (take n k,
assume H : 0 < k, assume H : 0 < k,
assume IH : gcd (m * k) (m * (n mod k)) = m * gcd k (n mod k), assume IH : gcd (m * k) (m * (n mod k)) = m * gcd k (n mod k),
@ -181,18 +149,11 @@ eq_zero_of_gcd_eq_zero_left (!gcd.comm ▸ H)
theorem gcd_div {m n k : } (H1 : k m) (H2 : k n) : theorem gcd_div {m n k : } (H1 : k m) (H2 : k n) :
gcd (m div k) (n div k) = gcd m n div k := gcd (m div k) (n div k) = gcd m n div k :=
or.elim (eq_zero_or_pos k) or.elim (eq_zero_or_pos k)
(assume H3 : k = 0, (assume H3 : k = 0, by subst k; rewrite *div_zero)
calc (assume H3 : k > 0, (div_eq_of_eq_mul_left H3 (calc
gcd (m div k) (n div k) = gcd 0 0 : by subst k; rewrite *div_zero gcd m n = gcd m (n div k * k) : div_mul_cancel H2
... = 0 : gcd_zero_left ... = gcd (m div k * k) (n div k * k) : div_mul_cancel H1
... = gcd m n div 0 : div_zero ... = gcd (m div k) (n div k) * k : gcd_mul_right))⁻¹)
... = gcd m n div k : by subst k)
(assume H3 : k > 0,
eq.symm (div_eq_of_eq_mul_left H3
(eq.symm (calc
gcd (m div k) (n div k) * k = gcd (m div k * k) (n div k * k) : gcd_mul_right
... = gcd m (n div k * k) : div_mul_cancel H1
... = gcd m n : div_mul_cancel H2))))
theorem gcd_dvd_gcd_mul_left (m n k : ) : gcd m n gcd (k * m) n := theorem gcd_dvd_gcd_mul_left (m n k : ) : gcd m n gcd (k * m) n :=
dvd_gcd (dvd.trans !gcd_dvd_left !dvd_mul_left) !gcd_dvd_right dvd_gcd (dvd.trans !gcd_dvd_left !dvd_mul_left) !gcd_dvd_right

View file

@ -13,69 +13,48 @@ namespace nat
/- lt and le -/ /- lt and le -/
theorem le_of_lt_or_eq {m n : } (H : m < n m = n) : m ≤ n := theorem le_of_lt_or_eq {m n : } (H : m < n m = n) : m ≤ n :=
or.elim H (take H1, le_of_lt H1) (take H1, H1 ▸ !le.refl) le_of_eq_or_lt (or.swap H)
theorem lt_or_eq_of_le {m n : } (H : m ≤ n) : m < n m = n := theorem lt_or_eq_of_le {m n : } (H : m ≤ n) : m < n m = n :=
lt.by_cases or.swap (eq_or_lt_of_le H)
(suppose m < n, or.inl this)
(suppose m = n, or.inr this)
(suppose m > n, absurd (lt_of_le_of_lt H this) !lt.irrefl)
theorem le_iff_lt_or_eq (m n : ) : m ≤ n ↔ m < n m = n := theorem le_iff_lt_or_eq (m n : ) : m ≤ n ↔ m < n m = n :=
iff.intro lt_or_eq_of_le le_of_lt_or_eq iff.intro lt_or_eq_of_le le_of_lt_or_eq
theorem lt_of_le_and_ne {m n : } (H1 : m ≤ n) (H2 : m ≠ n) : m < n := theorem lt_of_le_and_ne {m n : } (H1 : m ≤ n) : m ≠ n → m < n :=
or.elim (lt_or_eq_of_le H1) or_resolve_right (eq_or_lt_of_le H1)
(suppose m < n, this)
(suppose m = n, by contradiction)
theorem lt_iff_le_and_ne (m n : ) : m < n ↔ m ≤ n ∧ m ≠ n := theorem lt_iff_le_and_ne (m n : ) : m < n ↔ m ≤ n ∧ m ≠ n :=
iff.intro iff.intro
(suppose m < n, and.intro (le_of_lt this) (take H1, lt.irrefl _ (H1 ▸ this))) (take H, and.intro (le_of_lt H) (take H1, !lt.irrefl (H1 ▸ H)))
(suppose m ≤ n ∧ m ≠ n, lt_of_le_and_ne (and.elim_left this) (and.elim_right this)) (and.rec lt_of_le_and_ne)
theorem le_add_right (n k : ) : n ≤ n + k := theorem le_add_right (n k : ) : n ≤ n + k :=
nat.induction_on k nat.rec !le.refl (λ k, le_succ_of_le) k
(calc n ≤ n : le.refl n
... = n + zero : add_zero)
(λ k (ih : n ≤ n + k), calc
n ≤ succ (n + k) : le_succ_of_le ih
... = n + succ k : add_succ)
theorem le_add_left (n m : ): n ≤ m + n := theorem le_add_left (n m : ): n ≤ m + n :=
!add.comm ▸ !le_add_right !add.comm ▸ !le_add_right
theorem le.intro {n m k : } (h : n + k = m) : n ≤ m := theorem le.intro {n m k : } (h : n + k = m) : n ≤ m :=
h ▸ le_add_right n k h ▸ !le_add_right
theorem le.elim {n m : } (h : n ≤ m) : ∃k, n + k = m := theorem le.elim {n m : } : n ≤ m → ∃k, n + k = m :=
by induction h with m h ih;existsi 0; reflexivity; le.rec (exists.intro 0 rfl) (λm h, Exists.rec
cases ih with k H; existsi succ k; exact congr_arg succ H (λ k H, exists.intro (succ k) (H ▸ rfl)))
theorem le.total {m n : } : m ≤ n n ≤ m := theorem le.total {m n : } : m ≤ n n ≤ m :=
lt.by_cases or.imp_left le_of_lt !lt_or_ge
(suppose m < n, or.inl (le_of_lt this))
(suppose m = n, or.inl (by subst m))
(suppose m > n, or.inr (le_of_lt this))
/- addition -/ /- addition -/
theorem add_le_add_left {n m : } (H : n ≤ m) (k : ) : k + n ≤ k + m := theorem add_le_add_left {n m : } (H : n ≤ m) (k : ) : k + n ≤ k + m :=
obtain (l : ) (Hl : n + l = m), from le.elim H, obtain l Hl, from le.elim H, le.intro (Hl ▸ !add.assoc)
le.intro
(calc
k + n + l = k + (n + l) : add.assoc
... = k + m : by subst m)
theorem add_le_add_right {n m : } (H : n ≤ m) (k : ) : n + k ≤ m + k := theorem add_le_add_right {n m : } (H : n ≤ m) (k : ) : n + k ≤ m + k :=
!add.comm ▸ !add.comm ▸ add_le_add_left H k !add.comm ▸ !add.comm ▸ add_le_add_left H k
theorem le_of_add_le_add_left {k n m : } (H : k + n ≤ k + m) : n ≤ m := theorem le_of_add_le_add_left {k n m : } (H : k + n ≤ k + m) : n ≤ m :=
obtain (l : ) (Hl : k + n + l = k + m), from (le.elim H), obtain l Hl, from le.elim H, le.intro (add.cancel_left (!add.assoc⁻¹ ⬝ Hl))
le.intro (add.cancel_left
(calc
k + (n + l) = k + n + l : add.assoc
... = k + m : Hl))
theorem lt_of_add_lt_add_left {k n m : } (H : k + n < k + m) : n < m := theorem lt_of_add_lt_add_left {k n m : } (H : k + n < k + m) : n < m :=
let H' := le_of_lt H in let H' := le_of_lt H in
@ -121,27 +100,22 @@ theorem max_self [simp] (a : ) : max a a = a :=
eq.rec_on !if_t_t rfl eq.rec_on !if_t_t rfl
theorem max_le {n m k : } (H₁ : n ≤ k) (H₂ : m ≤ k) : max n m ≤ k := theorem max_le {n m k : } (H₁ : n ≤ k) (H₂ : m ≤ k) : max n m ≤ k :=
decidable.by_cases if H : n < m then by rewrite [↑max, if_pos H]; apply H₂
(suppose n < m, by rewrite [↑max, if_pos this]; apply H₂) else by rewrite [↑max, if_neg H]; apply H₁
(suppose ¬ n < m, by rewrite [↑max, if_neg this]; apply H₁)
theorem min_le_left (n m : ) : min n m ≤ n := theorem min_le_left (n m : ) : min n m ≤ n :=
decidable.by_cases if H : n < m then by rewrite [↑min, if_pos H]
(suppose n < m, by rewrite [↑min, if_pos this]) else assert H' : m ≤ n, from or_resolve_right !lt_or_ge H,
(suppose ¬ n < m, by rewrite [↑min, if_neg H]; apply H'
assert m ≤ n, from or_resolve_right !lt_or_ge this,
by rewrite [↑min, if_neg `¬ n < m`]; apply this)
theorem min_le_right (n m : ) : min n m ≤ m := theorem min_le_right (n m : ) : min n m ≤ m :=
decidable.by_cases if H : n < m then by rewrite [↑min, if_pos H]; apply le_of_lt H
(suppose n < m, by rewrite [↑min, if_pos this]; apply le_of_lt this) else assert H' : m ≤ n, from or_resolve_right !lt_or_ge H,
(suppose ¬ n < m, by rewrite [↑min, if_neg H]
by rewrite [↑min, if_neg `¬ n < m`])
theorem le_min {n m k : } (H₁ : k ≤ n) (H₂ : k ≤ m) : k ≤ min n m := theorem le_min {n m k : } (H₁ : k ≤ n) (H₂ : k ≤ m) : k ≤ min n m :=
decidable.by_cases if H : n < m then by rewrite [↑min, if_pos H]; apply H₁
(suppose n < m, by rewrite [↑min, if_pos this]; apply H₁) else by rewrite [↑min, if_neg H]; apply H₂
(suppose ¬ n < m, by rewrite [↑min, if_neg this]; apply H₂)
theorem eq_max_right {a b : } (H : a < b) : b = max a b := theorem eq_max_right {a b : } (H : a < b) : b = max a b :=
(if_pos H)⁻¹ (if_pos H)⁻¹
@ -151,18 +125,14 @@ theorem eq_max_left {a b : } (H : ¬ a < b) : a = max a b :=
open decidable open decidable
theorem le_max_right (a b : ) : b ≤ max a b := theorem le_max_right (a b : ) : b ≤ max a b :=
by_cases lt.by_cases
(suppose a < b, eq.rec_on (eq_max_right this) !le.refl) (suppose a < b, (eq_max_right this) ▸ !le.refl)
(suppose ¬ a < b, or.rec_on (eq_or_lt_of_not_lt this) (suppose a = b, this ▸ !max_self⁻¹ ▸ !le.refl)
(suppose a = b, eq.rec_on this (eq.rec_on (eq.symm (max_self a)) !le.refl)) (suppose b < a, (eq_max_left (lt.asymm this)) ▸ (le_of_lt this))
(suppose b < a,
have h : a = max a b, from eq_max_left (lt.asymm this),
eq.rec_on h (le_of_lt this)))
theorem le_max_left (a b : ) : a ≤ max a b := theorem le_max_left (a b : ) : a ≤ max a b :=
by_cases if h : a < b then le_of_lt (eq.rec_on (eq_max_right h) h)
(suppose a < b, le_of_lt (eq.rec_on (eq_max_right this) this)) else (eq_max_left h) ▸ !le.refl
(suppose ¬ a < b, eq.rec_on (eq_max_left this) !le.refl)
/- nat is an instance of a linearly ordered semiring and a lattice-/ /- nat is an instance of a linearly ordered semiring and a lattice-/
@ -221,30 +191,29 @@ section migrate_algebra
attribute le.trans ge.trans lt.trans gt.trans [trans] attribute le.trans ge.trans lt.trans gt.trans [trans]
attribute lt_of_lt_of_le lt_of_le_of_lt gt_of_gt_of_ge gt_of_ge_of_gt [trans] attribute lt_of_lt_of_le lt_of_le_of_lt gt_of_gt_of_ge gt_of_ge_of_gt [trans]
theorem add_pos_left : ∀{a : }, 0 < a → ∀b : , 0 < a + b := theorem add_pos_left {a : } (H : 0 < a) (b : ) : 0 < a + b :=
take a H b, @algebra.add_pos_of_pos_of_nonneg _ _ a b H !zero_le @algebra.add_pos_of_pos_of_nonneg _ _ a b H !zero_le
theorem add_pos_right : ∀{a : }, 0 < a → ∀b : , 0 < b + a := theorem add_pos_right {a : } (H : 0 < a) (b : ) : 0 < b + a :=
take a H b, !add.comm ▸ add_pos_left H b !add.comm ▸ add_pos_left H b
theorem add_eq_zero_iff_eq_zero_and_eq_zero : ∀{a b : }, theorem add_eq_zero_iff_eq_zero_and_eq_zero {a b : } :
a + b = 0 ↔ a = 0 ∧ b = 0 := a + b = 0 ↔ a = 0 ∧ b = 0 :=
take a b : ,
@algebra.add_eq_zero_iff_eq_zero_and_eq_zero_of_nonneg_of_nonneg _ _ a b !zero_le !zero_le @algebra.add_eq_zero_iff_eq_zero_and_eq_zero_of_nonneg_of_nonneg _ _ a b !zero_le !zero_le
theorem le_add_of_le_left : ∀{a b c : }, b ≤ c → b ≤ a + c := theorem le_add_of_le_left {a b c : } (H : b ≤ c) : b ≤ a + c :=
take a b c H, @algebra.le_add_of_nonneg_of_le _ _ a b c !zero_le H @algebra.le_add_of_nonneg_of_le _ _ a b c !zero_le H
theorem le_add_of_le_right : ∀{a b c : }, b ≤ c → b ≤ c + a := theorem le_add_of_le_right {a b c : } (H : b ≤ c) : b ≤ c + a :=
take a b c H, @algebra.le_add_of_le_of_nonneg _ _ a b c H !zero_le @algebra.le_add_of_le_of_nonneg _ _ a b c H !zero_le
theorem lt_add_of_lt_left : ∀{b c : }, b < c → ∀a, b < a + c := theorem lt_add_of_lt_left {b c : } (H : b < c) (a : ) : b < a + c :=
take b c H a, @algebra.lt_add_of_nonneg_of_lt _ _ a b c !zero_le H @algebra.lt_add_of_nonneg_of_lt _ _ a b c !zero_le H
theorem lt_add_of_lt_right : ∀{b c : }, b < c → ∀a, b < c + a := theorem lt_add_of_lt_right {b c : } (H : b < c) (a : ) : b < c + a :=
take b c H a, @algebra.lt_add_of_lt_of_nonneg _ _ a b c H !zero_le @algebra.lt_add_of_lt_of_nonneg _ _ a b c H !zero_le
theorem lt_of_mul_lt_mul_left : ∀{a b c : }, c * a < c * b → a < b := theorem lt_of_mul_lt_mul_left {a b c : } (H : c * a < c * b) : a < b :=
take a b c H, @algebra.lt_of_mul_lt_mul_left _ _ a b c H !zero_le @algebra.lt_of_mul_lt_mul_left _ _ a b c H !zero_le
theorem lt_of_mul_lt_mul_right : ∀{a b c : }, a * c < b * c → a < b := theorem lt_of_mul_lt_mul_right {a b c : } (H : a * c < b * c) : a < b :=
take a b c H, @algebra.lt_of_mul_lt_mul_right _ _ a b c H !zero_le @algebra.lt_of_mul_lt_mul_right _ _ a b c H !zero_le
theorem pos_of_mul_pos_left : ∀{a b : }, 0 < a * b → 0 < b := theorem pos_of_mul_pos_left {a b : } (H : 0 < a * b) : 0 < b :=
take a b H, @algebra.pos_of_mul_pos_left _ _ a b H !zero_le @algebra.pos_of_mul_pos_left _ _ a b H !zero_le
theorem pos_of_mul_pos_right : ∀{a b : }, 0 < a * b → 0 < a := theorem pos_of_mul_pos_right {a b : } (H : 0 < a * b) : 0 < a :=
take a b H, @algebra.pos_of_mul_pos_right _ _ a b H !zero_le @algebra.pos_of_mul_pos_right _ _ a b H !zero_le
end migrate_algebra end migrate_algebra
theorem zero_le_one : 0 ≤ 1 := dec_trivial theorem zero_le_one : 0 ≤ 1 := dec_trivial
@ -266,8 +235,8 @@ eq_zero_of_add_eq_zero_right Hk
/- succ and pred -/ /- succ and pred -/
theorem le_of_lt_succ {m n : nat} (H : m < succ n) : m ≤ n := theorem le_of_lt_succ {m n : nat} : m < succ n → m ≤ n :=
le_of_succ_le_succ H le_of_succ_le_succ
theorem lt_iff_succ_le (m n : nat) : m < n ↔ succ m ≤ n := theorem lt_iff_succ_le (m n : nat) : m < n ↔ succ m ≤ n :=
iff.rfl iff.rfl
@ -278,37 +247,20 @@ iff.intro le_of_lt_succ lt_succ_of_le
theorem self_le_succ (n : ) : n ≤ succ n := theorem self_le_succ (n : ) : n ≤ succ n :=
le.intro !add_one le.intro !add_one
theorem succ_le_or_eq_of_le {n m : } (H : n ≤ m) : succ n ≤ m n = m := theorem succ_le_or_eq_of_le {n m : } : n ≤ m → succ n ≤ m n = m :=
or.elim (lt_or_eq_of_le H) lt_or_eq_of_le
(suppose n < m, or.inl (succ_le_of_lt this))
(suppose n = m, or.inr this)
theorem pred_le_of_le_succ {n m : } : n ≤ succ m → pred n ≤ m := theorem pred_le_of_le_succ {n m : } : n ≤ succ m → pred n ≤ m :=
nat.cases_on n pred_le_pred
(assume H, !pred_zero⁻¹ ▸ zero_le m)
(take n',
suppose succ n' ≤ succ m,
have n' ≤ m, from le_of_succ_le_succ this,
!pred_succ⁻¹ ▸ this)
theorem succ_le_of_le_pred {n m : } : succ n ≤ m → n ≤ pred m := theorem succ_le_of_le_pred {n m : } : succ n ≤ m → n ≤ pred m :=
nat.cases_on m pred_le_pred
(assume H, absurd H !not_succ_le_zero)
(take m',
suppose succ n ≤ succ m',
have n ≤ m', from le_of_succ_le_succ this,
!pred_succ⁻¹ ▸ this)
theorem pred_le_pred_of_le {n m : } : n ≤ m → pred n ≤ pred m := theorem pred_le_pred_of_le {n m : } : n ≤ m → pred n ≤ pred m :=
nat.cases_on n pred_le_pred
(assume H, pred_zero⁻¹ ▸ zero_le (pred m))
(take n',
suppose succ n' ≤ m,
!pred_succ⁻¹ ▸ succ_le_of_le_pred this)
theorem pre_lt_of_lt : ∀ {n m : }, n < m → pred n < m theorem pre_lt_of_lt {n m : } : n < m → pred n < m :=
| 0 m h := h lt_of_le_of_lt !pred_le
| (succ n) m h := lt_of_succ_lt h
theorem lt_of_pred_lt_pred {n m : } (H : pred n < pred m) : n < m := theorem lt_of_pred_lt_pred {n m : } (H : pred n < pred m) : n < m :=
lt_of_not_ge lt_of_not_ge
@ -316,13 +268,10 @@ lt_of_not_ge
not_lt_of_ge (pred_le_pred_of_le this) H) not_lt_of_ge (pred_le_pred_of_le this) H)
theorem le_or_eq_succ_of_le_succ {n m : } (H : n ≤ succ m) : n ≤ m n = succ m := theorem le_or_eq_succ_of_le_succ {n m : } (H : n ≤ succ m) : n ≤ m n = succ m :=
or_of_or_of_imp_left (succ_le_or_eq_of_le H) or.imp_left le_of_succ_le_succ (succ_le_or_eq_of_le H)
(suppose succ n ≤ succ m, show n ≤ m, from le_of_succ_le_succ this)
theorem le_pred_self (n : ) : pred n ≤ n := theorem le_pred_self (n : ) : pred n ≤ n :=
nat.cases_on n !pred_le
(pred_zero⁻¹ ▸ !le.refl)
(take k : , (!pred_succ)⁻¹ ▸ !self_le_succ)
theorem succ_pos (n : ) : 0 < succ n := theorem succ_pos (n : ) : 0 < succ n :=
!zero_lt_succ !zero_lt_succ
@ -330,11 +279,9 @@ theorem succ_pos (n : ) : 0 < succ n :=
theorem succ_pred_of_pos {n : } (H : n > 0) : succ (pred n) = n := theorem succ_pred_of_pos {n : } (H : n > 0) : succ (pred n) = n :=
(or_resolve_right (eq_zero_or_eq_succ_pred n) (ne.symm (ne_of_lt H)))⁻¹ (or_resolve_right (eq_zero_or_eq_succ_pred n) (ne.symm (ne_of_lt H)))⁻¹
theorem exists_eq_succ_of_lt {n m : } (H : n < m) : exists k, m = succ k := theorem exists_eq_succ_of_lt {n : } : Π {m : }, n < m → ∃k, m = succ k
discriminate | 0 H := absurd H !not_lt_zero
(suppose m = 0, absurd (this ▸ H) !not_lt_zero) | (succ k) H := exists.intro k rfl
(take l, suppose m = succ l,
exists.intro l this)
theorem lt_succ_self (n : ) : n < succ n := theorem lt_succ_self (n : ) : n < succ n :=
lt.base n lt.base n
@ -345,20 +292,10 @@ assume Plt, lt.trans Plt (self_lt_succ j)
/- other forms of induction -/ /- other forms of induction -/
protected definition strong_rec_on {P : nat → Type} (n : ) (H : ∀n, (∀m, m < n → P m) → P n) : P n := protected definition strong_rec_on {P : nat → Type} (n : ) (H : ∀n, (∀m, m < n → P m) → P n) : P n :=
have ∀ {n m : nat}, m < n → P m, from nat.rec (λm, not.elim !not_lt_zero)
take n, (λn' (IH : ∀ {m : }, m < n' → P m) m l,
nat.rec_on n or.by_cases (lt_or_eq_of_le (le_of_lt_succ l))
(show ∀m, m < 0 → P m, from take m H, absurd H !not_lt_zero) IH (λ e, eq.rec (H n' @IH) e⁻¹)) (succ n) n !lt_succ_self
(take n',
assume IH : ∀ {m : nat}, m < n' → P m,
assert P n', from H n' @IH,
show ∀m, m < succ n' → P m, from
take m,
suppose m < succ n',
or.by_cases (lt_or_eq_of_le (le_of_lt_succ this))
(suppose m < n', IH this)
(suppose m = n', by subst m; assumption)),
this !lt_succ_self
protected theorem strong_induction_on {P : nat → Prop} (n : ) (H : ∀n, (∀m, m < n → P m) → P n) : protected theorem strong_induction_on {P : nat → Prop} (n : ) (H : ∀n, (∀m, m < n → P m) → P n) :
P n := P n :=

View file

@ -427,13 +427,8 @@ theorem dist_sub_eq_dist_add_right {k m : } (H : k ≥ m) (n : ) :
(dist_sub_eq_dist_add_left H n ▸ !dist.comm) ▸ !dist.comm (dist_sub_eq_dist_add_left H n ▸ !dist.comm) ▸ !dist.comm
theorem dist.triangle_inequality (n m k : ) : dist n k ≤ dist n m + dist m k := theorem dist.triangle_inequality (n m k : ) : dist n k ≤ dist n m + dist m k :=
assert (m - k) + ((k - m) + (m - n)) = (m - n) + ((m - k) + (k - m)),
begin
generalize m - k, generalize k - m, generalize m - n, intro x y z,
rewrite [add.comm y x, add.left_comm]
end,
have (n - m) + (m - k) + ((k - m) + (m - n)) = (n - m) + (m - n) + ((m - k) + (k - m)), have (n - m) + (m - k) + ((k - m) + (m - n)) = (n - m) + (m - n) + ((m - k) + (k - m)),
by rewrite [add.assoc, this, -add.assoc], from (!add.comm ▸ !add.left_comm ▸ !add.assoc) ⬝ !add.assoc⁻¹,
this ▸ add_le_add !sub_lt_sub_add_sub !sub_lt_sub_add_sub this ▸ add_le_add !sub_lt_sub_add_sub !sub_lt_sub_add_sub
theorem dist_add_add_le_add_dist_dist (n m k l : ) : dist (n + m) (k + l) ≤ dist n k + dist m l := theorem dist_add_add_le_add_dist_dist (n m k l : ) : dist (n + m) (k + l) ≤ dist n k + dist m l :=
@ -446,7 +441,7 @@ assert ∀ n m, dist n m = n - m + (m - n), from take n m, rfl,
by rewrite [this, this n m, mul.right_distrib, *mul_sub_right_distrib] by rewrite [this, this n m, mul.right_distrib, *mul_sub_right_distrib]
theorem dist_mul_left (k n m : ) : dist (k * n) (k * m) = k * dist n m := theorem dist_mul_left (k n m : ) : dist (k * n) (k * m) = k * dist n m :=
by rewrite [mul.comm k n, mul.comm k m, dist_mul_right, mul.comm] !mul.comm ▸ !mul.comm ▸ !dist_mul_right ⬝ !mul.comm
theorem dist_mul_dist (n m k l : ) : dist n m * dist k l = dist (n * k + m * l) (n * l + m * k) := theorem dist_mul_dist (n m k l : ) : dist n m * dist k l = dist (n * k + m * l) (n * l + m * k) :=
have aux : ∀k l, k ≥ l → dist n m * dist k l = dist (n * k + m * l) (n * l + m * k), from have aux : ∀k l, k ≥ l → dist n m * dist k l = dist (n * k + m * l) (n * l + m * k), from

View file

@ -11,105 +11,89 @@ are those needed for that construction.
-/ -/
import data.rat.order data.nat import data.rat.order data.nat
open nat rat open nat rat subtype eq.ops
namespace pnat namespace pnat
inductive pnat : Type := definition pnat := { n : | n > 0 }
pos : Π n : nat, n > 0 → pnat
notation `+` := pnat notation `+` := pnat
definition nat_of_pnat (p : pnat) : := theorem pos (n : ) (H : n > 0) : + := tag n H
pnat.rec_on p (λ n H, n)
definition nat_of_pnat (p : +) : := elt_of p
reserve postfix `~`:std.prec.max_plus reserve postfix `~`:std.prec.max_plus
local postfix ~ := nat_of_pnat local postfix ~ := nat_of_pnat
theorem nat_of_pnat_pos (p : pnat) : p~ > 0 := theorem pnat_pos (p : +) : p~ > 0 := has_property p
pnat.rec_on p (λ n H, H)
definition add (p q : pnat) : pnat := definition add (p q : +) : + :=
pnat.pos (p~ + q~) (nat.add_pos (nat_of_pnat_pos p) (nat_of_pnat_pos q)) tag (p~ + q~) (nat.add_pos (pnat_pos p) (pnat_pos q))
infix `+` := add infix `+` := add
definition mul (p q : pnat) : pnat := definition mul (p q : +) : + :=
pnat.pos (p~ * q~) (nat.mul_pos (nat_of_pnat_pos p) (nat_of_pnat_pos q)) tag (p~ * q~) (nat.mul_pos (pnat_pos p) (pnat_pos q))
infix `*` := mul infix `*` := mul
definition le (p q : pnat) := p~ ≤ q~ definition le (p q : +) := p~ ≤ q~
infix `≤` := le infix `≤` := le
notation p `≥` q := q ≤ p notation p `≥` q := q ≤ p
definition lt (p q : pnat) := p~ < q~ definition lt (p q : +) := p~ < q~
infix `<` := lt infix `<` := lt
protected theorem pnat.eq {p q : +} : p~ = q~ → p = q := protected theorem pnat.eq {p q : +} : p~ = q~ → p = q :=
pnat.cases_on p (λ p' Hp, pnat.cases_on q (λ q' Hq, subtype.eq
begin
rewrite ↑nat_of_pnat,
intro H,
generalize Hp,
generalize Hq,
rewrite H,
intro Hp Hq,
apply rfl
end))
definition pnat_le_decidable [instance] (p q : pnat) : decidable (p ≤ q) := definition pnat_le_decidable [instance] (p q : +) : decidable (p ≤ q) :=
pnat.rec_on p (λ n H, pnat.rec_on q nat.decidable_le p~ q~
(λ m H2, if Hl : n ≤ m then decidable.inl Hl else decidable.inr Hl))
definition pnat_lt_decidable [instance] {p q : pnat} : decidable (p < q) := definition pnat_lt_decidable [instance] {p q : +} : decidable (p < q) :=
pnat.rec_on p (λ n H, pnat.rec_on q nat.decidable_lt p~ q~
(λ m H2, if Hl : n < m then decidable.inl Hl else decidable.inr Hl))
theorem le.trans {p q r : pnat} (H1 : p ≤ q) (H2 : q ≤ r) : p ≤ r := nat.le.trans H1 H2 theorem le.trans {p q r : +} (H1 : p ≤ q) (H2 : q ≤ r) : p ≤ r := nat.le.trans H1 H2
definition max (p q : pnat) := definition max (p q : +) :=
pnat.pos (nat.max (p~) (q~)) (nat.lt_of_lt_of_le (!nat_of_pnat_pos) (!le_max_right)) tag (nat.max p~ q~) (nat.lt_of_lt_of_le (!pnat_pos) (!le_max_right))
theorem max_right (a b : +) : max a b ≥ b := !le_max_right theorem max_right (a b : +) : max a b ≥ b := !le_max_right
theorem max_left (a b : +) : max a b ≥ a := !le_max_left theorem max_left (a b : +) : max a b ≥ a := !le_max_left
theorem max_eq_right {a b : +} (H : a < b) : max a b = b := theorem max_eq_right {a b : +} (H : a < b) : max a b = b :=
have Hnat : nat.max a~ b~ = b~, from nat.max_eq_right' H, pnat.eq (nat.max_eq_right' H)
pnat.eq Hnat
theorem max_eq_left {a b : +} (H : ¬ a < b) : max a b = a := theorem max_eq_left {a b : +} (H : ¬ a < b) : max a b = a :=
have Hnat : nat.max a~ b~ = a~, from nat.max_eq_left' H, pnat.eq (nat.max_eq_left' H)
pnat.eq Hnat
theorem le_of_lt {a b : +} (H : a < b) : a ≤ b := nat.le_of_lt H theorem le_of_lt {a b : +} : a < b → a ≤ b := nat.le_of_lt
theorem not_lt_of_ge {a b : +} (H : a ≤ b) : ¬ (b < a) := nat.not_lt_of_ge H theorem not_lt_of_ge {a b : +} : a ≤ b → ¬ (b < a) := nat.not_lt_of_ge
theorem le_of_not_gt {a b : +} (H : ¬ a < b) : b ≤ a := nat.le_of_not_gt H theorem le_of_not_gt {a b : +} : ¬ a < b → b ≤ a := nat.le_of_not_gt
theorem eq_of_le_of_ge {a b : +} (H1 : a ≤ b) (H2 : b ≤ a) : a = b := theorem eq_of_le_of_ge {a b : +} (H1 : a ≤ b) (H2 : b ≤ a) : a = b :=
pnat.eq (nat.eq_of_le_of_ge H1 H2) pnat.eq (nat.eq_of_le_of_ge H1 H2)
theorem le.refl (a : +) : a ≤ a := !nat.le.refl theorem le.refl (a : +) : a ≤ a := !nat.le.refl
notation 2 := pnat.pos 2 dec_trivial notation 2 := (tag 2 dec_trivial : +)
notation 3 := pnat.pos 3 dec_trivial notation 3 := (tag 3 dec_trivial : +)
definition pone : pnat := pnat.pos 1 dec_trivial definition pone : + := tag 1 dec_trivial
definition rat_of_pnat [reducible] (n : +) : := definition rat_of_pnat [reducible] (n : +) : := n~
pnat.rec_on n (λ n H, of_nat n)
theorem pnat.to_rat_of_nat (n : +) : rat_of_pnat n = of_nat n~ := theorem pnat.to_rat_of_nat (n : +) : rat_of_pnat n = of_nat n~ := rfl
pnat.rec_on n (λ n H, rfl)
-- these will come in rat -- these will come in rat
theorem rat_of_nat_nonneg (n : ) : 0 ≤ of_nat n := trivial theorem rat_of_nat_nonneg (n : ) : 0 ≤ of_nat n := trivial
theorem rat_of_pnat_ge_one (n : +) : rat_of_pnat n ≥ 1 := theorem rat_of_pnat_ge_one (n : +) : rat_of_pnat n ≥ 1 :=
pnat.rec_on n (λ m h, (iff.mpr !of_nat_le_of_nat) (succ_le_of_lt h)) (iff.mpr !of_nat_le_of_nat) (pnat_pos n)
theorem rat_of_pnat_is_pos (n : +) : rat_of_pnat n > 0 := theorem rat_of_pnat_is_pos (n : +) : rat_of_pnat n > 0 :=
pnat.rec_on n (λ m h, (iff.mpr !of_nat_pos) h) (iff.mpr !of_nat_pos) (pnat_pos n)
theorem of_nat_le_of_nat_of_le {m n : } (H : m ≤ n) : of_nat m ≤ of_nat n := theorem of_nat_le_of_nat_of_le {m n : } (H : m ≤ n) : of_nat m ≤ of_nat n :=
(iff.mpr !of_nat_le_of_nat) H (iff.mpr !of_nat_le_of_nat) H
@ -118,22 +102,13 @@ theorem of_nat_lt_of_nat_of_lt {m n : } (H : m < n) : of_nat m < of_nat n :=
(iff.mpr !of_nat_lt_of_nat) H (iff.mpr !of_nat_lt_of_nat) H
theorem rat_of_pnat_le_of_pnat_le {m n : +} (H : m ≤ n) : rat_of_pnat m ≤ rat_of_pnat n := theorem rat_of_pnat_le_of_pnat_le {m n : +} (H : m ≤ n) : rat_of_pnat m ≤ rat_of_pnat n :=
begin of_nat_le_of_nat_of_le H
rewrite *pnat.to_rat_of_nat,
apply of_nat_le_of_nat_of_le H
end
theorem rat_of_pnat_lt_of_pnat_lt {m n : +} (H : m < n) : rat_of_pnat m < rat_of_pnat n := theorem rat_of_pnat_lt_of_pnat_lt {m n : +} (H : m < n) : rat_of_pnat m < rat_of_pnat n :=
begin of_nat_lt_of_nat_of_lt H
rewrite *pnat.to_rat_of_nat,
apply of_nat_lt_of_nat_of_lt H
end
theorem pnat_le_of_rat_of_pnat_le {m n : +} (H : rat_of_pnat m ≤ rat_of_pnat n) : m ≤ n := theorem pnat_le_of_rat_of_pnat_le {m n : +} (H : rat_of_pnat m ≤ rat_of_pnat n) : m ≤ n :=
begin (iff.mp !of_nat_le_of_nat) H
rewrite *pnat.to_rat_of_nat at H,
apply (iff.mp !of_nat_le_of_nat) H
end
definition inv (n : +) : := (1 : ) / rat_of_pnat n definition inv (n : +) : := (1 : ) / rat_of_pnat n
postfix `⁻¹` := inv postfix `⁻¹` := inv
@ -173,13 +148,14 @@ theorem one_mul (n : +) : pone * n = n :=
end end
theorem pone_le (n : +) : pone ≤ n := theorem pone_le (n : +) : pone ≤ n :=
succ_le_of_lt (nat_of_pnat_pos n) succ_le_of_lt (pnat_pos n)
theorem pnat_to_rat_mul (a b : +) : rat_of_pnat (a * b) = rat_of_pnat a * rat_of_pnat b := theorem pnat_to_rat_mul (a b : +) : rat_of_pnat (a * b) = rat_of_pnat a * rat_of_pnat b := rfl
by rewrite *pnat.to_rat_of_nat
theorem mul_lt_mul_left (a b c : +) (H : a < b) : a * c < b * c := theorem mul_lt_mul_left (a b c : +) (H : a < b) : a * c < b * c :=
nat.mul_lt_mul_of_pos_right H !nat_of_pnat_pos nat.mul_lt_mul_of_pos_right H !pnat_pos
theorem one_lt_two : pone < 2 := !nat.le.refl
theorem inv_two_mul_lt_inv (n : +) : (2 * n)⁻¹ < n⁻¹ := theorem inv_two_mul_lt_inv (n : +) : (2 * n)⁻¹ < n⁻¹ :=
begin begin
@ -189,9 +165,8 @@ theorem inv_two_mul_lt_inv (n : +) : (2 * n)⁻¹ < n⁻¹ :=
have H : n~ < (2 * n)~, begin have H : n~ < (2 * n)~, begin
rewrite -one_mul at {1}, rewrite -one_mul at {1},
apply mul_lt_mul_left, apply mul_lt_mul_left,
apply dec_trivial apply one_lt_two
end, end,
rewrite *pnat.to_rat_of_nat,
apply of_nat_lt_of_nat_of_lt, apply of_nat_lt_of_nat_of_lt,
apply H apply H
end end
@ -238,7 +213,7 @@ theorem inv_mul_le_inv (p q : +) : (p * q)⁻¹ ≤ q⁻¹ :=
end end
theorem pnat_mul_le_mul_left' (a b c : +) (H : a ≤ b) : c * a ≤ c * b := theorem pnat_mul_le_mul_left' (a b c : +) (H : a ≤ b) : c * a ≤ c * b :=
nat.mul_le_mul_of_nonneg_left H (nat.le_of_lt !nat_of_pnat_pos) nat.mul_le_mul_of_nonneg_left H (nat.le_of_lt !pnat_pos)
theorem mul.assoc (a b c : +) : a * b * c = a * (b * c) := theorem mul.assoc (a b c : +) : a * b * c = a * (b * c) :=
pnat.eq !nat.mul.assoc pnat.eq !nat.mul.assoc
@ -259,8 +234,6 @@ theorem mul_le_mul_left (p q : +) : q ≤ p * q :=
theorem mul_le_mul_right (p q : +) : p ≤ p * q := theorem mul_le_mul_right (p q : +) : p ≤ p * q :=
by rewrite mul.comm; apply mul_le_mul_left by rewrite mul.comm; apply mul_le_mul_left
theorem one_lt_two : pone < 2 := dec_trivial
theorem pnat.lt_of_not_le {p q : +} (H : ¬ p ≤ q) : q < p := theorem pnat.lt_of_not_le {p q : +} (H : ¬ p ≤ q) : q < p :=
nat.lt_of_not_ge H nat.lt_of_not_ge H
@ -275,7 +248,7 @@ theorem lt_add_left (p q : +) : p < p + q :=
have H : p~ < p~ + q~, begin have H : p~ < p~ + q~, begin
rewrite -nat.add_zero at {1}, rewrite -nat.add_zero at {1},
apply nat.add_lt_add_left, apply nat.add_lt_add_left,
apply nat_of_pnat_pos apply pnat_pos
end, end,
apply H apply H
end end
@ -296,30 +269,19 @@ theorem div_le_pnat (q : ) (n : +) (H : q ≥ n⁻¹) : 1 / q ≤ rat_of_p
end end
theorem pnat_cancel' (n m : +) : (n * n * m)⁻¹ * (rat_of_pnat n * rat_of_pnat n) = m⁻¹ := theorem pnat_cancel' (n m : +) : (n * n * m)⁻¹ * (rat_of_pnat n * rat_of_pnat n) = m⁻¹ :=
begin assert hsimp : ∀ a b c : , (a * a * (b * b * c)) = (a * b) * (a * b) * c, from
have hsimp : ∀ a b c : , (a * a * (b * b * c)) = (a * b) * (a * b) * c, from sorry, -- simp λa b c, by rewrite[-*rat.mul.assoc]; exact (!rat.mul.right_comm ▸ rfl),
rewrite [rat.mul.comm, *inv_mul_eq_mul_inv, hsimp, *inv_cancel_left, *rat.one_mul] by rewrite [rat.mul.comm, *inv_mul_eq_mul_inv, hsimp, *inv_cancel_left, *rat.one_mul]
end
definition pceil (a : ) : + := pnat.pos (ubound a) !ubound_pos definition pceil (a : ) : + := tag (ubound a) !ubound_pos
theorem pceil_helper {a : } {n : +} (H : pceil a ≤ n) (Ha : a > 0) : n⁻¹ ≤ 1 / a := theorem pceil_helper {a : } {n : +} (H : pceil a ≤ n) (Ha : a > 0) : n⁻¹ ≤ 1 / a :=
begin rat.le.trans (inv_ge_of_le H) (div_le_div_of_le Ha (ubound_ge a))
apply rat.le.trans,
apply inv_ge_of_le H,
apply div_le_div_of_le,
apply Ha,
apply ubound_ge
end
theorem inv_pceil_div (a b : ) (Ha : a > 0) (Hb : b > 0) : (pceil (a / b))⁻¹ ≤ b / a := theorem inv_pceil_div (a b : ) (Ha : a > 0) (Hb : b > 0) : (pceil (a / b))⁻¹ ≤ b / a :=
begin div_div' ▸ div_le_div_of_le
rewrite -(@div_div' (b / a)), (div_pos_of_pos (pos_div_of_pos_of_pos Hb Ha))
apply div_le_div_of_le, ((div_div_eq_mul_div (ne_of_gt Hb) (ne_of_gt Ha))⁻¹ ▸
apply div_pos_of_pos, !rat.one_mul⁻¹ ▸ !ubound_ge)
apply pos_div_of_pos_of_pos Hb Ha,
rewrite [(div_div_eq_mul_div (ne_of_gt Hb) (ne_of_gt Ha)), rat.one_mul],
apply ubound_ge
end
end pnat end pnat

View file

@ -20,8 +20,8 @@ namespace quotient
theorem flip_pair (a : A) (b : B) : flip (pair a b) = pair b a := rfl theorem flip_pair (a : A) (b : B) : flip (pair a b) = pair b a := rfl
theorem flip_pr1 (a : A × B) : pr1 (flip a) = pr2 a := rfl theorem flip_pr1 (a : A × B) : pr1 (flip a) = pr2 a := rfl
theorem flip_pr2 (a : A × B) : pr2 (flip a) = pr1 a := rfl theorem flip_pr2 (a : A × B) : pr2 (flip a) = pr1 a := rfl
theorem flip_flip (a : A × B) : flip (flip a) = a := theorem flip_flip : Π a : A × B, flip (flip a) = a
destruct a (take x y, rfl) | (pair x y) := rfl
theorem P_flip {P : A → B → Prop} (a : A × B) (H : P (pr1 a) (pr2 a)) theorem P_flip {P : A → B → Prop} (a : A × B) (H : P (pr1 a) (pr2 a))
: P (pr2 (flip a)) (pr1 (flip a)) := : P (pr2 (flip a)) (pr1 (flip a)) :=
@ -59,14 +59,7 @@ namespace quotient
map_pair2 f a b = pair (f (pr1 a) (pr1 b)) (f (pr2 a) (pr2 b)) := rfl map_pair2 f a b = pair (f (pr1 a) (pr1 b)) (f (pr2 a) (pr2 b)) := rfl
theorem map_pair2_pair {A B C : Type} (f : A → B → C) (a a' : A) (b b' : B) : theorem map_pair2_pair {A B C : Type} (f : A → B → C) (a a' : A) (b b' : B) :
map_pair2 f (pair a a') (pair b b') = pair (f a b) (f a' b') := map_pair2 f (pair a a') (pair b b') = pair (f a b) (f a' b') := by esimp
calc
map_pair2 f (pair a a') (pair b b')
= pair (f (pr1 (pair a a')) b) (f (pr2 (pair a a')) (pr2 (pair b b')))
: {pr1.mk b b'}
... = pair (f (pr1 (pair a a')) b) (f (pr2 (pair a a')) b') : {pr2.mk b b'}
... = pair (f (pr1 (pair a a')) b) (f a' b') : {pr2.mk a a'}
... = pair (f a b) (f a' b') : {pr1.mk a a'}
theorem map_pair2_pr1 {A B C : Type} (f : A → B → C) (a : A × A) (b : B × B) : theorem map_pair2_pr1 {A B C : Type} (f : A → B → C) (a : A × A) (b : B × B) :
pr1 (map_pair2 f a b) = f (pr1 a) (pr1 b) := by esimp pr1 (map_pair2 f a b) = f (pr1 a) (pr1 b) := by esimp
@ -74,91 +67,34 @@ namespace quotient
theorem map_pair2_pr2 {A B C : Type} (f : A → B → C) (a : A × A) (b : B × B) : theorem map_pair2_pr2 {A B C : Type} (f : A → B → C) (a : A × A) (b : B × B) :
pr2 (map_pair2 f a b) = f (pr2 a) (pr2 b) := by esimp pr2 (map_pair2 f a b) = f (pr2 a) (pr2 b) := by esimp
theorem map_pair2_flip {A B C : Type} (f : A → B → C) (a : A × A) (b : B × B) : theorem map_pair2_flip {A B C : Type} (f : A → B → C) : Π (a : A × A) (b : B × B),
flip (map_pair2 f a b) = map_pair2 f (flip a) (flip b) := flip (map_pair2 f a b) = map_pair2 f (flip a) (flip b)
have Hx : pr1 (flip (map_pair2 f a b)) = pr1 (map_pair2 f (flip a) (flip b)), from | (pair a₁ a₂) (pair b₁ b₂) := rfl
calc
pr1 (flip (map_pair2 f a b)) = pr2 (map_pair2 f a b) : flip_pr1 _
... = f (pr2 a) (pr2 b) : map_pair2_pr2 f a b
... = f (pr1 (flip a)) (pr2 b) : {(flip_pr1 a)⁻¹}
... = f (pr1 (flip a)) (pr1 (flip b)) : {(flip_pr1 b)⁻¹}
... = pr1 (map_pair2 f (flip a) (flip b)) : (map_pair2_pr1 f _ _)⁻¹,
have Hy : pr2 (flip (map_pair2 f a b)) = pr2 (map_pair2 f (flip a) (flip b)), from
calc
pr2 (flip (map_pair2 f a b)) = pr1 (map_pair2 f a b) : flip_pr2 _
... = f (pr1 a) (pr1 b) : map_pair2_pr1 f a b
... = f (pr2 (flip a)) (pr1 b) : {flip_pr2 a}
... = f (pr2 (flip a)) (pr2 (flip b)) : {flip_pr2 b}
... = pr2 (map_pair2 f (flip a) (flip b)) : (map_pair2_pr2 f _ _)⁻¹,
pair_eq Hx Hy
-- add_rewrite flip_pr1 flip_pr2 flip_pair -- add_rewrite flip_pr1 flip_pr2 flip_pair
-- add_rewrite map_pair_pr1 map_pair_pr2 map_pair_pair -- add_rewrite map_pair_pr1 map_pair_pr2 map_pair_pair
-- add_rewrite map_pair2_pr1 map_pair2_pr2 map_pair2_pair -- add_rewrite map_pair2_pr1 map_pair2_pr2 map_pair2_pair
theorem map_pair2_comm {A B : Type} {f : A → A → B} (Hcomm : ∀a b : A, f a b = f b a) theorem map_pair2_comm {A B : Type} {f : A → A → B} (Hcomm : ∀a b : A, f a b = f b a)
(v w : A × A) : map_pair2 f v w = map_pair2 f w v := : Π (v w : A × A), map_pair2 f v w = map_pair2 f w v
have Hx : pr1 (map_pair2 f v w) = pr1 (map_pair2 f w v), from | (pair v₁ v₂) (pair w₁ w₂) :=
calc !map_pair2_pair ⬝ by rewrite [Hcomm v₁ w₁, Hcomm v₂ w₂] ⬝ !map_pair2_pair⁻¹
pr1 (map_pair2 f v w) = f (pr1 v) (pr1 w) : map_pair2_pr1 f v w
... = f (pr1 w) (pr1 v) : Hcomm _ _
... = pr1 (map_pair2 f w v) : (map_pair2_pr1 f w v)⁻¹,
have Hy : pr2 (map_pair2 f v w) = pr2 (map_pair2 f w v), from
calc
pr2 (map_pair2 f v w) = f (pr2 v) (pr2 w) : map_pair2_pr2 f v w
... = f (pr2 w) (pr2 v) : Hcomm _ _
... = pr2 (map_pair2 f w v) : (map_pair2_pr2 f w v)⁻¹,
pair_eq Hx Hy
theorem map_pair2_assoc {A : Type} {f : A → A → A} theorem map_pair2_assoc {A : Type} {f : A → A → A}
(Hassoc : ∀a b c : A, f (f a b) c = f a (f b c)) (u v w : A × A) : (Hassoc : ∀a b c : A, f (f a b) c = f a (f b c)) (u v w : A × A) :
map_pair2 f (map_pair2 f u v) w = map_pair2 f u (map_pair2 f v w) := map_pair2 f (map_pair2 f u v) w = map_pair2 f u (map_pair2 f v w) :=
have Hx : pr1 (map_pair2 f (map_pair2 f u v) w) = show pair (f (f (pr1 u) (pr1 v)) (pr1 w)) (f (f (pr2 u) (pr2 v)) (pr2 w)) =
pr1 (map_pair2 f u (map_pair2 f v w)), from pair (f (pr1 u) (f (pr1 v) (pr1 w))) (f (pr2 u) (f (pr2 v) (pr2 w))),
calc by rewrite [Hassoc (pr1 u) (pr1 v) (pr1 w), Hassoc (pr2 u) (pr2 v) (pr2 w)]
pr1 (map_pair2 f (map_pair2 f u v) w)
= f (pr1 (map_pair2 f u v)) (pr1 w) : map_pair2_pr1 f _ _
... = f (f (pr1 u) (pr1 v)) (pr1 w) : {map_pair2_pr1 f _ _}
... = f (pr1 u) (f (pr1 v) (pr1 w)) : Hassoc (pr1 u) (pr1 v) (pr1 w)
... = f (pr1 u) (pr1 (map_pair2 f v w)) : by rewrite [map_pair2_pr1 f]
... = pr1 (map_pair2 f u (map_pair2 f v w)) : (map_pair2_pr1 f _ _)⁻¹,
have Hy : pr2 (map_pair2 f (map_pair2 f u v) w) =
pr2 (map_pair2 f u (map_pair2 f v w)), from
calc
pr2 (map_pair2 f (map_pair2 f u v) w)
= f (pr2 (map_pair2 f u v)) (pr2 w) : map_pair2_pr2 f _ _
... = f (f (pr2 u) (pr2 v)) (pr2 w) : {map_pair2_pr2 f _ _}
... = f (pr2 u) (f (pr2 v) (pr2 w)) : Hassoc (pr2 u) (pr2 v) (pr2 w)
... = f (pr2 u) (pr2 (map_pair2 f v w)) : {map_pair2_pr2 f _ _}
... = pr2 (map_pair2 f u (map_pair2 f v w)) : (map_pair2_pr2 f _ _)⁻¹,
pair_eq Hx Hy
theorem map_pair2_id_right {A B : Type} {f : A → B → A} {e : B} (Hid : ∀a : A, f a e = a) theorem map_pair2_id_right {A B : Type} {f : A → B → A} {e : B} (Hid : ∀a : A, f a e = a)
(v : A × A) : map_pair2 f v (pair e e) = v := : Π (v : A × A), map_pair2 f v (pair e e) = v
have Hx : pr1 (map_pair2 f v (pair e e)) = pr1 v, from | (pair v₁ v₂) :=
(calc !map_pair2_pair ⬝ by rewrite [Hid v₁, Hid v₂]
pr1 (map_pair2 f v (pair e e)) = f (pr1 v) (pr1 (pair e e)) : by esimp
... = f (pr1 v) e : by esimp
... = pr1 v : Hid (pr1 v)),
have Hy : pr2 (map_pair2 f v (pair e e)) = pr2 v, from
(calc
pr2 (map_pair2 f v (pair e e)) = f (pr2 v) (pr2 (pair e e)) : by esimp
... = f (pr2 v) e : by esimp
... = pr2 v : Hid (pr2 v)),
prod.eq Hx Hy
theorem map_pair2_id_left {A B : Type} {f : B → A → A} {e : B} (Hid : ∀a : A, f e a = a) theorem map_pair2_id_left {A B : Type} {f : B → A → A} {e : B} (Hid : ∀a : A, f e a = a)
(v : A × A) : map_pair2 f (pair e e) v = v := : Π (v : A × A), map_pair2 f (pair e e) v = v
have Hx : pr1 (map_pair2 f (pair e e) v) = pr1 v, from | (pair v₁ v₂) :=
calc !map_pair2_pair ⬝ by rewrite [Hid v₁, Hid v₂]
pr1 (map_pair2 f (pair e e) v) = f (pr1 (pair e e)) (pr1 v) : by esimp
... = f e (pr1 v) : by esimp
... = pr1 v : Hid (pr1 v),
have Hy : pr2 (map_pair2 f (pair e e) v) = pr2 v, from
calc
pr2 (map_pair2 f (pair e e) v) = f (pr2 (pair e e)) (pr2 v) : by esimp
... = f e (pr2 v) : by esimp
... = pr2 v : Hid (pr2 v),
prod.eq Hx Hy
end quotient end quotient

View file

@ -92,6 +92,9 @@ prerat.mk (num a * num b) (denom a * denom b) (mul_denom_pos a b)
definition neg (a : prerat) : prerat := definition neg (a : prerat) : prerat :=
prerat.mk (- num a) (denom a) (denom_pos a) prerat.mk (- num a) (denom a) (denom_pos a)
definition smul (a : ) (b : prerat) (H : a > 0) : prerat :=
prerat.mk (a * num b) (a * denom b) (mul_pos H (denom_pos b))
theorem of_int_add (a b : ) : of_int (#int a + b) ≡ add (of_int a) (of_int b) := theorem of_int_add (a b : ) : of_int (#int a + b) ≡ add (of_int a) (of_int b) :=
by esimp [equiv, num, denom, one, add, of_int]; rewrite [*int.mul_one] by esimp [equiv, num, denom, one, add, of_int]; rewrite [*int.mul_one]
@ -199,6 +202,9 @@ theorem inv_equiv_inv : ∀{a b : prerat}, a ≡ b → inv a ≡ inv b
by rewrite [↑equiv at *, ▸*, mul.comm ad, mul.comm bd, H] by rewrite [↑equiv at *, ▸*, mul.comm ad, mul.comm bd, H]
... ≡ inv (mk bn bd bdp) : (inv_of_pos bn_pos bdp)⁻¹) ... ≡ inv (mk bn bd bdp) : (inv_of_pos bn_pos bdp)⁻¹)
theorem smul_equiv {a : } {b : prerat} (H : a > 0) : smul a b H ≡ b :=
by esimp[equiv, smul]; rewrite[mul.assoc, mul.left_comm]
/- properties -/ /- properties -/
theorem add.comm (a b : prerat) : add a b ≡ add b a := theorem add.comm (a b : prerat) : add a b ≡ add b a :=
@ -223,12 +229,18 @@ by rewrite [↑mul, ↑equiv, *mul.assoc]
theorem mul_one (a : prerat) : mul a one ≡ a := theorem mul_one (a : prerat) : mul a one ≡ a :=
by rewrite [↑mul, ↑one, ↑of_int, ↑equiv, ▸*, *mul_one] by rewrite [↑mul, ↑one, ↑of_int, ↑equiv, ▸*, *mul_one]
-- with the simplifier this will be easy
theorem mul.left_distrib (a b c : prerat) : mul a (add b c) ≡ add (mul a b) (mul a c) := theorem mul.left_distrib (a b c : prerat) : mul a (add b c) ≡ add (mul a b) (mul a c) :=
begin have H : smul (denom a) (mul a (add b c)) (denom_pos a) =
rewrite [↑mul, ↑add, ↑equiv, ▸*, *mul.left_distrib, *mul.right_distrib, -*int.mul.assoc], add (mul a b) (mul a c), from begin
apply sorry rewrite[↑smul, ↑mul, ↑add],
end congruence,
rewrite[*mul.left_distrib, *mul.right_distrib, -*int.mul.assoc],
have T : ∀ {x y z w : }, x*y*z*w=y*z*x*w, from
λx y z w, (!int.mul.assoc ⬝ !int.mul.comm) ▸ rfl,
exact !congr_arg2 T T,
exact !mul.left_comm ▸ !int.mul.assoc⁻¹
end,
equiv.symm (H ▸ smul_equiv (denom_pos a))
theorem mul_inv_cancel : ∀{a : prerat}, ¬ a ≡ zero → mul a (inv a) ≡ one theorem mul_inv_cancel : ∀{a : prerat}, ¬ a ≡ zero → mul a (inv a) ≡ one
| (mk an ad adp) := | (mk an ad adp) :=

View file

@ -27,13 +27,18 @@ theorem find_midpoint {a b : } (H : a > b) : ∃ c : , a > b + c ∧ c > 0
(and.intro (have H2 [visible] : a + a > (b + b) + (a - b), from calc (and.intro (have H2 [visible] : a + a > (b + b) + (a - b), from calc
a + a > b + a : rat.add_lt_add_right H a + a > b + a : rat.add_lt_add_right H
... = b + a + b - b : rat.add_sub_cancel ... = b + a + b - b : rat.add_sub_cancel
... = (b + b) + (a - b) : sorry, -- simp ... = b + b + a - b : rat.add.right_comm
... = (b + b) + (a - b) : add_sub,
have H3 [visible] : (a + a) / (1 + 1) > ((b + b) + (a - b)) / (1 + 1), have H3 [visible] : (a + a) / (1 + 1) > ((b + b) + (a - b)) / (1 + 1),
from div_lt_div_of_lt_of_pos H2 dec_trivial, from div_lt_div_of_lt_of_pos H2 dec_trivial,
by rewrite [div_two at H3, -div_add_div_same at H3, div_two at H3]; exact H3) by rewrite [div_two at H3, -div_add_div_same at H3, div_two at H3]; exact H3)
(pos_div_of_pos_of_pos (iff.mpr !sub_pos_iff_lt H) dec_trivial)) (pos_div_of_pos_of_pos (iff.mpr !sub_pos_iff_lt H) dec_trivial))
theorem add_sub_comm (a b c d : ) : a + b - (c + d) = (a - c) + (b - d) := sorry theorem add_sub_comm (a b c d : ) : a + b - (c + d) = (a - c) + (b - d) :=
calc
a + b - (c + d) = a + b - c - d : sub_add_eq_sub_sub
... = a - c + b - d : sub_add_eq_add_sub
... = a - c + (b - d) : add_sub
theorem s_mul_assoc_lemma_4 {n : +} {ε q : } (Hε : ε > 0) (Hq : q > 0) (H : n ≥ pceil (q / ε)) : theorem s_mul_assoc_lemma_4 {n : +} {ε q : } (Hε : ε > 0) (Hq : q > 0) (H : n ≥ pceil (q / ε)) :
q * n⁻¹ ≤ ε := q * n⁻¹ ≤ ε :=
@ -52,7 +57,19 @@ theorem s_mul_assoc_lemma_3 (a b n : +) (p : ) :
p * ((a * n)⁻¹ + (b * n)⁻¹) = p * (a⁻¹ + b⁻¹) * n⁻¹ := p * ((a * n)⁻¹ + (b * n)⁻¹) = p * (a⁻¹ + b⁻¹) * n⁻¹ :=
by rewrite [rat.mul.assoc, rat.right_distrib, *inv_mul_eq_mul_inv] by rewrite [rat.mul.assoc, rat.right_distrib, *inv_mul_eq_mul_inv]
theorem find_thirds (a b : ) : ∃ n : +, a + n⁻¹ + n⁻¹ + n⁻¹ < a + b := sorry theorem find_thirds (a b : ) (H : b > 0) : ∃ n : +, a + n⁻¹ + n⁻¹ + n⁻¹ < a + b :=
let n := pceil (of_nat 4 / b) in
have of_nat 3 * n⁻¹ < b, from calc
of_nat 3 * n⁻¹ < of_nat 4 * n⁻¹
: rat.mul_lt_mul_of_pos_right dec_trivial !inv_pos
... ≤ of_nat 4 * (b / of_nat 4)
: rat.mul_le_mul_of_nonneg_left (!inv_pceil_div dec_trivial H) !of_nat_nonneg
... = b / of_nat 4 * of_nat 4 : rat.mul.comm
... = b : rat.div_mul_cancel dec_trivial,
exists.intro n (calc
a + n⁻¹ + n⁻¹ + n⁻¹ = a + (1 + 1 + 1) * n⁻¹ : by rewrite[*rat.right_distrib,*rat.one_mul,-*rat.add.assoc]
... = a + of_nat 3 * n⁻¹ : {show 1+1+1=of_nat 3, from dec_trivial}
... < a + b : rat.add_lt_add_left this a)
theorem squeeze {a b : } (H : ∀ j : +, a ≤ b + j⁻¹ + j⁻¹ + j⁻¹) : a ≤ b := theorem squeeze {a b : } (H : ∀ j : +, a ≤ b + j⁻¹ + j⁻¹ + j⁻¹) : a ≤ b :=
begin begin
@ -60,7 +77,7 @@ theorem squeeze {a b : } (H : ∀ j : +, a ≤ b + j⁻¹ + j⁻¹ + j⁻
intro Hb, intro Hb,
apply (exists.elim (find_midpoint Hb)), apply (exists.elim (find_midpoint Hb)),
intro c Hc, intro c Hc,
apply (exists.elim (find_thirds b c)), apply (exists.elim (find_thirds b c (and.right Hc))),
intro j Hbj, intro j Hbj,
have Ha : a > b + j⁻¹ + j⁻¹ + j⁻¹, from lt.trans Hbj (and.left Hc), have Ha : a > b + j⁻¹ + j⁻¹ + j⁻¹, from lt.trans Hbj (and.left Hc),
exact absurd !H (not_le_of_gt Ha) exact absurd !H (not_le_of_gt Ha)
@ -77,26 +94,52 @@ theorem squeeze_2 {a b : } (H : ∀ ε : , ε > 0 → a ≥ b - ε) : a
end end
theorem rewrite_helper (a b c d : ) : a * b - c * d = a * (b - d) + (a - c) * d := theorem rewrite_helper (a b c d : ) : a * b - c * d = a * (b - d) + (a - c) * d :=
sorry by rewrite[rat.mul_sub_left_distrib, rat.mul_sub_right_distrib, add_sub, rat.sub_add_cancel]
theorem rewrite_helper3 (a b c d e f g: ) : a * (b + c) - (d * e + f * g) = theorem rewrite_helper3 (a b c d e f g: ) : a * (b + c) - (d * e + f * g) =
(a * b - d * e) + (a * c - f * g) := sorry (a * b - d * e) + (a * c - f * g) :=
by rewrite[rat.mul.left_distrib, add_sub_comm]
theorem rewrite_helper4 (a b c d : ) : a * b - c * d = (a * b - a * d) + (a * d - c * d) := sorry theorem rewrite_helper4 (a b c d : ) : a * b - c * d = (a * b - a * d) + (a * d - c * d) :=
by rewrite[add_sub, rat.sub_add_cancel]
theorem rewrite_helper5 (a b x y : ) : a - b = (a - x) + (x - y) + (y - b) := sorry theorem rewrite_helper5 (a b x y : ) : a - b = (a - x) + (x - y) + (y - b) :=
by rewrite[*add_sub, *rat.sub_add_cancel]
theorem rewrite_helper7 (a b c d x : ) : theorem rewrite_helper7 (a b c d x : ) :
a * b * c - d = (b * c) * (a - x) + (x * b * c - d) := sorry a * b * c - d = (b * c) * (a - x) + (x * b * c - d) :=
by rewrite[rat.mul_sub_left_distrib, add_sub]; exact (calc
a * b * c - d = a * b * c - x * b * c + x * b * c - d : rat.sub_add_cancel
... = b * c * a - b * c * x + x * b * c - d :
have ∀ {a b c : }, a * b * c = b * c * a, from
λa b c, !rat.mul.comm ▸ !rat.mul.right_comm,
this ▸ this ▸ rfl)
theorem ineq_helper (a b : ) (k m n : +) (H : a ≤ (k * 2 * m)⁻¹ + (k * 2 * n)⁻¹) theorem ineq_helper (a b : ) (k m n : +) (H : a ≤ (k * 2 * m)⁻¹ + (k * 2 * n)⁻¹)
(H2 : b ≤ (k * 2 * m)⁻¹ + (k * 2 * n)⁻¹) : (H2 : b ≤ (k * 2 * m)⁻¹ + (k * 2 * n)⁻¹) :
(rat_of_pnat k) * a + b * (rat_of_pnat k) ≤ m⁻¹ + n⁻¹ := sorry (rat_of_pnat k) * a + b * (rat_of_pnat k) ≤ m⁻¹ + n⁻¹ :=
have (k * 2 * m)⁻¹ + (k * 2 * n)⁻¹ = (2 * k)⁻¹ * (m⁻¹ + n⁻¹),
by rewrite[rat.mul.left_distrib,*inv_mul_eq_mul_inv]; exact !rat.mul.comm ▸ rfl,
have a + b ≤ k⁻¹ * (m⁻¹ + n⁻¹), from calc
a + b ≤ (2 * k)⁻¹ * (m⁻¹ + n⁻¹) + (2 * k)⁻¹ * (m⁻¹ + n⁻¹) : rat.add_le_add (this ▸ H) (this ▸ H2)
... = ((2 * k)⁻¹ + (2 * k)⁻¹) * (m⁻¹ + n⁻¹) : rat.mul.right_distrib
... = k⁻¹ * (m⁻¹ + n⁻¹) : (pnat.add_halves k) ▸ rfl,
calc (rat_of_pnat k) * a + b * (rat_of_pnat k)
= (rat_of_pnat k) * a + (rat_of_pnat k) * b : rat.mul.comm
... = (rat_of_pnat k) * (a + b) : rat.left_distrib
... ≤ (rat_of_pnat k) * (k⁻¹ * (m⁻¹ + n⁻¹)) :
iff.mp (!rat.le_iff_mul_le_mul_left !rat_of_pnat_is_pos) this
... = m⁻¹ + n⁻¹ : by rewrite[-rat.mul.assoc, inv_cancel_left, rat.one_mul]
theorem factor_lemma (a b c d e : ) : abs (a + b + c - (d + (b + e))) = abs ((a - d) + (c - e)) := theorem factor_lemma (a b c d e : ) : abs (a + b + c - (d + (b + e))) = abs ((a - d) + (c - e)) :=
sorry !congr_arg (calc
a + b + c - (d + (b + e)) = a + b + c - (d + b + e) : rat.add.assoc
... = a + b - (d + b) + (c - e) : add_sub_comm
... = a + b - b - d + (c - e) : sub_add_eq_sub_sub_swap
... = a - d + (c - e) : rat.add_sub_cancel)
theorem factor_lemma_2 (a b c d : ) : (a + b) + (c + d) = (a + c) + (d + b) := sorry theorem factor_lemma_2 (a b c d : ) : (a + b) + (c + d) = (a + c) + (d + b) :=
!rat.add.comm ▸ (binary.comm4 rat.add.comm rat.add.assoc a b c d)
------------------------------------- -------------------------------------
-- The only sorry's after this point are for the simplifier. -- The only sorry's after this point are for the simplifier.
@ -164,8 +207,12 @@ theorem eq_of_bdd {s t : seq} (Hs : regular s) (Ht : regular t)
apply rat.add_le_add, apply rat.add_le_add,
apply HNj (max j Nj) (max_right j Nj), apply HNj (max j Nj) (max_right j Nj),
apply Ht, apply Ht,
have hsimp : ∀ m : +, n⁻¹ + m⁻¹ + (j⁻¹ + (m⁻¹ + n⁻¹)) = (n⁻¹ + n⁻¹ + j⁻¹) + (m⁻¹ + m⁻¹), have hsimp : ∀ m : +, n⁻¹ + m⁻¹ + (j⁻¹ + (m⁻¹ + n⁻¹)) = n⁻¹ + n⁻¹ + j⁻¹ + (m⁻¹ + m⁻¹),
from sorry, -- simplifier from λm, calc
n⁻¹ + m⁻¹ + (j⁻¹ + (m⁻¹ + n⁻¹)) = n⁻¹ + (j⁻¹ + (m⁻¹ + n⁻¹)) + m⁻¹ : rat.add.right_comm
... = n⁻¹ + (j⁻¹ + m⁻¹ + n⁻¹) + m⁻¹ : rat.add.assoc
... = n⁻¹ + (n⁻¹ + (j⁻¹ + m⁻¹)) + m⁻¹ : rat.add.comm
... = n⁻¹ + n⁻¹ + j⁻¹ + (m⁻¹ + m⁻¹) : by rewrite[-*rat.add.assoc],
rewrite hsimp, rewrite hsimp,
have Hms : (max j Nj)⁻¹ + (max j Nj)⁻¹ ≤ j⁻¹ + j⁻¹, begin have Hms : (max j Nj)⁻¹ + (max j Nj)⁻¹ ≤ j⁻¹ + j⁻¹, begin
apply rat.add_le_add, apply rat.add_le_add,
@ -247,8 +294,8 @@ theorem canon_bound {s : seq} (Hs : regular s) (n : +) : abs (s n) ≤ rat_of
... = abs (s pone) + (1 + 1) : ... = abs (s pone) + (1 + 1) :
by rewrite [add.comm 1 (abs (s pone)), rat.add.comm 1, rat.add.assoc] by rewrite [add.comm 1 (abs (s pone)), rat.add.comm 1, rat.add.assoc]
... ≤ of_nat (ubound (abs (s pone))) + (1 + 1) : rat.add_le_add_right (!ubound_ge) ... ≤ of_nat (ubound (abs (s pone))) + (1 + 1) : rat.add_le_add_right (!ubound_ge)
... = of_nat (ubound (abs (s pone)) + (1 + 1)) : by rewrite of_nat_add ... = of_nat (ubound (abs (s pone)) + (1 + 1)) : of_nat_add
... = of_nat (ubound (abs (s pone)) + 1 + 1) : by rewrite nat.add.assoc ... = of_nat (ubound (abs (s pone)) + 1 + 1) : nat.add.assoc
definition K₂ (s t : seq) := max (K s) (K t) definition K₂ (s t : seq) := max (K s) (K t)
@ -583,6 +630,7 @@ theorem add_well_defined {s t u v : seq} (Hs : regular s) (Ht : regular t) (Hu :
apply Etv apply Etv
end end
set_option tactic.goal_names false
theorem mul_bound_helper {s t : seq} (Hs : regular s) (Ht : regular t) (a b c : +) (j : +) : theorem mul_bound_helper {s t : seq} (Hs : regular s) (Ht : regular t) (a b c : +) (j : +) :
∃ N : +, ∀ n : +, n ≥ N → abs (s (a * n) * t (b * n) - s (c * n) * t (c * n)) ≤ j⁻¹ := ∃ N : +, ∀ n : +, n ≥ N → abs (s (a * n) * t (b * n) - s (c * n) * t (c * n)) ≤ j⁻¹ :=
begin begin
@ -600,7 +648,8 @@ theorem mul_bound_helper {s t : seq} (Hs : regular s) (Ht : regular t) (a b c :
apply rat.le.trans, apply rat.le.trans,
apply rat.mul_le_mul_of_nonneg_right, apply rat.mul_le_mul_of_nonneg_right,
apply pceil_helper Hn, apply pceil_helper Hn,
repeat (apply rat.mul_pos | apply rat.add_pos | apply inv_pos | apply rat_of_pnat_is_pos), repeat (apply rat.mul_pos | apply rat.add_pos | apply rat_of_pnat_is_pos | apply inv_pos),
--repeat (apply rat.mul_pos | apply rat.add_pos | apply inv_pos | apply rat_of_pnat_is_pos),
apply rat.le_of_lt, apply rat.le_of_lt,
apply rat.add_pos, apply rat.add_pos,
apply rat.mul_pos, apply rat.mul_pos,
@ -609,11 +658,11 @@ theorem mul_bound_helper {s t : seq} (Hs : regular s) (Ht : regular t) (a b c :
repeat apply inv_pos, repeat apply inv_pos,
apply rat.mul_pos, apply rat.mul_pos,
apply rat.add_pos, apply rat.add_pos,
repeat apply inv_pos, apply inv_pos,apply inv_pos, -- repeat apply inv_pos,
apply rat_of_pnat_is_pos, apply rat_of_pnat_is_pos,
have H : (rat_of_pnat (K s) * (b⁻¹ + c⁻¹) + (a⁻¹ + c⁻¹) * rat_of_pnat (K t)) ≠ 0, begin have H : (rat_of_pnat (K s) * (b⁻¹ + c⁻¹) + (a⁻¹ + c⁻¹) * rat_of_pnat (K t)) ≠ 0, begin
apply rat.ne_of_gt, apply rat.ne_of_gt,
repeat (apply rat.mul_pos | apply rat.add_pos | apply inv_pos | apply rat_of_pnat_is_pos) repeat (apply rat.mul_pos | apply rat.add_pos | apply rat_of_pnat_is_pos | apply inv_pos),
end, end,
rewrite (rat.div_helper H), rewrite (rat.div_helper H),
apply rat.le.refl apply rat.le.refl
@ -648,7 +697,7 @@ theorem mul_bound_helper {s t : seq} (Hs : regular s) (Ht : regular t) (a b c :
apply rat.le_of_lt, apply rat.le_of_lt,
apply rat.mul_pos, apply rat.mul_pos,
apply rat.add_pos, apply rat.add_pos,
repeat apply inv_pos, apply inv_pos,apply inv_pos, -- repeat apply inv_pos,
apply rat_of_pnat_is_pos, apply rat_of_pnat_is_pos,
apply rat.le_of_lt, apply rat.le_of_lt,
apply inv_pos apply inv_pos
@ -733,7 +782,11 @@ theorem mul_neg_equiv_neg_mul {s t : seq} : smul s (sneg t) ≡ sneg (smul s t)
theorem equiv_of_diff_equiv_zero {s t : seq} (Hs : regular s) (Ht : regular t) theorem equiv_of_diff_equiv_zero {s t : seq} (Hs : regular s) (Ht : regular t)
(H : sadd s (sneg t) ≡ zero) : s ≡ t := (H : sadd s (sneg t) ≡ zero) : s ≡ t :=
begin begin
have hsimp : ∀ a b c d e : , a + b + c + (d + e) = (b + d) + a + e + c, from sorry, have hsimp : ∀ a b c d e : , a + b + c + (d + e) = b + d + a + e + c, from
λ a b c d e, calc
a + b + c + (d + e) = a + b + (d + e) + c : rat.add.right_comm
... = a + (b + d) + e + c : by rewrite[-*rat.add.assoc]
... = b + d + a + e + c : rat.add.comm,
apply eq_of_bdd Hs Ht, apply eq_of_bdd Hs Ht,
intros, intros,
let He := bdd_of_eq H, let He := bdd_of_eq H,

View file

@ -22,8 +22,8 @@ open eq.ops
open pnat open pnat
local notation 2 := pnat.pos (nat.of_num 2) dec_trivial local notation 2 := subtype.tag (nat.of_num 2) dec_trivial
local notation 3 := pnat.pos (nat.of_num 3) dec_trivial local notation 3 := subtype.tag (nat.of_num 3) dec_trivial
namespace s namespace s
@ -206,11 +206,15 @@ theorem sub_consts (a b : ) : const a + -const b = const (a - b) := !add_cons
theorem add_half_const (n : +) : const (2 * n)⁻¹ + const (2 * n)⁻¹ = const (n⁻¹) := theorem add_half_const (n : +) : const (2 * n)⁻¹ + const (2 * n)⁻¹ = const (n⁻¹) :=
by rewrite [add_consts, pnat.add_halves]-/ by rewrite [add_consts, pnat.add_halves]-/
theorem p_add_fractions (n : +) : (2 * n)⁻¹ + (2 * 3 * n)⁻¹ + (3 * n)⁻¹ = n⁻¹ := sorry theorem p_add_fractions (n : +) : (2 * n)⁻¹ + (2 * 3 * n)⁻¹ + (3 * n)⁻¹ = n⁻¹ :=
assert T : 2⁻¹ + 2⁻¹ * 3⁻¹ + 3⁻¹ = 1, from dec_trivial,
by rewrite[*inv_mul_eq_mul_inv,-*rat.right_distrib,T,rat.one_mul]
theorem rewrite_helper9 (a b c : ) : b - c = (b - a) - (c - a) := sorry theorem rewrite_helper9 (a b c : ) : b - c = (b - a) - (c - a) :=
by rewrite[-sub_add_eq_sub_sub_swap,sub_add_cancel]
theorem rewrite_helper10 (a b c d : ) : c - d = (c - a) + (a - b) + (b - d) := sorry theorem rewrite_helper10 (a b c d : ) : c - d = (c - a) + (a - b) + (b - d) :=
by rewrite[*add_sub,*sub_add_cancel]
definition rep (x : ) : s.reg_seq := some (quot.exists_rep x) definition rep (x : ) : s.reg_seq := some (quot.exists_rep x)

View file

@ -16,14 +16,15 @@ open eq.ops pnat
local notation 0 := rat.of_num 0 local notation 0 := rat.of_num 0
local notation 1 := rat.of_num 1 local notation 1 := rat.of_num 1
local notation 2 := pnat.pos (nat.of_num 2) dec_trivial local notation 2 := subtype.tag (nat.of_num 2) dec_trivial
namespace s namespace s
----------------------------- -----------------------------
-- helper lemmas -- helper lemmas
theorem neg_add_rewrite {a b : } : a + -b = -(b + -a) := sorry theorem neg_add_rewrite {a b : } : a + -b = -(b + -a) :=
by rewrite[neg_add_rev,neg_neg]
theorem abs_abs_sub_abs_le_abs_sub (a b : ) : abs (abs a - abs b) ≤ abs (a - b) := theorem abs_abs_sub_abs_le_abs_sub (a b : ) : abs (abs a - abs b) ≤ abs (a - b) :=
begin begin
@ -38,10 +39,6 @@ theorem abs_abs_sub_abs_le_abs_sub (a b : ) : abs (abs a - abs b) ≤ abs (a
apply trivial apply trivial
end end
-- does this not exist already??
theorem forall_of_not_exists {A : Type} {P : A → Prop} (H : ¬ ∃ a : A, P a) : ∀ a : A, ¬ P a :=
take a, assume Ha, H (exists.intro a Ha)
theorem and_of_not_or {a b : Prop} (H : ¬ (a b)) : ¬ a ∧ ¬ b := theorem and_of_not_or {a b : Prop} (H : ¬ (a b)) : ¬ a ∧ ¬ b :=
and.intro (assume H', H (or.inl H')) (assume H', H (or.inr H')) and.intro (assume H', H (or.inl H')) (assume H', H (or.inr H'))
@ -517,7 +514,7 @@ theorem s_le_total {s t : seq} (Hs : regular s) (Ht : regular t) : s_le s t
theorem s_le_of_not_lt {s t : seq} (Hle : ¬ s_lt s t) : s_le t s := theorem s_le_of_not_lt {s t : seq} (Hle : ¬ s_lt s t) : s_le t s :=
begin begin
rewrite [↑s_le, ↑nonneg, ↑s_lt at Hle, ↑pos at Hle], rewrite [↑s_le, ↑nonneg, ↑s_lt at Hle, ↑pos at Hle],
let Hle' := forall_of_not_exists Hle, let Hle' := iff.mp forall_iff_not_exists Hle,
intro n, intro n,
let Hn := neg_le_neg (rat.le_of_not_gt (Hle' n)), let Hn := neg_le_neg (rat.le_of_not_gt (Hle' n)),
rewrite [↑sadd, ↑sneg, neg_add_rewrite], rewrite [↑sadd, ↑sneg, neg_add_rewrite],

View file

@ -17,7 +17,7 @@ open -[coercions] nat
open eq eq.ops pnat open eq eq.ops pnat
local notation 0 := rat.of_num 0 local notation 0 := rat.of_num 0
local notation 1 := rat.of_num 1 local notation 1 := rat.of_num 1
notation 2 := pnat.pos (of_num 2) dec_trivial notation 2 := subtype.tag (of_num 2) dec_trivial
---------------------------------------------------------------------------------------------------- ----------------------------------------------------------------------------------------------------
@ -43,11 +43,21 @@ theorem sep_by_inv {a b : } (H : a > b) : ∃ N : +, a > (b + N⁻¹ + N
apply and.right Hc) apply and.right Hc)
end end
theorem helper_1 {a : } (H : a > 0) : -a + -a ≤ -a := sorry theorem helper_1 {a : } (H : a > 0) : -a + -a ≤ -a :=
!neg_add ▸ neg_le_neg (le_add_of_nonneg_left (le_of_lt H))
theorem rewrite_helper8 (a b c : ) : a - b = c - b + (a - c) := sorry -- simp theorem rewrite_helper8 (a b c : ) : a - b = c - b + (a - c) :=
by rewrite[add_sub,rat.sub_add_cancel] ⬝ !rat.add.comm
theorem nonneg_of_ge_neg_invs (a : ) (H : ∀ n : +, -n⁻¹ ≤ a) : 0 ≤ a := sorry theorem nonneg_of_ge_neg_invs (a : ) (H : ∀ n : +, -n⁻¹ ≤ a) : 0 ≤ a :=
rat.le_of_not_gt (suppose a < 0,
have H2 : 0 < -a, from neg_pos_of_neg this,
(rat.not_lt_of_ge !H) (iff.mp !lt_neg_iff_lt_neg (calc
(pceil (of_num 2 / -a))⁻¹ ≤ -a / of_num 2
: !inv_pceil_div dec_trivial H2
... < -a / 1
: div_lt_div_of_pos_of_lt_of_pos dec_trivial dec_trivial H2
... = -a : div_one)))
--------- ---------
namespace s namespace s

View file

@ -22,18 +22,16 @@ namespace subtype
rfl rfl
theorem tag_eq {a1 a2 : A} {H1 : P a1} {H2 : P a2} (H3 : a1 = a2) : tag a1 H1 = tag a2 H2 := theorem tag_eq {a1 a2 : A} {H1 : P a1} {H2 : P a2} (H3 : a1 = a2) : tag a1 H1 = tag a2 H2 :=
eq.subst H3 (take H2, tag_irrelevant H1 H2) H2 eq.subst H3 (tag_irrelevant H1) H2
protected theorem eq {a1 a2 : {x | P x}} : ∀(H : elt_of a1 = elt_of a2), a1 = a2 := protected theorem eq : ∀ {a1 a2 : {x | P x}} (H : elt_of a1 = elt_of a2), a1 = a2
destruct a1 (take x1 H1, destruct a2 (take x2 H2 H, tag_eq H)) | (tag x1 H1) (tag x2 H2) := tag_eq
protected definition is_inhabited [instance] {a : A} (H : P a) : inhabited {x | P x} := protected definition is_inhabited [instance] {a : A} (H : P a) : inhabited {x | P x} :=
inhabited.mk (tag a H) inhabited.mk (tag a H)
protected definition has_decidable_eq [instance] [H : decidable_eq A] : ∀ s₁ s₂ : {x | P x}, decidable (s₁ = s₂) protected definition has_decidable_eq [instance] [H : decidable_eq A] : ∀ s₁ s₂ : {x | P x}, decidable (s₁ = s₂)
| (tag v₁ p₁) (tag v₂ p₂) := | (tag v₁ p₁) (tag v₂ p₂) :=
match H v₁ v₂ with decidable_of_decidable_of_iff (H v₁ v₂)
| inl veq := begin left, substvars end (iff.intro tag_eq (λh, subtype.no_confusion h (λa b, a)))
| inr vne := begin right, intro h, injection h, contradiction end
end
end subtype end subtype

View file

@ -57,8 +57,11 @@ namespace eq
theorem trans (H₁ : a = b) (H₂ : b = c) : a = c := theorem trans (H₁ : a = b) (H₂ : b = c) : a = c :=
subst H₂ H₁ subst H₂ H₁
theorem symm (H : a = b) : b = a := theorem symm : a = b → b = a :=
eq.rec (refl a) H eq.rec (refl a)
theorem substr {P : A → Prop} (H₁ : b = a) : P a → P b :=
subst (symm H₁)
namespace ops namespace ops
notation H `⁻¹` := symm H --input with \sy or \-1 or \inv notation H `⁻¹` := symm H --input with \sy or \-1 or \inv
@ -74,8 +77,8 @@ eq.subst H₁ (eq.subst H₂ rfl)
theorem congr_fun {A : Type} {B : A → Type} {f g : Π x, B x} (H : f = g) (a : A) : f a = g a := theorem congr_fun {A : Type} {B : A → Type} {f g : Π x, B x} (H : f = g) (a : A) : f a = g a :=
eq.subst H (eq.refl (f a)) eq.subst H (eq.refl (f a))
theorem congr_arg {A B : Type} {a₁ a₂ : A} (f : A → B) (H : a₁ = a₂) : f a₁ = f a₂ := theorem congr_arg {A B : Type} {a₁ a₂ : A} (f : A → B) : a₁ = a₂ → f a₁ = f a₂ :=
congr rfl H congr rfl
section section
variables {A : Type} {a b c: A} variables {A : Type} {a b c: A}
@ -114,25 +117,17 @@ namespace ne
variable {A : Type} variable {A : Type}
variables {a b : A} variables {a b : A}
theorem intro : (a = b → false) → a ≠ b := theorem intro (H : a = b → false) : a ≠ b := H
assume H, H
theorem elim : a ≠ b → a = b → false := theorem elim (H : a ≠ b) : a = b → false := H
assume H₁ H₂, H₁ H₂
theorem irrefl : a ≠ a → false := theorem irrefl (H : a ≠ a) : false := H rfl
assume H, H rfl
theorem symm : a ≠ b → b ≠ a := theorem symm (H : a ≠ b) : b ≠ a :=
assume (H : a ≠ b) (H₁ : b = a), H (H₁⁻¹) assume (H₁ : b = a), H (H₁⁻¹)
end ne end ne
section theorem false.of_ne {A : Type} {a : A} : a ≠ a → false := ne.irrefl
variables {A : Type} {a : A}
theorem false.of_ne : a ≠ a → false :=
assume H, H rfl
end
infixl `==`:50 := heq infixl `==`:50 := heq
@ -141,15 +136,15 @@ namespace heq
variables {A B C : Type.{u}} {a a' : A} {b b' : B} {c : C} variables {A B C : Type.{u}} {a a' : A} {b b' : B} {c : C}
theorem to_eq (H : a == a') : a = a' := theorem to_eq (H : a == a') : a = a' :=
have H₁ : ∀ (Ht : A = A), eq.rec_on Ht a = a, from have H₁ : ∀ (Ht : A = A), eq.rec a Ht = a, from
λ Ht, eq.refl (eq.rec_on Ht a), λ Ht, eq.refl a,
heq.rec_on H H (eq.refl A) heq.rec H H (eq.refl A)
theorem elim {A : Type} {a : A} {P : A → Type} {b : A} (H₁ : a == b) (H₂ : P a) : P b := theorem elim {A : Type} {a : A} {P : A → Type} {b : A} (H₁ : a == b)
eq.rec_on (to_eq H₁) H₂ : P a → P b := eq.rec_on (to_eq H₁)
theorem subst {P : ∀T : Type, T → Prop} (H₁ : a == b) (H₂ : P A a) : P B b := theorem subst {P : ∀T : Type, T → Prop} : a == b → P A a → P B b :=
heq.rec_on H₁ H₂ heq.rec_on
theorem symm (H : a == b) : b == a := theorem symm (H : a == b) : b == a :=
heq.rec_on H (refl a) heq.rec_on H (refl a)
@ -235,19 +230,15 @@ notation a <-> b := iff a b
notation a ↔ b := iff a b notation a ↔ b := iff a b
namespace iff namespace iff
theorem intro (H₁ : a → b) (H₂ : b → a) : a ↔ b := theorem intro : (a → b) → (b → a) → (a ↔ b) := and.intro
and.intro H₁ H₂
theorem elim (H₁ : (a → b) → (b → a) → c) (H₂ : a ↔ b) : c := theorem elim : ((a → b) → (b → a) → c) → (a ↔ b) → c := and.rec
and.rec H₁ H₂
theorem elim_left (H : a ↔ b) : a → b := theorem elim_left : (a ↔ b) → a → b := and.left
elim (assume H₁ H₂, H₁) H
definition mp := @elim_left definition mp := @elim_left
theorem elim_right (H : a ↔ b) : b → a := theorem elim_right : (a ↔ b) → b → a := and.right
elim (assume H₁ H₂, H₂) H
definition mpr := @elim_right definition mpr := @elim_right
@ -259,29 +250,29 @@ namespace iff
theorem trans (H₁ : a ↔ b) (H₂ : b ↔ c) : a ↔ c := theorem trans (H₁ : a ↔ b) (H₂ : b ↔ c) : a ↔ c :=
intro intro
(assume Ha, elim_left H₂ (elim_left H₁ Ha)) (assume Ha, mp H₂ (mp H₁ Ha))
(assume Hc, elim_right H₁ (elim_right H₂ Hc)) (assume Hc, mpr H₁ (mpr H₂ Hc))
theorem symm (H : a ↔ b) : b ↔ a := theorem symm (H : a ↔ b) : b ↔ a :=
intro intro (elim_right H) (elim_left H)
(assume Hb, elim_right H Hb)
(assume Ha, elim_left H Ha) theorem comm : (a ↔ b) ↔ (b ↔ a) :=
intro symm symm
open eq.ops open eq.ops
theorem of_eq {a b : Prop} (H : a = b) : a ↔ b := theorem of_eq {a b : Prop} (H : a = b) : a ↔ b :=
iff.intro (λ Ha, H ▸ Ha) (λ Hb, H⁻¹ ▸ Hb) H ▸ rfl
end iff end iff
theorem not_iff_not_of_iff (H₁ : a ↔ b) : ¬a ↔ ¬b := theorem not_iff_not_of_iff (H₁ : a ↔ b) : ¬a ↔ ¬b :=
iff.intro iff.intro
(assume (Hna : ¬ a) (Hb : b), absurd (iff.elim_right H₁ Hb) Hna) (assume (Hna : ¬ a) (Hb : b), Hna (iff.elim_right H₁ Hb))
(assume (Hnb : ¬ b) (Ha : a), absurd (iff.elim_left H₁ Ha) Hnb) (assume (Hnb : ¬ b) (Ha : a), Hnb (iff.elim_left H₁ Ha))
theorem of_iff_true (H : a ↔ true) : a := theorem of_iff_true (H : a ↔ true) : a :=
iff.mp (iff.symm H) trivial iff.mp (iff.symm H) trivial
theorem not_of_iff_false (H : a ↔ false) : ¬a := theorem not_of_iff_false : (a ↔ false) → ¬a := iff.mp
assume Ha : a, iff.mp H Ha
theorem iff_true_intro (H : a) : a ↔ true := theorem iff_true_intro (H : a) : a ↔ true :=
iff.intro iff.intro
@ -289,16 +280,12 @@ iff.intro
(λ Hr, H) (λ Hr, H)
theorem iff_false_intro (H : ¬a) : a ↔ false := theorem iff_false_intro (H : ¬a) : a ↔ false :=
iff.intro iff.intro H !false.rec
(λ Hl, absurd Hl H)
(λ Hr, false.rec _ Hr)
theorem not_non_contradictory_iff_absurd (a : Prop) : ¬¬¬a ↔ ¬a := theorem not_non_contradictory_iff_absurd (a : Prop) : ¬¬¬a ↔ ¬a :=
iff.intro iff.intro
(assume Hl : ¬¬¬a, (λ (Hl : ¬¬¬a) (Ha : a), Hl (non_contradictory_intro Ha))
assume Ha : a, absurd (non_contradictory_intro Ha) Hl) absurd
(assume Hr : ¬a,
assume Hnna : ¬¬a, absurd Hr Hnna)
attribute iff.refl [refl] attribute iff.refl [refl]
attribute iff.symm [symm] attribute iff.symm [symm]
@ -312,7 +299,8 @@ definition exists.intro := @Exists.intro
notation `exists` binders `,` r:(scoped P, Exists P) := r notation `exists` binders `,` r:(scoped P, Exists P) := r
notation `∃` binders `,` r:(scoped P, Exists P) := r notation `∃` binders `,` r:(scoped P, Exists P) := r
theorem exists.elim {A : Type} {p : A → Prop} {B : Prop} (H1 : ∃x, p x) (H2 : ∀ (a : A) (H : p a), B) : B := theorem exists.elim {A : Type} {p : A → Prop} {B : Prop}
(H1 : ∃x, p x) (H2 : ∀ (a : A), p a → B) : B :=
Exists.rec H2 H1 Exists.rec H2 H1
/- decidable -/ /- decidable -/
@ -327,6 +315,16 @@ decidable.inl trivial
definition decidable_false [instance] : decidable false := definition decidable_false [instance] : decidable false :=
decidable.inr not_false decidable.inr not_false
-- We use "dependent" if-then-else to be able to communicate the if-then-else condition
-- to the branches
definition dite (c : Prop) [H : decidable c] {A : Type} : (c → A) → (¬ c → A) → A :=
decidable.rec_on H
/- if-then-else -/
definition ite (c : Prop) [H : decidable c] {A : Type} (t e : A) : A :=
decidable.rec_on H (λ Hc, t) (λ Hnc, e)
namespace decidable namespace decidable
variables {p q : Prop} variables {p q : Prop}
@ -338,37 +336,29 @@ namespace decidable
: decidable.rec_on H H1 H2 := : decidable.rec_on H H1 H2 :=
decidable.rec_on H (λh, false.rec _ (H3 h)) (λh, H4) decidable.rec_on H (λh, false.rec _ (H3 h)) (λh, H4)
definition by_cases {q : Type} [C : decidable p] (Hpq : p → q) (Hnpq : ¬p → q) : q := definition by_cases {q : Type} [C : decidable p] : (p → q) → (¬p → q) → q := !dite
decidable.rec_on C (assume Hp, Hpq Hp) (assume Hnp, Hnpq Hnp)
theorem em (p : Prop) [H : decidable p] : p ¬p := theorem em (p : Prop) [H : decidable p] : p ¬p := by_cases or.inl or.inr
by_cases (λ Hp, or.inl Hp) (λ Hnp, or.inr Hnp)
theorem by_contradiction [Hp : decidable p] (H : ¬p → false) : p := theorem by_contradiction [Hp : decidable p] (H : ¬p → false) : p :=
by_cases if H1 : p then H1 else false.rec _ (H H1)
(assume H1 : p, H1)
(assume H1 : ¬p, false.rec _ (H H1))
end decidable end decidable
section section
variables {p q : Prop} variables {p q : Prop}
open decidable open decidable
definition decidable_of_decidable_of_iff (Hp : decidable p) (H : p ↔ q) : decidable q := definition decidable_of_decidable_of_iff (Hp : decidable p) (H : p ↔ q) : decidable q :=
decidable.rec_on Hp if Hp : p then inl (iff.mp H Hp)
(assume Hp : p, inl (iff.elim_left H Hp)) else inr (iff.mp (not_iff_not_of_iff H) Hp)
(assume Hnp : ¬p, inr (iff.elim_left (not_iff_not_of_iff H) Hnp))
definition decidable_of_decidable_of_eq (Hp : decidable p) (H : p = q) : decidable q := definition decidable_of_decidable_of_eq (Hp : decidable p) (H : p = q) : decidable q :=
decidable_of_decidable_of_iff Hp (iff.of_eq H) decidable_of_decidable_of_iff Hp (iff.of_eq H)
protected definition or.by_cases [Hp : decidable p] [Hq : decidable q] {A : Type} protected definition or.by_cases [Hp : decidable p] [Hq : decidable q] {A : Type}
: p q → (p → A) → (q → A) → A := (h : p q) (h₁ : p → A) (h₂ : q → A) : A :=
assume h h₁ h₂, by_cases if hp : p then h₁ hp else
(λ hp : p, h₁ hp) if hq : q then h₂ hq else
(λ hnp : ¬p, false.rec _ (or.elim h hp hq)
by_cases
(λ hq : q, h₂ hq)
(λ hnq : ¬q, absurd h (λ n, or.elim h hnp hnq)))
end end
section section
@ -376,41 +366,35 @@ section
open decidable (rec_on inl inr) open decidable (rec_on inl inr)
definition decidable_and [instance] [Hp : decidable p] [Hq : decidable q] : decidable (p ∧ q) := definition decidable_and [instance] [Hp : decidable p] [Hq : decidable q] : decidable (p ∧ q) :=
rec_on Hp if hp : p then
(assume Hp : p, rec_on Hq if hq : q then inl (and.intro hp hq)
(assume Hq : q, inl (and.intro Hp Hq)) else inr (assume H : p ∧ q, hq (and.right H))
(assume Hnq : ¬q, inr (assume H : p ∧ q, and.rec_on H (assume Hp Hq, absurd Hq Hnq)))) else inr (assume H : p ∧ q, hp (and.left H))
(assume Hnp : ¬p, inr (assume H : p ∧ q, and.rec_on H (assume Hp Hq, absurd Hp Hnp)))
definition decidable_or [instance] [Hp : decidable p] [Hq : decidable q] : decidable (p q) := definition decidable_or [instance] [Hp : decidable p] [Hq : decidable q] : decidable (p q) :=
rec_on Hp if hp : p then inl (or.inl hp) else
(assume Hp : p, inl (or.inl Hp)) if hq : q then inl (or.inr hq) else
(assume Hnp : ¬p, rec_on Hq inr (or.rec hp hq)
(assume Hq : q, inl (or.inr Hq))
(assume Hnq : ¬q, inr (assume H : p q, or.elim H (assume Hp, absurd Hp Hnp) (assume Hq, absurd Hq Hnq))))
definition decidable_not [instance] [Hp : decidable p] : decidable (¬p) := definition decidable_not [instance] [Hp : decidable p] : decidable (¬p) :=
rec_on Hp if hp : p then inr (absurd hp) else inl hp
(assume Hp, inr (λ Hnp, absurd Hp Hnp))
(assume Hnp, inl Hnp)
definition decidable_implies [instance] [Hp : decidable p] [Hq : decidable q] : decidable (p → q) := definition decidable_implies [instance] [Hp : decidable p] [Hq : decidable q] : decidable (p → q) :=
rec_on Hp if hp : p then
(assume Hp : p, rec_on Hq if hq : q then inl (assume H, hq)
(assume Hq : q, inl (assume H, Hq)) else inr (assume H : p → q, absurd (H hp) hq)
(assume Hnq : ¬q, inr (assume H : p → q, absurd (H Hp) Hnq))) else inl (assume Hp, absurd Hp hp)
(assume Hnp : ¬p, inl (assume Hp, absurd Hp Hnp))
definition decidable_iff [instance] [Hp : decidable p] [Hq : decidable q] : decidable (p ↔ q) := definition decidable_iff [instance] [Hp : decidable p] [Hq : decidable q] : decidable (p ↔ q) :=
show decidable ((p → q) ∧ (q → p)), from _ decidable_and
end end
definition decidable_pred [reducible] {A : Type} (R : A → Prop) := Π (a : A), decidable (R a) definition decidable_pred [reducible] {A : Type} (R : A → Prop) := Π (a : A), decidable (R a)
definition decidable_rel [reducible] {A : Type} (R : A → A → Prop) := Π (a b : A), decidable (R a b) definition decidable_rel [reducible] {A : Type} (R : A → A → Prop) := Π (a b : A), decidable (R a b)
definition decidable_eq [reducible] (A : Type) := decidable_rel (@eq A) definition decidable_eq [reducible] (A : Type) := decidable_rel (@eq A)
definition decidable_ne [instance] {A : Type} [H : decidable_eq A] : Π (a b : A), decidable (a ≠ b) := definition decidable_ne [instance] {A : Type} [H : decidable_eq A] (a b : A) : decidable (a ≠ b) :=
show Π x y : A, decidable (x = y → false), from _ decidable_implies
namespace bool namespace bool
theorem ff_ne_tt : ff = tt → false theorem ff_ne_tt : ff = tt → false
@ -429,9 +413,8 @@ protected definition bool.has_decidable_eq [instance] : ∀a b : bool, decidable
| tt tt := inl rfl | tt tt := inl rfl
definition decidable_eq_of_bool_pred {A : Type} {p : A → A → bool} (H₁ : is_dec_eq p) (H₂ : is_dec_refl p) : decidable_eq A := definition decidable_eq_of_bool_pred {A : Type} {p : A → A → bool} (H₁ : is_dec_eq p) (H₂ : is_dec_refl p) : decidable_eq A :=
take x y : A, by_cases take x y : A, if Hp : p x y = tt then inl (H₁ Hp)
(assume Hp : p x y = tt, inl (H₁ Hp)) else inr (assume Hxy : x = y, (eq.subst Hxy Hp) (H₂ y))
(assume Hn : ¬ p x y = tt, inr (assume Hxy : x = y, absurd (H₂ y) (eq.rec_on Hxy Hn)))
theorem decidable_eq_inl_refl {A : Type} [H : decidable_eq A] (a : A) : H a a = inl (eq.refl a) := theorem decidable_eq_inl_refl {A : Type} [H : decidable_eq A] (a : A) : H a a = inl (eq.refl a) :=
match H a a with match H a a with
@ -452,17 +435,17 @@ end
inductive inhabited [class] (A : Type) : Type := inductive inhabited [class] (A : Type) : Type :=
mk : A → inhabited A mk : A → inhabited A
protected definition inhabited.value {A : Type} (h : inhabited A) : A := protected definition inhabited.value {A : Type} : inhabited A → A :=
inhabited.rec (λa, a) h inhabited.rec (λa, a)
protected definition inhabited.destruct {A : Type} {B : Type} (H1 : inhabited A) (H2 : A → B) : B := protected definition inhabited.destruct {A : Type} {B : Type} (H1 : inhabited A) (H2 : A → B) : B :=
inhabited.rec H2 H1 inhabited.rec H2 H1
definition default (A : Type) [H : inhabited A] : A := definition default (A : Type) [H : inhabited A] : A :=
inhabited.rec (λa, a) H inhabited.value H
definition arbitrary [irreducible] (A : Type) [H : inhabited A] : A := definition arbitrary [irreducible] (A : Type) [H : inhabited A] : A :=
inhabited.rec (λa, a) H inhabited.value H
definition Prop.is_inhabited [instance] : inhabited Prop := definition Prop.is_inhabited [instance] : inhabited Prop :=
inhabited.mk true inhabited.mk true
@ -472,7 +455,7 @@ inhabited.rec_on H (λb, inhabited.mk (λa, b))
definition inhabited_Pi [instance] (A : Type) {B : A → Type} [H : Πx, inhabited (B x)] : definition inhabited_Pi [instance] (A : Type) {B : A → Type} [H : Πx, inhabited (B x)] :
inhabited (Πx, B x) := inhabited (Πx, B x) :=
inhabited.mk (λa, inhabited.rec_on (H a) (λb, b)) inhabited.mk (λa, !default)
protected definition bool.is_inhabited [instance] : inhabited bool := protected definition bool.is_inhabited [instance] : inhabited bool :=
inhabited.mk ff inhabited.mk ff
@ -484,7 +467,7 @@ protected definition nonempty.elim {A : Type} {B : Prop} (H1 : nonempty A) (H2 :
nonempty.rec H2 H1 nonempty.rec H2 H1
theorem nonempty_of_inhabited [instance] {A : Type} [H : inhabited A] : nonempty A := theorem nonempty_of_inhabited [instance] {A : Type} [H : inhabited A] : nonempty A :=
nonempty.intro (default A) nonempty.intro !default
/- subsingleton -/ /- subsingleton -/
@ -492,7 +475,7 @@ inductive subsingleton [class] (A : Type) : Prop :=
intro : (∀ a b : A, a = b) → subsingleton A intro : (∀ a b : A, a = b) → subsingleton A
protected definition subsingleton.elim {A : Type} [H : subsingleton A] : ∀(a b : A), a = b := protected definition subsingleton.elim {A : Type} [H : subsingleton A] : ∀(a b : A), a = b :=
subsingleton.rec (fun p, p) H subsingleton.rec (λp, p) H
definition subsingleton_prop [instance] (p : Prop) : subsingleton p := definition subsingleton_prop [instance] (p : Prop) : subsingleton p :=
subsingleton.intro (λa b, !proof_irrel) subsingleton.intro (λa b, !proof_irrel)
@ -518,104 +501,90 @@ protected theorem rec_subsingleton {p : Prop} [H : decidable p]
: subsingleton (decidable.rec_on H H1 H2) := : subsingleton (decidable.rec_on H H1 H2) :=
decidable.rec_on H (λh, H3 h) (λh, H4 h) --this can be proven using dependent version of "by_cases" decidable.rec_on H (λh, H3 h) (λh, H4 h) --this can be proven using dependent version of "by_cases"
/- if-then-else -/ theorem if_pos {c : Prop} [H : decidable c] (Hc : c) {A : Type} {t e : A} : (ite c t e) = t :=
definition ite (c : Prop) [H : decidable c] {A : Type} (t e : A) : A :=
decidable.rec_on H (λ Hc, t) (λ Hnc, e)
theorem if_pos {c : Prop} [H : decidable c] (Hc : c) {A : Type} {t e : A} : (if c then t else e) = t :=
decidable.rec decidable.rec
(λ Hc : c, eq.refl (@ite c (decidable.inl Hc) A t e)) (λ Hc : c, eq.refl (@ite c (decidable.inl Hc) A t e))
(λ Hnc : ¬c, absurd Hc Hnc) (λ Hnc : ¬c, absurd Hc Hnc)
H H
theorem if_neg {c : Prop} [H : decidable c] (Hnc : ¬c) {A : Type} {t e : A} : (if c then t else e) = e := theorem if_neg {c : Prop} [H : decidable c] (Hnc : ¬c) {A : Type} {t e : A} : (ite c t e) = e :=
decidable.rec decidable.rec
(λ Hc : c, absurd Hc Hnc) (λ Hc : c, absurd Hc Hnc)
(λ Hnc : ¬c, eq.refl (@ite c (decidable.inr Hnc) A t e)) (λ Hnc : ¬c, eq.refl (@ite c (decidable.inr Hnc) A t e))
H H
theorem if_t_t [simp] (c : Prop) [H : decidable c] {A : Type} (t : A) : (if c then t else t) = t := theorem if_t_t [simp] (c : Prop) [H : decidable c] {A : Type} (t : A) : (ite c t t) = t :=
decidable.rec decidable.rec
(λ Hc : c, eq.refl (@ite c (decidable.inl Hc) A t t)) (λ Hc : c, eq.refl (@ite c (decidable.inl Hc) A t t))
(λ Hnc : ¬c, eq.refl (@ite c (decidable.inr Hnc) A t t)) (λ Hnc : ¬c, eq.refl (@ite c (decidable.inr Hnc) A t t))
H H
theorem implies_of_if_pos {c t e : Prop} [H : decidable c] (h : if c then t else e) : c → t := theorem implies_of_if_pos {c t e : Prop} [H : decidable c] (h : ite c t e) : c → t :=
assume Hc, eq.rec_on (if_pos Hc) h assume Hc, eq.rec_on (if_pos Hc) h
theorem implies_of_if_neg {c t e : Prop} [H : decidable c] (h : if c then t else e) : ¬c → e := theorem implies_of_if_neg {c t e : Prop} [H : decidable c] (h : ite c t e) : ¬c → e :=
assume Hnc, eq.rec_on (if_neg Hnc) h assume Hnc, eq.rec_on (if_neg Hnc) h
theorem if_ctx_congr {A : Type} {b c : Prop} [dec_b : decidable b] [dec_c : decidable c] theorem if_ctx_congr {A : Type} {b c : Prop} [dec_b : decidable b] [dec_c : decidable c]
{x y u v : A} {x y u v : A}
(h_c : b ↔ c) (h_t : c → x = u) (h_e : ¬c → y = v) : (h_c : b ↔ c) (h_t : c → x = u) (h_e : ¬c → y = v) :
(if b then x else y) = (if c then u else v) := ite b x y = ite c u v :=
decidable.rec_on dec_b decidable.rec_on dec_b
(λ hp : b, calc (λ hp : b, calc
(if b then x else y) ite b x y = x : if_pos hp
= x : if_pos hp
... = u : h_t (iff.mp h_c hp) ... = u : h_t (iff.mp h_c hp)
... = (if c then u else v) : if_pos (iff.mp h_c hp)) ... = ite c u v : if_pos (iff.mp h_c hp))
(λ hn : ¬b, calc (λ hn : ¬b, calc
(if b then x else y) ite b x y = y : if_neg hn
= y : if_neg hn
... = v : h_e (iff.mp (not_iff_not_of_iff h_c) hn) ... = v : h_e (iff.mp (not_iff_not_of_iff h_c) hn)
... = (if c then u else v) : if_neg (iff.mp (not_iff_not_of_iff h_c) hn)) ... = ite c u v : if_neg (iff.mp (not_iff_not_of_iff h_c) hn))
theorem if_congr {A : Type} {b c : Prop} [dec_b : decidable b] [dec_c : decidable c] theorem if_congr {A : Type} {b c : Prop} [dec_b : decidable b] [dec_c : decidable c]
{x y u v : A} {x y u v : A}
(h_c : b ↔ c) (h_t : x = u) (h_e : y = v) : (h_c : b ↔ c) (h_t : x = u) (h_e : y = v) :
(if b then x else y) = (if c then u else v) := ite b x y = ite c u v :=
@if_ctx_congr A b c dec_b dec_c x y u v h_c (λ h, h_t) (λ h, h_e) @if_ctx_congr A b c dec_b dec_c x y u v h_c (λ h, h_t) (λ h, h_e)
theorem if_ctx_simp_congr {A : Type} {b c : Prop} [dec_b : decidable b] {x y u v : A} theorem if_ctx_simp_congr {A : Type} {b c : Prop} [dec_b : decidable b] {x y u v : A}
(h_c : b ↔ c) (h_t : c → x = u) (h_e : ¬c → y = v) : (h_c : b ↔ c) (h_t : c → x = u) (h_e : ¬c → y = v) :
(if b then x else y) = (@ite c (decidable_of_decidable_of_iff dec_b h_c) A u v) := ite b x y = (@ite c (decidable_of_decidable_of_iff dec_b h_c) A u v) :=
@if_ctx_congr A b c dec_b (decidable_of_decidable_of_iff dec_b h_c) x y u v h_c h_t h_e @if_ctx_congr A b c dec_b (decidable_of_decidable_of_iff dec_b h_c) x y u v h_c h_t h_e
theorem if_simp_congr [congr] {A : Type} {b c : Prop} [dec_b : decidable b] {x y u v : A} theorem if_simp_congr [congr] {A : Type} {b c : Prop} [dec_b : decidable b] {x y u v : A}
(h_c : b ↔ c) (h_t : x = u) (h_e : y = v) : (h_c : b ↔ c) (h_t : x = u) (h_e : y = v) :
(if b then x else y) = (@ite c (decidable_of_decidable_of_iff dec_b h_c) A u v) := ite b x y = (@ite c (decidable_of_decidable_of_iff dec_b h_c) A u v) :=
@if_ctx_simp_congr A b c dec_b x y u v h_c (λ h, h_t) (λ h, h_e) @if_ctx_simp_congr A b c dec_b x y u v h_c (λ h, h_t) (λ h, h_e)
theorem if_congr_prop {b c x y u v : Prop} [dec_b : decidable b] [dec_c : decidable c] theorem if_congr_prop {b c x y u v : Prop} [dec_b : decidable b] [dec_c : decidable c]
(h_c : b ↔ c) (h_t : c → (x ↔ u)) (h_e : ¬c → (y ↔ v)) : (h_c : b ↔ c) (h_t : c → (x ↔ u)) (h_e : ¬c → (y ↔ v)) :
if b then x else y ↔ if c then u else v := ite b x y ↔ ite c u v :=
decidable.rec_on dec_b decidable.rec_on dec_b
(λ hp : b, calc (λ hp : b, calc
(if b then x else y) ite b x y ↔ x : iff.of_eq (if_pos hp)
↔ x : iff.of_eq (if_pos hp)
... ↔ u : h_t (iff.mp h_c hp) ... ↔ u : h_t (iff.mp h_c hp)
... ↔ (if c then u else v) : iff.of_eq (if_pos (iff.mp h_c hp))) ... ↔ ite c u v : iff.of_eq (if_pos (iff.mp h_c hp)))
(λ hn : ¬b, calc (λ hn : ¬b, calc
(if b then x else y) ite b x y ↔ y : iff.of_eq (if_neg hn)
↔ y : iff.of_eq (if_neg hn)
... ↔ v : h_e (iff.mp (not_iff_not_of_iff h_c) hn) ... ↔ v : h_e (iff.mp (not_iff_not_of_iff h_c) hn)
... ↔ (if c then u else v) : iff.of_eq (if_neg (iff.mp (not_iff_not_of_iff h_c) hn))) ... ↔ ite c u v : iff.of_eq (if_neg (iff.mp (not_iff_not_of_iff h_c) hn)))
theorem if_ctx_simp_congr_prop {b c x y u v : Prop} [dec_b : decidable b] theorem if_ctx_simp_congr_prop {b c x y u v : Prop} [dec_b : decidable b]
(h_c : b ↔ c) (h_t : c → (x ↔ u)) (h_e : ¬c → (y ↔ v)) : (h_c : b ↔ c) (h_t : c → (x ↔ u)) (h_e : ¬c → (y ↔ v)) :
if b then x else y ↔ (@ite c (decidable_of_decidable_of_iff dec_b h_c) Prop u v) := ite b x y ↔ (@ite c (decidable_of_decidable_of_iff dec_b h_c) Prop u v) :=
@if_congr_prop b c x y u v dec_b (decidable_of_decidable_of_iff dec_b h_c) h_c h_t h_e @if_congr_prop b c x y u v dec_b (decidable_of_decidable_of_iff dec_b h_c) h_c h_t h_e
theorem if_simp_congr_prop [congr] {b c x y u v : Prop} [dec_b : decidable b] theorem if_simp_congr_prop [congr] {b c x y u v : Prop} [dec_b : decidable b]
(h_c : b ↔ c) (h_t : x ↔ u) (h_e : y ↔ v) : (h_c : b ↔ c) (h_t : x ↔ u) (h_e : y ↔ v) :
if b then x else y ↔ (@ite c (decidable_of_decidable_of_iff dec_b h_c) Prop u v) := ite b x y ↔ (@ite c (decidable_of_decidable_of_iff dec_b h_c) Prop u v) :=
@if_ctx_simp_congr_prop b c x y u v dec_b h_c (λ h, h_t) (λ h, h_e) @if_ctx_simp_congr_prop b c x y u v dec_b h_c (λ h, h_t) (λ h, h_e)
-- We use "dependent" if-then-else to be able to communicate the if-then-else condition theorem dif_pos {c : Prop} [H : decidable c] (Hc : c) {A : Type} {t : c → A} {e : ¬ c → A} : dite c t e = t Hc :=
-- to the branches
definition dite (c : Prop) [H : decidable c] {A : Type} (t : c → A) (e : ¬ c → A) : A :=
decidable.rec_on H (λ Hc, t Hc) (λ Hnc, e Hnc)
theorem dif_pos {c : Prop} [H : decidable c] (Hc : c) {A : Type} {t : c → A} {e : ¬ c → A} : (if H : c then t H else e H) = t Hc :=
decidable.rec decidable.rec
(λ Hc : c, eq.refl (@dite c (decidable.inl Hc) A t e)) (λ Hc : c, eq.refl (@dite c (decidable.inl Hc) A t e))
(λ Hnc : ¬c, absurd Hc Hnc) (λ Hnc : ¬c, absurd Hc Hnc)
H H
theorem dif_neg {c : Prop} [H : decidable c] (Hnc : ¬c) {A : Type} {t : c → A} {e : ¬ c → A} : (if H : c then t H else e H) = e Hnc := theorem dif_neg {c : Prop} [H : decidable c] (Hnc : ¬c) {A : Type} {t : c → A} {e : ¬ c → A} : dite c t e = e Hnc :=
decidable.rec decidable.rec
(λ Hc : c, absurd Hc Hnc) (λ Hc : c, absurd Hc Hnc)
(λ Hnc : ¬c, eq.refl (@dite c (decidable.inr Hnc) A t e)) (λ Hnc : ¬c, eq.refl (@dite c (decidable.inr Hnc) A t e))
@ -629,19 +598,15 @@ theorem dif_ctx_congr {A : Type} {b c : Prop} [dec_b : decidable b] [dec_c : dec
(@dite b dec_b A x y) = (@dite c dec_c A u v) := (@dite b dec_b A x y) = (@dite c dec_c A u v) :=
decidable.rec_on dec_b decidable.rec_on dec_b
(λ hp : b, calc (λ hp : b, calc
(if h : b then x h else y h) dite b x y = x hp : dif_pos hp
= x hp : dif_pos hp
... = x (iff.mpr h_c (iff.mp h_c hp)) : proof_irrel ... = x (iff.mpr h_c (iff.mp h_c hp)) : proof_irrel
... = u (iff.mp h_c hp) : h_t ... = u (iff.mp h_c hp) : h_t
... = (if h : c then u h else v h) : dif_pos (iff.mp h_c hp)) ... = dite c u v : dif_pos (iff.mp h_c hp))
(λ hn : ¬b, (λ hn : ¬b, let h_nc : ¬b ↔ ¬c := not_iff_not_of_iff h_c in calc
let h_nc : ¬b ↔ ¬c := not_iff_not_of_iff h_c in dite b x y = y hn : dif_neg hn
calc
(if h : b then x h else y h)
= y hn : dif_neg hn
... = y (iff.mpr h_nc (iff.mp h_nc hn)) : proof_irrel ... = y (iff.mpr h_nc (iff.mp h_nc hn)) : proof_irrel
... = v (iff.mp h_nc hn) : h_e ... = v (iff.mp h_nc hn) : h_e
... = (if h : c then u h else v h) : dif_neg (iff.mp h_nc hn)) ... = dite c u v : dif_neg (iff.mp h_nc hn))
theorem dif_ctx_simp_congr {A : Type} {b c : Prop} [dec_b : decidable b] theorem dif_ctx_simp_congr {A : Type} {b c : Prop} [dec_b : decidable b]
{x : b → A} {u : c → A} {y : ¬b → A} {v : ¬c → A} {x : b → A} {u : c → A} {y : ¬b → A} {v : ¬c → A}
@ -667,13 +632,13 @@ decidable.rec_on H₁ (λ Hc, Hc) (λ Hnc, !false.rec (if_neg Hnc ▸ H₂))
notation `dec_trivial` := of_is_true trivial notation `dec_trivial` := of_is_true trivial
theorem not_of_not_is_true {c : Prop} [H₁ : decidable c] (H₂ : ¬ is_true c) : ¬ c := theorem not_of_not_is_true {c : Prop} [H₁ : decidable c] (H₂ : ¬ is_true c) : ¬ c :=
decidable.rec_on H₁ (λ Hc, absurd true.intro (if_pos Hc ▸ H₂)) (λ Hnc, Hnc) if Hc : c then absurd trivial (if_pos Hc ▸ H₂) else Hc
theorem not_of_is_false {c : Prop} [H₁ : decidable c] (H₂ : is_false c) : ¬ c := theorem not_of_is_false {c : Prop} [H₁ : decidable c] (H₂ : is_false c) : ¬ c :=
decidable.rec_on H₁ (λ Hc, !false.rec (if_pos Hc ▸ H₂)) (λ Hnc, Hnc) if Hc : c then !false.rec (if_pos Hc ▸ H₂) else Hc
theorem of_not_is_false {c : Prop} [H₁ : decidable c] (H₂ : ¬ is_false c) : c := theorem of_not_is_false {c : Prop} [H₁ : decidable c] (H₂ : ¬ is_false c) : c :=
decidable.rec_on H₁ (λ Hc, Hc) (λ Hnc, absurd true.intro (if_neg Hnc ▸ H₂)) if Hc : c then Hc else absurd trivial (if_neg Hc ▸ H₂)
-- namespace used to collect congruence rules for "contextual simplification" -- namespace used to collect congruence rules for "contextual simplification"
namespace contextual namespace contextual

View file

@ -12,14 +12,14 @@ open nat
inductive measurable [class] (A : Type) := inductive measurable [class] (A : Type) :=
mk : (A → nat) → measurable A mk : (A → nat) → measurable A
definition size_of {A : Type} [s : measurable A] (a : A) : nat := definition size_of {A : Type} [s : measurable A] : A → nat :=
measurable.rec_on s (λ f, f) a measurable.rec_on s (λ f, f)
definition nat.measurable [instance] : measurable nat := definition nat.measurable [instance] : measurable nat :=
measurable.mk (λ a, a) measurable.mk (λ a, a)
definition option.measurable [instance] (A : Type) [s : measurable A] : measurable (option A) := definition option.measurable [instance] (A : Type) [s : measurable A] : measurable (option A) :=
measurable.mk (λ a, option.cases_on a zero (λ a, size_of a)) measurable.mk (λ a, option.cases_on a zero size_of)
definition prod.measurable [instance] (A B : Type) [sa : measurable A] [sb : measurable B] : measurable (prod A B) := definition prod.measurable [instance] (A B : Type) [sa : measurable A] [sb : measurable B] : measurable (prod A B) :=
measurable.mk (λ p, prod.cases_on p (λ a b, size_of a + size_of b)) measurable.mk (λ p, prod.cases_on p (λ a b, size_of a + size_of b))

View file

@ -31,7 +31,7 @@ namespace nat
-- add is defined in init.num -- add is defined in init.num
definition sub (a b : nat) : nat := definition sub (a b : nat) : nat :=
nat.rec_on b a (λ b₁ r, pred r) nat.rec_on b a (λ b₁, pred)
definition mul (a b : nat) : nat := definition mul (a b : nat) : nat :=
nat.rec_on b zero (λ b₁ r, r + a) nat.rec_on b zero (λ b₁ r, r + a)
@ -56,11 +56,11 @@ namespace nat
/- properties of inequality -/ /- properties of inequality -/
theorem le_of_eq {n m : } (p : n = m) : n ≤ m := p ▸ le.refl n theorem le_of_eq {n m : } (p : n = m) : n ≤ m := p ▸ !le.refl
theorem le_succ (n : ) : n ≤ succ n := by repeat constructor theorem le_succ (n : ) : n ≤ succ n := le.step !le.refl
theorem pred_le (n : ) : pred n ≤ n := by cases n;all_goals (repeat constructor) theorem pred_le (n : ) : pred n ≤ n := by cases n;repeat constructor
theorem le_succ_iff_true [simp] (n : ) : n ≤ succ n ↔ true := theorem le_succ_iff_true [simp] (n : ) : n ≤ succ n ↔ true :=
iff_true_intro (le_succ n) iff_true_intro (le_succ n)
@ -68,8 +68,8 @@ namespace nat
theorem pred_le_iff_true [simp] (n : ) : pred n ≤ n ↔ true := theorem pred_le_iff_true [simp] (n : ) : pred n ≤ n ↔ true :=
iff_true_intro (pred_le n) iff_true_intro (pred_le n)
theorem le.trans [trans] {n m k : } (H1 : n ≤ m) (H2 : m ≤ k) : n ≤ k := theorem le.trans [trans] {n m k : } (H1 : n ≤ m) : m ≤ k → n ≤ k :=
by induction H2 with n H2 IH;exact H1;exact le.step IH le.rec H1 (λp H2, le.step)
theorem le_succ_of_le {n m : } (H : n ≤ m) : n ≤ succ m := le.trans H !le_succ theorem le_succ_of_le {n m : } (H : n ≤ m) : n ≤ succ m := le.trans H !le_succ
@ -77,62 +77,51 @@ namespace nat
theorem le_of_lt {n m : } (H : n < m) : n ≤ m := le_of_succ_le H theorem le_of_lt {n m : } (H : n < m) : n ≤ m := le_of_succ_le H
theorem succ_le_succ {n m : } (H : n ≤ m) : succ n ≤ succ m := theorem succ_le_succ {n m : } : n ≤ m → succ n ≤ succ m :=
by induction H;reflexivity;exact le.step v_0 le.rec !le.refl (λa b, le.step)
theorem pred_le_pred {n m : } (H : n ≤ m) : pred n ≤ pred m := theorem pred_le_pred {n m : } : n ≤ m → pred n ≤ pred m :=
by induction H;reflexivity;cases b;exact v_0;exact le.step v_0 le.rec !le.refl (nat.rec (λa b, b) (λa b c, le.step))
theorem le_of_succ_le_succ {n m : } (H : succ n ≤ succ m) : n ≤ m := theorem le_of_succ_le_succ {n m : } : succ n ≤ succ m → n ≤ m :=
pred_le_pred H pred_le_pred
theorem le_succ_of_pred_le {n m : } (H : pred n ≤ m) : n ≤ succ m := theorem le_succ_of_pred_le {n m : } : pred n ≤ m → n ≤ succ m :=
by cases n;exact le.step H;exact succ_le_succ H nat.cases_on n le.step (λa, succ_le_succ)
theorem not_succ_le_self {n : } : ¬succ n ≤ n :=
by induction n with n IH;all_goals intros;cases a;apply IH;exact le_of_succ_le_succ a
theorem succ_le_self_iff_false [simp] (n : ) : succ n ≤ n ↔ false :=
iff_false_intro not_succ_le_self
theorem zero_le (n : ) : 0 ≤ n :=
by induction n with n IH;apply le.refl;exact le.step IH
theorem zero_le_iff_true [simp] (n : ) : 0 ≤ n ↔ true :=
iff_true_intro (zero_le n)
theorem lt.step {n m : } (H : n < m) : n < succ m :=
le.step H
theorem zero_lt_succ (n : ) : 0 < succ n :=
by induction n with n IH;apply le.refl;exact le.step IH
theorem zero_lt_succ_iff_true [simp] (n : ) : 0 < succ n ↔ true :=
iff_true_intro (zero_lt_succ n)
theorem lt.trans [trans] {n m k : } (H1 : n < m) (H2 : m < k) : n < k :=
le.trans (le.step H1) H2
theorem lt_of_le_of_lt [trans] {n m k : } (H1 : n ≤ m) (H2 : m < k) : n < k :=
le.trans (succ_le_succ H1) H2
theorem lt_of_lt_of_le [trans] {n m k : } (H1 : n < m) (H2 : m ≤ k) : n < k :=
le.trans H1 H2
theorem le.antisymm {n m : } (H1 : n ≤ m) (H2 : m ≤ n) : n = m :=
begin
cases H1 with m' H1',
{ reflexivity},
{ cases H2 with n' H2',
{ reflexivity},
{ exfalso, apply not_succ_le_self, exact lt.trans H1' H2'}},
end
theorem not_succ_le_zero (n : ) : ¬succ n ≤ zero := theorem not_succ_le_zero (n : ) : ¬succ n ≤ zero :=
by intro H; cases H by intro H; cases H
theorem succ_le_zero_iff_false (n : ) : succ n ≤ zero ↔ false := theorem succ_le_zero_iff_false (n : ) : succ n ≤ zero ↔ false :=
iff_false_intro (not_succ_le_zero n) iff_false_intro !not_succ_le_zero
theorem not_succ_le_self : Π {n : }, ¬succ n ≤ n :=
nat.rec !not_succ_le_zero (λa b c, b (le_of_succ_le_succ c))
theorem succ_le_self_iff_false [simp] (n : ) : succ n ≤ n ↔ false :=
iff_false_intro not_succ_le_self
theorem zero_le : ∀ (n : ), 0 ≤ n :=
nat.rec !le.refl (λa, le.step)
theorem zero_le_iff_true [simp] (n : ) : 0 ≤ n ↔ true :=
iff_true_intro !zero_le
theorem lt.step {n m : } : n < m → n < succ m := le.step
theorem zero_lt_succ (n : ) : 0 < succ n :=
succ_le_succ !zero_le
theorem zero_lt_succ_iff_true [simp] (n : ) : 0 < succ n ↔ true :=
iff_true_intro (zero_lt_succ n)
theorem lt.trans [trans] {n m k : } (H1 : n < m) : m < k → n < k :=
le.trans (le.step H1)
theorem lt_of_le_of_lt [trans] {n m k : } (H1 : n ≤ m) : m < k → n < k :=
le.trans (succ_le_succ H1)
theorem lt_of_lt_of_le [trans] {n m k : } : n < m → m ≤ k → n < k := le.trans
theorem lt.irrefl (n : ) : ¬n < n := not_succ_le_self theorem lt.irrefl (n : ) : ¬n < n := not_succ_le_self
@ -149,143 +138,112 @@ namespace nat
theorem le_lt_antisymm {n m : } (H1 : n ≤ m) (H2 : m < n) : false := theorem le_lt_antisymm {n m : } (H1 : n ≤ m) (H2 : m < n) : false :=
!lt.irrefl (lt_of_le_of_lt H1 H2) !lt.irrefl (lt_of_le_of_lt H1 H2)
theorem le.antisymm {n m : } (H1 : n ≤ m) : m ≤ n → n = m :=
le.cases_on H1 (λa, rfl) (λa b c, absurd (lt_of_le_of_lt b c) !lt.irrefl)
theorem lt_le_antisymm {n m : } (H1 : n < m) (H2 : m ≤ n) : false := theorem lt_le_antisymm {n m : } (H1 : n < m) (H2 : m ≤ n) : false :=
le_lt_antisymm H2 H1 le_lt_antisymm H2 H1
theorem lt.asymm {n m : } (H1 : n < m) (H2 : m < n) : false := theorem lt.asymm {n m : } (H1 : n < m) : ¬ m < n :=
le_lt_antisymm (le_of_lt H1) H2 le_lt_antisymm (le_of_lt H1)
definition lt.by_cases {a b : } {P : Type} (H1 : a < b → P) (H2 : a = b → P) (H3 : b < a → P) : P := theorem not_lt_zero (a : ) : ¬ a < zero := !not_succ_le_zero
begin
revert b H1 H2 H3, induction a with a IH,
{ intros, cases b,
exact H2 rfl,
exact H1 !zero_lt_succ},
{ intros, cases b with b,
exact H3 !zero_lt_succ,
{ apply IH,
intro H, exact H1 (succ_le_succ H),
intro H, exact H2 (congr rfl H),
intro H, exact H3 (succ_le_succ H)}}
end
theorem lt.trichotomy (a b : ) : a < b a = b b < a :=
lt.by_cases (λH, inl H) (λH, inr (inl H)) (λH, inr (inr H))
theorem lt_ge_by_cases {a b : } {P : Type} (H1 : a < b → P) (H2 : a ≥ b → P) : P :=
lt.by_cases H1 (λH, H2 (le_of_eq H⁻¹)) (λH, H2 (le_of_lt H))
theorem lt_or_ge (a b : ) : (a < b) (a ≥ b) :=
lt_ge_by_cases inl inr
theorem not_lt_zero (a : ) : ¬ a < zero :=
by intro H; cases H
theorem lt_zero_iff_false [simp] (a : ) : a < zero ↔ false := theorem lt_zero_iff_false [simp] (a : ) : a < zero ↔ false :=
iff_false_intro (not_lt_zero a) iff_false_intro (not_lt_zero a)
theorem eq_or_lt_of_le {a b : } (H : a ≤ b) : a = b a < b :=
le.cases_on H (inl rfl) (λn h, inr (succ_le_succ h))
theorem le_of_eq_or_lt {a b : } (H : a = b a < b) : a ≤ b :=
or.elim H !le_of_eq !le_of_lt
-- less-than is well-founded -- less-than is well-founded
definition lt.wf [instance] : well_founded lt := definition lt.wf [instance] : well_founded lt :=
begin well_founded.intro (nat.rec
constructor, intro n, induction n with n IH, (!acc.intro (λn H, absurd H (not_lt_zero n)))
{ constructor, intros n H, exfalso, exact !not_lt_zero H}, (λn IH, !acc.intro (λm H,
{ constructor, intros m H, elim (eq_or_lt_of_le (le_of_succ_le_succ H))
assert aux : ∀ {n₁} (hlt : m < n₁), succ n = n₁ → acc lt m, (λe, eq.substr e IH) (acc.inv IH))))
{ intros n₁ hlt, induction hlt,
{ intro p, injection p with q, exact q ▸ IH},
{ intro p, injection p with q, exact (acc.inv (q ▸ IH) a)}},
apply aux H rfl},
end
definition measure {A : Type} (f : A → ) : A → A → Prop := definition measure {A : Type} : (A → ) → A → A → Prop :=
inv_image lt f inv_image lt
definition measure.wf {A : Type} (f : A → ) : well_founded (measure f) := definition measure.wf {A : Type} (f : A → ) : well_founded (measure f) :=
inv_image.wf f lt.wf inv_image.wf f lt.wf
theorem succ_lt_succ {a b : } (H : a < b) : succ a < succ b := theorem succ_lt_succ {a b : } : a < b → succ a < succ b :=
succ_le_succ H succ_le_succ
theorem lt_of_succ_lt {a b : } (H : succ a < b) : a < b := theorem lt_of_succ_lt {a b : } : succ a < b → a < b :=
le_of_succ_le H le_of_succ_le
theorem lt_of_succ_lt_succ {a b : } (H : succ a < succ b) : a < b := theorem lt_of_succ_lt_succ {a b : } : succ a < succ b → a < b :=
le_of_succ_le_succ H le_of_succ_le_succ
definition decidable_le [instance] : decidable_rel le := definition decidable_le [instance] : decidable_rel le :=
begin nat.rec (λm, (decidable.inl !zero_le))
intros n, induction n with n IH, (λn IH m, !nat.cases_on (decidable.inr (not_succ_le_zero n))
{ intro m, left, apply zero_le}, (λm, decidable.rec (λH, inl (succ_le_succ H))
{ intro m, cases m with m, (λH, inr (λa, H (le_of_succ_le_succ a))) (IH m)))
{ right, apply not_succ_le_zero},
{ let H := IH m, clear IH,
cases H with H H,
left, exact succ_le_succ H,
right, intro H2, exact H (le_of_succ_le_succ H2)}}
end
definition decidable_lt [instance] : decidable_rel lt := _ definition decidable_lt [instance] : decidable_rel lt := _
definition decidable_gt [instance] : decidable_rel gt := _ definition decidable_gt [instance] : decidable_rel gt := _
definition decidable_ge [instance] : decidable_rel ge := _ definition decidable_ge [instance] : decidable_rel ge := _
theorem eq_or_lt_of_le {a b : } (H : a ≤ b) : a = b a < b := theorem lt_or_ge (a b : ) : a < b a ≥ b :=
by cases H with b' H; exact inl rfl; exact inr (succ_le_succ H) nat.rec (inr !zero_le) (λn, or.rec
(λh, inl (le_succ_of_le h))
(λh, elim (eq_or_lt_of_le h) (λe, inl (eq.subst e !le.refl)) inr)) b
theorem le_of_eq_or_lt {a b : } (H : a = b a < b) : a ≤ b := theorem lt_ge_by_cases {a b : } {P : Type} (H1 : a < b → P) (H2 : a ≥ b → P) : P :=
by cases H with H H; exact le_of_eq H; exact le_of_lt H by_cases H1 (λh, H2 (elim !lt_or_ge (λa, absurd a h) (λa, a)))
definition lt.by_cases {a b : } {P : Type} (H1 : a < b → P) (H2 : a = b → P) (H3 : b < a → P) : P :=
lt_ge_by_cases H1 (λh₁,
lt_ge_by_cases H3 (λh₂, H2 (le.antisymm h₂ h₁)))
theorem lt.trichotomy (a b : ) : a < b a = b b < a :=
lt.by_cases (λH, inl H) (λH, inr (inl H)) (λH, inr (inr H))
theorem eq_or_lt_of_not_lt {a b : } (hnlt : ¬ a < b) : a = b b < a := theorem eq_or_lt_of_not_lt {a b : } (hnlt : ¬ a < b) : a = b b < a :=
or.rec_on (lt.trichotomy a b) or.rec_on (lt.trichotomy a b)
(λ hlt, absurd hlt hnlt) (λ hlt, absurd hlt hnlt)
(λ h, h) (λ h, h)
theorem lt_succ_of_le {a b : } (h : a ≤ b) : a < succ b := theorem lt_succ_of_le {a b : } : a ≤ b → a < succ b :=
succ_le_succ h succ_le_succ
theorem lt_of_succ_le {a b : } (h : succ a ≤ b) : a < b := h theorem lt_of_succ_le {a b : } (h : succ a ≤ b) : a < b := h
theorem succ_le_of_lt {a b : } (h : a < b) : succ a ≤ b := h theorem succ_le_of_lt {a b : } (h : a < b) : succ a ≤ b := h
theorem succ_sub_succ_eq_sub [simp] (a b : ) : succ a - succ b = a - b := theorem succ_sub_succ_eq_sub [simp] (a b : ) : succ a - succ b = a - b :=
by induction b with b IH;reflexivity; apply congr (eq.refl pred) IH nat.rec rfl (λ b, congr_arg pred) b
theorem sub_eq_succ_sub_succ (a b : ) : a - b = succ a - succ b := theorem sub_eq_succ_sub_succ (a b : ) : a - b = succ a - succ b :=
eq.rec_on (succ_sub_succ_eq_sub a b) rfl eq.symm !succ_sub_succ_eq_sub
theorem zero_sub_eq_zero [simp] (a : ) : zero - a = zero := theorem zero_sub_eq_zero [simp] (a : ) : zero - a = zero :=
nat.rec_on a nat.rec rfl (λ a, congr_arg pred) a
rfl
(λ a₁ (ih : zero - a₁ = zero), congr (eq.refl pred) ih)
theorem zero_eq_zero_sub (a : ) : zero = zero - a := theorem zero_eq_zero_sub (a : ) : zero = zero - a :=
eq.rec_on (zero_sub_eq_zero a) rfl eq.symm !zero_sub_eq_zero
theorem sub_lt {a b : } : zero < a → zero < b → a - b < a :=
have aux : Π {a}, zero < a → Π {b}, zero < b → a - b < a, from
λa h₁, le.rec_on h₁
(λb h₂, le.cases_on h₂
(lt.base zero)
(λ b₁ bpos,
eq.rec_on (sub_eq_succ_sub_succ zero b₁)
(eq.rec_on (zero_eq_zero_sub b₁) (lt.base zero))))
(λa₁ apos ih b h₂, le.cases_on h₂
(lt.base a₁)
(λ b₁ bpos,
eq.rec_on (sub_eq_succ_sub_succ a₁ b₁)
(lt.trans (@ih b₁ bpos) (lt.base a₁)))),
λ h₁ h₂, aux h₁ h₂
theorem sub_le (a b : ) : a - b ≤ a := theorem sub_le (a b : ) : a - b ≤ a :=
nat.rec_on b nat.rec_on b !le.refl (λ b₁, le.trans !pred_le)
(le.refl a)
(λ b₁ ih, le.trans !pred_le ih)
theorem sub_le_iff_true [simp] (a b : ) : a - b ≤ a ↔ true := theorem sub_le_iff_true [simp] (a b : ) : a - b ≤ a ↔ true :=
iff_true_intro (sub_le a b) iff_true_intro (sub_le a b)
theorem sub_lt {a b : } (H1 : zero < a) (H2 : zero < b) : a - b < a :=
!nat.cases_on (λh, absurd h !lt.irrefl)
(λa h, succ_le_succ (!nat.cases_on (λh, absurd h !lt.irrefl)
(λb c, eq.substr !succ_sub_succ_eq_sub !sub_le) H2)) H1
theorem sub_lt_succ (a b : ) : a - b < succ a := theorem sub_lt_succ (a b : ) : a - b < succ a :=
lt_succ_of_le (sub_le a b) lt_succ_of_le !sub_le
theorem sub_lt_succ_iff_true [simp] (a b : ) : a - b < succ a ↔ true := theorem sub_lt_succ_iff_true [simp] (a b : ) : a - b < succ a ↔ true :=
iff_true_intro (sub_lt_succ a b) iff_true_intro !sub_lt_succ
end nat end nat

View file

@ -21,80 +21,99 @@ definition imp (a b : Prop) : Prop := a → b
theorem mt (H1 : a → b) (H2 : ¬b) : ¬a := theorem mt (H1 : a → b) (H2 : ¬b) : ¬a :=
assume Ha : a, absurd (H1 Ha) H2 assume Ha : a, absurd (H1 Ha) H2
theorem imp.id (H : a) : a := H
theorem imp.intro (H : a) (H₂ : b) : a := H
theorem imp.mp (H : a) (H₂ : a → b) : b :=
H₂ H
theorem imp.syl (H : a → b) (H₂ : c → a) (Hc : c) : b :=
H (H₂ Hc)
theorem imp.left (H : a → b) (H₂ : b → c) (Ha : a) : c :=
H₂ (H Ha)
theorem imp_true (a : Prop) : (a → true) ↔ true := theorem imp_true (a : Prop) : (a → true) ↔ true :=
iff.intro (assume H, trivial) (assume H H1, trivial) iff_true_intro (imp.intro trivial)
theorem true_imp (a : Prop) : (true → a) ↔ a := theorem true_imp (a : Prop) : (true → a) ↔ a :=
iff.intro (assume H, H trivial) (assume H H1, H) iff.intro (assume H, H trivial) imp.intro
theorem imp_false (a : Prop) : (a → false) ↔ ¬ a := iff.rfl theorem imp_false (a : Prop) : (a → false) ↔ ¬ a := iff.rfl
theorem false_imp (a : Prop) : (false → a) ↔ true := theorem false_imp (a : Prop) : (false → a) ↔ true :=
iff.intro (assume H, trivial) (assume H H1, false.elim H1) iff_true_intro false.elim
theorem imp_iff_imp (H1 : a ↔ c) (H2 : b ↔ d) : (a → b) ↔ (c → d) := theorem imp_iff_imp (H1 : a ↔ c) (H2 : b ↔ d) : (a → b) ↔ (c → d) :=
iff.intro iff.intro
(λHab Hc, iff.elim_left H2 (Hab (iff.elim_right H1 Hc))) (λHab Hc, iff.mp H2 (Hab (iff.mpr H1 Hc)))
(λHcd Ha, iff.elim_right H2 (Hcd (iff.elim_left H1 Ha))) (λHcd Ha, iff.mpr H2 (Hcd (iff.mp H1 Ha)))
/- not -/ /- not -/
theorem not.elim (H1 : ¬a) (H2 : a) : false := H1 H2 theorem not.elim {A : Type} (H1 : ¬a) (H2 : a) : A := absurd H2 H1
theorem not.intro (H : a → false) : ¬a := H theorem not.intro (H : a → false) : ¬a := H
theorem not_not_intro (Ha : a) : ¬¬a := theorem not_not_intro (Ha : a) : ¬¬a :=
assume Hna : ¬a, absurd Ha Hna assume Hna : ¬a, Hna Ha
theorem not_imp_not_of_imp {a b : Prop} : (a → b) → ¬b → ¬a := theorem not.mto {a b : Prop} : (a → b) → ¬b → ¬a := imp.left
assume Pimp Pnb Pa, absurd (Pimp Pa) Pnb
theorem not_not_of_not_implies (H : ¬(a → b)) : ¬¬a := theorem not_imp_not_of_imp {a b : Prop} : (a → b) → ¬b → ¬a := not.mto
assume Hna : ¬a, absurd (assume Ha : a, absurd Ha Hna) H
theorem not_of_not_implies (H : ¬(a → b)) : ¬b := theorem not_not_of_not_implies : ¬(a → b) → ¬¬a :=
assume Hb : b, absurd (assume Ha : a, Hb) H not.mto not.elim
theorem not_of_not_implies : ¬(a → b) → ¬b :=
not.mto imp.intro
theorem not_not_em : ¬¬(a ¬a) := theorem not_not_em : ¬¬(a ¬a) :=
assume not_em : ¬(a ¬a), assume not_em : ¬(a ¬a),
have Hnp : ¬a, from not_em (or.inr (not.mto or.inl not_em))
assume Hp : a, absurd (or.inl Hp) not_em,
absurd (or.inr Hnp) not_em
theorem not_true [simp] : ¬ true ↔ false := theorem not_true [simp] : ¬ true ↔ false :=
iff.intro (assume H, H trivial) (assume H, false.elim H) iff_false_intro (not_not_intro trivial)
theorem not_false_iff [simp] : ¬ false ↔ true := theorem not_false_iff [simp] : ¬ false ↔ true :=
iff.intro (assume H, trivial) (assume H H1, H1) iff_true_intro not_false
theorem not_iff_not (H : a ↔ b) : ¬a ↔ ¬b := theorem not_iff_not (H : a ↔ b) : ¬a ↔ ¬b :=
iff.intro iff.intro (not.mto (iff.mpr H)) (not.mto (iff.mp H))
(λHna Hb, Hna (iff.elim_right H Hb))
(λHnb Ha, Hnb (iff.elim_left H Ha))
/- and -/ /- and -/
definition not_and_of_not_left (b : Prop) (Hna : ¬a) : ¬(a ∧ b) := definition not_and_of_not_left (b : Prop) : ¬a → ¬(a ∧ b) :=
assume H : a ∧ b, absurd (and.elim_left H) Hna not.mto and.left
definition not_and_of_not_right (a : Prop) {b : Prop} (Hnb : ¬b) : ¬(a ∧ b) := definition not_and_of_not_right (a : Prop) {b : Prop} : ¬b → ¬(a ∧ b) :=
assume H : a ∧ b, absurd (and.elim_right H) Hnb not.mto and.right
theorem and.swap (H : a ∧ b) : b ∧ a := theorem and.swap : a ∧ b → b ∧ a :=
and.intro (and.elim_right H) (and.elim_left H) and.rec (λHa Hb, and.intro Hb Ha)
theorem and.imp (H₂ : a → c) (H₃ : b → d) : a ∧ b → c ∧ d :=
and.rec (λHa Hb, and.intro (H₂ Ha) (H₃ Hb))
theorem and.imp_left (H : a → b) : a ∧ c → b ∧ c :=
and.imp H imp.id
theorem and.imp_right (H : a → b) : c ∧ a → c ∧ b :=
and.imp imp.id H
theorem and_of_and_of_imp_of_imp (H₁ : a ∧ b) (H₂ : a → c) (H₃ : b → d) : c ∧ d := theorem and_of_and_of_imp_of_imp (H₁ : a ∧ b) (H₂ : a → c) (H₃ : b → d) : c ∧ d :=
and.elim H₁ (assume Ha : a, assume Hb : b, and.intro (H₂ Ha) (H₃ Hb)) and.imp H₂ H₃ H₁
theorem and_of_and_of_imp_left (H₁ : a ∧ c) (H : a → b) : b ∧ c := theorem and_of_and_of_imp_left (H₁ : a ∧ c) (H : a → b) : b ∧ c :=
and.elim H₁ (assume Ha : a, assume Hc : c, and.intro (H Ha) Hc) and.imp_left H H₁
theorem and_of_and_of_imp_right (H₁ : c ∧ a) (H : a → b) : c ∧ b := theorem and_of_and_of_imp_right (H₁ : c ∧ a) (H : a → b) : c ∧ b :=
and.elim H₁ (assume Hc : c, assume Ha : a, and.intro Hc (H Ha)) and.imp_right H H₁
theorem and.comm [simp] : a ∧ b ↔ b ∧ a := theorem and.comm [simp] : a ∧ b ↔ b ∧ a :=
iff.intro (λH, and.swap H) (λH, and.swap H) iff.intro and.swap and.swap
theorem and.assoc [simp] : (a ∧ b) ∧ c ↔ a ∧ (b ∧ c) := theorem and.assoc [simp] : (a ∧ b) ∧ c ↔ a ∧ (b ∧ c) :=
iff.intro iff.intro
@ -105,181 +124,158 @@ iff.intro
obtain Ha Hb Hc, from H, obtain Ha Hb Hc, from H,
and.intro (and.intro Ha Hb) Hc) and.intro (and.intro Ha Hb) Hc)
theorem and_true [simp] (a : Prop) : a ∧ true ↔ a :=
iff.intro (assume H, and.left H) (assume H, and.intro H trivial)
theorem true_and [simp] (a : Prop) : true ∧ a ↔ a :=
iff.intro (assume H, and.right H) (assume H, and.intro trivial H)
theorem and_false [simp] (a : Prop) : a ∧ false ↔ false :=
iff.intro (assume H, and.right H) (assume H, false.elim H)
theorem false_and [simp] (a : Prop) : false ∧ a ↔ false :=
iff.intro (assume H, and.left H) (assume H, false.elim H)
theorem and_self [simp] (a : Prop) : a ∧ a ↔ a :=
iff.intro (assume H, and.left H) (assume H, and.intro H H)
theorem and_imp_eq (a b c : Prop) : (a ∧ b → c) = (a → b → c) :=
propext
(iff.intro (λ Pl a b, Pl (and.intro a b))
(λ Pr Pand, Pr (and.left Pand) (and.right Pand)))
theorem and_iff_right {a b : Prop} (Ha : a) : (a ∧ b) ↔ b := theorem and_iff_right {a b : Prop} (Ha : a) : (a ∧ b) ↔ b :=
iff.intro iff.intro and.right (and.intro Ha)
(assume Hab, and.elim_right Hab)
(assume Hb, and.intro Ha Hb)
theorem and_iff_left {a b : Prop} (Hb : b) : (a ∧ b) ↔ a := theorem and_iff_left {a b : Prop} (Hb : b) : (a ∧ b) ↔ a :=
iff.intro iff.intro and.left (λHa, and.intro Ha Hb)
(assume Hab, and.elim_left Hab)
(assume Ha, and.intro Ha Hb) theorem and_true [simp] (a : Prop) : a ∧ true ↔ a :=
and_iff_left trivial
theorem true_and [simp] (a : Prop) : true ∧ a ↔ a :=
and_iff_right trivial
theorem and_false [simp] (a : Prop) : a ∧ false ↔ false :=
iff_false_intro and.right
theorem false_and [simp] (a : Prop) : false ∧ a ↔ false :=
iff_false_intro and.left
theorem and_self [simp] (a : Prop) : a ∧ a ↔ a :=
iff.intro and.left (assume H, and.intro H H)
theorem and_imp_iff (a b c : Prop) : (a ∧ b → c) ↔ (a → b → c) :=
iff.intro (λH a b, H (and.intro a b)) and.rec
theorem and_imp_eq (a b c : Prop) : (a ∧ b → c) = (a → b → c) :=
propext !and_imp_iff
theorem and_iff_and (H1 : a ↔ c) (H2 : b ↔ d) : (a ∧ b) ↔ (c ∧ d) := theorem and_iff_and (H1 : a ↔ c) (H2 : b ↔ d) : (a ∧ b) ↔ (c ∧ d) :=
iff.intro iff.intro (and.imp (iff.mp H1) (iff.mp H2)) (and.imp (iff.mpr H1) (iff.mpr H2))
(assume Hab, and.intro (iff.elim_left H1 (and.left Hab)) (iff.elim_left H2 (and.right Hab)))
(assume Hcd, and.intro (iff.elim_right H1 (and.left Hcd)) (iff.elim_right H2 (and.right Hcd)))
/- or -/ /- or -/
definition not_or (Hna : ¬a) (Hnb : ¬b) : ¬(a b) := definition not_or : ¬a → ¬b → ¬(a b) := or.rec
assume H : a b, or.rec_on H
(assume Ha, absurd Ha Hna) theorem or.imp (H₂ : a → c) (H₃ : b → d) : a b → c d :=
(assume Hb, absurd Hb Hnb) or.rec (imp.syl or.inl H₂) (imp.syl or.inr H₃)
theorem or.imp_left (H : a → b) : a c → b c :=
or.imp H imp.id
theorem or.imp_right (H : a → b) : c a → c b :=
or.imp imp.id H
theorem or_of_or_of_imp_of_imp (H₁ : a b) (H₂ : a → c) (H₃ : b → d) : c d := theorem or_of_or_of_imp_of_imp (H₁ : a b) (H₂ : a → c) (H₃ : b → d) : c d :=
or.elim H₁ or.imp H₂ H₃ H₁
(assume Ha : a, or.inl (H₂ Ha))
(assume Hb : b, or.inr (H₃ Hb))
theorem or_of_or_of_imp_left (H₁ : a c) (H : a → b) : b c := theorem or_of_or_of_imp_left (H₁ : a c) (H : a → b) : b c :=
or.elim H₁ or.imp_left H H₁
(assume H₂ : a, or.inl (H H₂))
(assume H₂ : c, or.inr H₂)
theorem or_of_or_of_imp_right (H₁ : c a) (H : a → b) : c b := theorem or_of_or_of_imp_right (H₁ : c a) (H : a → b) : c b :=
or.elim H₁ or.imp_right H H₁
(assume H₂ : c, or.inl H₂)
(assume H₂ : a, or.inr (H H₂))
theorem or.elim3 (H : a b c) (Ha : a → d) (Hb : b → d) (Hc : c → d) : d := theorem or.elim3 (H : a b c) (Ha : a → d) (Hb : b → d) (Hc : c → d) : d :=
or.elim H Ha (assume H₂, or.elim H₂ Hb Hc) or.elim H Ha (assume H₂, or.elim H₂ Hb Hc)
theorem or.swap : a b → b a := or.rec or.inr or.inl
theorem or_resolve_right (H₁ : a b) (H₂ : ¬a) : b := theorem or_resolve_right (H₁ : a b) (H₂ : ¬a) : b :=
or.elim H₁ (assume Ha, absurd Ha H₂) (assume Hb, Hb) or.elim H₁ (not.elim H₂) imp.id
theorem or_resolve_left (H₁ : a b) (H₂ : ¬b) : a := theorem or_resolve_left (H₁ : a b) : ¬b → a :=
or.elim H₁ (assume Ha, Ha) (assume Hb, absurd Hb H₂) or_resolve_right (or.swap H₁)
theorem or.swap (H : a b) : b a := theorem or.comm [simp] : a b ↔ b a := iff.intro or.swap or.swap
or.elim H (assume Ha, or.inr Ha) (assume Hb, or.inl Hb)
theorem or.comm [simp] : a b ↔ b a :=
iff.intro (λH, or.swap H) (λH, or.swap H)
theorem or.assoc [simp] : (a b) c ↔ a (b c) := theorem or.assoc [simp] : (a b) c ↔ a (b c) :=
iff.intro iff.intro
(assume H, or.elim H (or.rec (or.imp_right or.inl) (imp.syl or.inr or.inr))
(assume H₁, or.elim H₁ (or.rec (imp.syl or.inl or.inl) (or.imp_left or.inr))
(assume Ha, or.inl Ha)
(assume Hb, or.inr (or.inl Hb))) theorem or.imp_distrib : ((a b) → c) ↔ ((a → c) ∧ (b → c)) :=
(assume Hc, or.inr (or.inr Hc))) iff.intro
(assume H, or.elim H (λH, and.intro (imp.syl H or.inl) (imp.syl H or.inr))
(assume Ha, (or.inl (or.inl Ha))) (and.rec or.rec)
(assume H₁, or.elim H₁
(assume Hb, or.inl (or.inr Hb)) theorem or_iff_right_of_imp {a b : Prop} (Ha : a → b) : (a b) ↔ b :=
(assume Hc, or.inr Hc))) iff.intro (or.rec Ha imp.id) or.inr
theorem or_iff_left_of_imp {a b : Prop} (Hb : b → a) : (a b) ↔ a :=
iff.intro (or.rec imp.id Hb) or.inl
theorem or_true [simp] (a : Prop) : a true ↔ true := theorem or_true [simp] (a : Prop) : a true ↔ true :=
iff.intro (assume H, trivial) (assume H, or.inr H) iff_true_intro (or.inr trivial)
theorem true_or [simp] (a : Prop) : true a ↔ true := theorem true_or [simp] (a : Prop) : true a ↔ true :=
iff.intro (assume H, trivial) (assume H, or.inl H) iff_true_intro (or.inl trivial)
theorem or_false [simp] (a : Prop) : a false ↔ a := theorem or_false [simp] (a : Prop) : a false ↔ a :=
iff.intro iff.intro (or.rec imp.id false.elim) or.inl
(assume H, or.elim H (assume H1 : a, H1) (assume H1 : false, false.elim H1))
(assume H, or.inl H)
theorem false_or [simp] (a : Prop) : false a ↔ a := theorem false_or [simp] (a : Prop) : false a ↔ a :=
iff.intro iff.trans or.comm !or_false
(assume H, or.elim H (assume H1 : false, false.elim H1) (assume H1 : a, H1))
(assume H, or.inr H)
theorem or_self (a : Prop) : a a ↔ a := theorem or_self (a : Prop) : a a ↔ a :=
iff.intro iff.intro (or.rec imp.id imp.id) or.inl
(assume H, or.elim H (assume H1, H1) (assume H1, H1))
(assume H, or.inl H)
theorem or_iff_or (H1 : a ↔ c) (H2 : b ↔ d) : (a b) ↔ (c d) := theorem or_iff_or (H1 : a ↔ c) (H2 : b ↔ d) : (a b) ↔ (c d) :=
iff.intro iff.intro (or.imp (iff.mp H1) (iff.mp H2)) (or.imp (iff.mpr H1) (iff.mpr H2))
(λHab, or.elim Hab (λHa, or.inl (iff.elim_left H1 Ha)) (λHb, or.inr (iff.elim_left H2 Hb)))
(λHcd, or.elim Hcd (λHc, or.inl (iff.elim_right H1 Hc)) (λHd, or.inr (iff.elim_right H2 Hd)))
/- distributivity -/ /- distributivity -/
theorem and.distrib_left (a b c : Prop) : a ∧ (b c) ↔ (a ∧ b) (a ∧ c) := theorem and.distrib_left (a b c : Prop) : a ∧ (b c) ↔ (a ∧ b) (a ∧ c) :=
iff.intro iff.intro
(assume H, or.elim (and.right H) (and.rec (λH, or.imp (and.intro H) (and.intro H)))
(assume Hb : b, or.inl (and.intro (and.left H) Hb)) (or.rec (and.imp_right or.inl) (and.imp_right or.inr))
(assume Hc : c, or.inr (and.intro (and.left H) Hc)))
(assume H, or.elim H
(assume Hab, and.intro (and.left Hab) (or.inl (and.right Hab)))
(assume Hac, and.intro (and.left Hac) (or.inr (and.right Hac))))
theorem and.distrib_right (a b c : Prop) : (a b) ∧ c ↔ (a ∧ c) (b ∧ c) := theorem and.distrib_right (a b c : Prop) : (a b) ∧ c ↔ (a ∧ c) (b ∧ c) :=
propext (!and.comm) ▸ propext (!and.comm) ▸ propext (!and.comm) ▸ !and.distrib_left iff.trans (iff.trans !and.comm !and.distrib_left) (or_iff_or !and.comm !and.comm)
theorem or.distrib_left (a b c : Prop) : a (b ∧ c) ↔ (a b) ∧ (a c) := theorem or.distrib_left (a b c : Prop) : a (b ∧ c) ↔ (a b) ∧ (a c) :=
iff.intro iff.intro
(assume H, or.elim H (or.rec (λH, and.intro (or.inl H) (or.inl H)) (and.imp or.inr or.inr))
(assume Ha, and.intro (or.inl Ha) (or.inl Ha)) (and.rec (or.rec (imp.syl imp.intro or.inl) (imp.syl or.imp_right and.intro)))
(assume Hbc, and.intro (or.inr (and.left Hbc)) (or.inr (and.right Hbc))))
(assume H, or.elim (and.left H)
(assume Ha, or.inl Ha)
(assume Hb, or.elim (and.right H)
(assume Ha, or.inl Ha)
(assume Hc, or.inr (and.intro Hb Hc))))
theorem or.distrib_right (a b c : Prop) : (a ∧ b) c ↔ (a c) ∧ (b c) := theorem or.distrib_right (a b c : Prop) : (a ∧ b) c ↔ (a c) ∧ (b c) :=
propext (!or.comm) ▸ propext (!or.comm) ▸ propext (!or.comm) ▸ !or.distrib_left iff.trans (iff.trans !or.comm !or.distrib_left) (and_iff_and !or.comm !or.comm)
/- iff -/ /- iff -/
definition iff.def : (a ↔ b) = ((a → b) ∧ (b → a)) := definition iff.def : (a ↔ b) = ((a → b) ∧ (b → a)) := rfl
!eq.refl
theorem iff_true [simp] (a : Prop) : (a ↔ true) ↔ a := theorem iff_true [simp] (a : Prop) : (a ↔ true) ↔ a :=
iff.intro iff.intro (assume H, iff.mpr H trivial) iff_true_intro
(assume H, iff.mpr H trivial)
(assume H, iff.intro (assume H1, trivial) (assume H1, H))
theorem true_iff [simp] (a : Prop) : (true ↔ a) ↔ a := theorem true_iff [simp] (a : Prop) : (true ↔ a) ↔ a :=
iff.intro iff.trans iff.comm !iff_true
(assume H, iff.mp H trivial)
(assume H, iff.intro (assume H1, H) (assume H1, trivial))
theorem iff_false [simp] (a : Prop) : (a ↔ false) ↔ ¬ a := theorem iff_false [simp] (a : Prop) : (a ↔ false) ↔ ¬ a :=
iff.intro iff.intro and.left iff_false_intro
(assume H, and.left H)
(assume H, and.intro H (assume H1, false.elim H1))
theorem false_iff [simp] (a : Prop) : (false ↔ a) ↔ ¬ a := theorem false_iff [simp] (a : Prop) : (false ↔ a) ↔ ¬ a :=
iff.intro iff.trans iff.comm !iff_false
(assume H, and.right H)
(assume H, and.intro (assume H1, false.elim H1) H)
theorem iff_true_of_self (Ha : a) : a ↔ true :=
iff.intro (assume H, trivial) (assume H, Ha)
theorem iff_self [simp] (a : Prop) : (a ↔ a) ↔ true := theorem iff_self [simp] (a : Prop) : (a ↔ a) ↔ true :=
iff_true_of_self !iff.refl iff_true_intro iff.rfl
theorem forall_imp_forall {A : Type} {P Q : A → Prop} (H : ∀a, (P a → Q a)) (p : ∀a, P a) (a : A) : Q a :=
(H a) (p a)
theorem forall_iff_forall {A : Type} {P Q : A → Prop} (H : ∀a, (P a ↔ Q a)) : (∀a, P a) ↔ ∀a, Q a := theorem forall_iff_forall {A : Type} {P Q : A → Prop} (H : ∀a, (P a ↔ Q a)) : (∀a, P a) ↔ ∀a, Q a :=
iff.intro (λp a, iff.elim_left (H a) (p a)) (λq a, iff.elim_right (H a) (q a)) iff.intro (λp a, iff.mp (H a) (p a)) (λq a, iff.mpr (H a) (q a))
theorem exists_imp_exists {A : Type} {P Q : A → Prop} (H : ∀a, (P a → Q a)) (p : ∃a, P a) : ∃a, Q a :=
exists.elim p (λa Hp, exists.intro a (H a Hp))
theorem exists_iff_exists {A : Type} {P Q : A → Prop} (H : ∀a, (P a ↔ Q a)) : (∃a, P a) ↔ ∃a, Q a :=
iff.intro
(exists_imp_exists (λa, iff.mp (H a)))
(exists_imp_exists (λa, iff.mpr (H a)))
theorem imp_iff {P : Prop} (Q : Prop) (p : P) : (P → Q) ↔ Q := theorem imp_iff {P : Prop} (Q : Prop) (p : P) : (P → Q) ↔ Q :=
iff.intro (λf, f p) (λq p, q) iff.intro (λf, f p) imp.intro
theorem iff_iff_iff (H1 : a ↔ c) (H2 : b ↔ d) : (a ↔ b) ↔ (c ↔ d) := theorem iff_iff_iff (H1 : a ↔ c) (H2 : b ↔ d) : (a ↔ b) ↔ (c ↔ d) :=
and_iff_and (imp_iff_imp H1 H2) (imp_iff_imp H2 H1) and_iff_and (imp_iff_imp H1 H2) (imp_iff_imp H2 H1)
@ -300,10 +296,8 @@ end
/- congruences -/ /- congruences -/
theorem congr_not {a b : Prop} (H : a ↔ b) : ¬a ↔ ¬b := theorem congr_not [congr] {a b : Prop} (H : a ↔ b) : ¬a ↔ ¬b :=
iff.intro not_iff_not H
(assume H₁ : ¬a, assume H₂ : b, H₁ (iff.elim_right H H₂))
(assume H₁ : ¬b, assume H₂ : a, H₁ (iff.elim_left H H₂))
section section
variables {a₁ b₁ a₂ b₂ : Prop} variables {a₁ b₁ a₂ b₂ : Prop}

View file

@ -110,9 +110,8 @@ section
assume (Hp : p) (Heq : p = false), Heq ▸ Hp assume (Hp : p) (Heq : p = false), Heq ▸ Hp
theorem p_ne_true : ¬p → p ≠ true := theorem p_ne_true : ¬p → p ≠ true :=
assume (Hnp : ¬p) (Heq : p = true), absurd trivial (Heq ▸ Hnp) assume (Hnp : ¬p) (Heq : p = true), (Heq ▸ Hnp) trivial
end end
theorem true_ne_false : ¬true = false := theorem true_ne_false : ¬true = false :=
assume H : true = false, p_ne_false trivial
H ▸ trivial

View file

@ -34,55 +34,26 @@ calc
... ↔ b ∧ (a ∧ c) : and.assoc ... ↔ b ∧ (a ∧ c) : and.assoc
theorem not_not_iff {a : Prop} [D : decidable a] : (¬¬a) ↔ a := theorem not_not_iff {a : Prop} [D : decidable a] : (¬¬a) ↔ a :=
iff.intro iff.intro by_contradiction not_not_intro
(assume H : ¬¬a,
by_cases (assume H' : a, H') (assume H' : ¬a, absurd H' H))
(assume H : a, assume H', H' H)
theorem not_not_elim {a : Prop} [D : decidable a] (H : ¬¬a) : a := theorem not_not_elim {a : Prop} [D : decidable a] : ¬¬a → a :=
iff.mp not_not_iff H by_contradiction
theorem not_true_iff_false [simp] : ¬true ↔ false := theorem not_or_iff_not_and_not {a b : Prop} : ¬(a b) ↔ ¬a ∧ ¬b :=
iff.intro (assume H, H trivial) false.elim or.imp_distrib
theorem not_false_iff_true [simp] : ¬false ↔ true := theorem not_and_iff_not_or_not {a b : Prop} [Da : decidable a] :
iff.intro (assume H, trivial) (assume H H', H')
theorem not_or_iff_not_and_not {a b : Prop} [Da : decidable a] [Db : decidable b] :
¬(a b) ↔ ¬a ∧ ¬b :=
iff.intro
(assume H, or.elim (em a)
(assume Ha, absurd (or.inl Ha) H)
(assume Hna, or.elim (em b)
(assume Hb, absurd (or.inr Hb) H)
(assume Hnb, and.intro Hna Hnb)))
(assume (H : ¬a ∧ ¬b) (N : a b),
or.elim N
(assume Ha, absurd Ha (and.elim_left H))
(assume Hb, absurd Hb (and.elim_right H)))
theorem not_and_iff_not_or_not {a b : Prop} [Da : decidable a] [Db : decidable b] :
¬(a ∧ b) ↔ ¬a ¬b := ¬(a ∧ b) ↔ ¬a ¬b :=
iff.intro iff.intro
(assume H, or.elim (em a) (λH, by_cases (λa, or.inr (not.mto (and.intro a) H)) or.inl)
(assume Ha, or.elim (em b) (or.rec (not.mto and.left) (not.mto and.right))
(assume Hb, absurd (and.intro Ha Hb) H)
(assume Hnb, or.inr Hnb))
(assume Hna, or.inl Hna))
(assume (H : ¬a ¬b) (N : a ∧ b),
or.elim H
(assume Hna, absurd (and.elim_left N) Hna)
(assume Hnb, absurd (and.elim_right N) Hnb))
theorem imp_iff_not_or {a b : Prop} [Da : decidable a] : (a → b) ↔ ¬a b := theorem imp_iff_not_or {a b : Prop} [Da : decidable a] : (a → b) ↔ ¬a b :=
iff.intro iff.intro
(assume H : a → b, (or.elim (em a) (by_cases (λHa H, or.inr (H Ha)) (λHa H, or.inl Ha))
(assume Ha : a, or.inr (H Ha)) (or.rec not.elim imp.intro)
(assume Hna : ¬a, or.inl Hna)))
(assume (H : ¬a b) (Ha : a),
or_resolve_right H (not_not_iff⁻¹ ▸ Ha))
theorem not_implies_iff_and_not {a b : Prop} [Da : decidable a] [Db : decidable b] : theorem not_implies_iff_and_not {a b : Prop} [Da : decidable a] :
¬(a → b) ↔ a ∧ ¬b := ¬(a → b) ↔ a ∧ ¬b :=
calc calc
¬(a → b) ↔ ¬(¬a b) : {imp_iff_not_or} ¬(a → b) ↔ ¬(¬a b) : {imp_iff_not_or}
@ -90,39 +61,30 @@ calc
... ↔ a ∧ ¬b : {not_not_iff} ... ↔ a ∧ ¬b : {not_not_iff}
theorem peirce {a b : Prop} [D : decidable a] : ((a → b) → a) → a := theorem peirce {a b : Prop} [D : decidable a] : ((a → b) → a) → a :=
assume H, by_contradiction (assume Hna : ¬a, by_cases imp.intro (imp.syl imp.mp not.elim)
have Hnna : ¬¬a, from not_not_of_not_implies (mt H Hna),
absurd (not_not_elim Hnna) Hna)
theorem forall_not_of_not_exists {A : Type} {p : A → Prop} [D : ∀x, decidable (p x)] theorem forall_not_of_not_exists {A : Type} {p : A → Prop} [D : ∀x, decidable (p x)]
(H : ¬∃x, p x) : ∀x, ¬p x := (H : ¬∃x, p x) : ∀x, ¬p x :=
take x, or.elim (em (p x)) take x, by_cases
(assume Hp : p x, absurd (exists.intro x Hp) H) (assume Hp : p x, absurd (exists.intro x Hp) H)
(assume Hnp : ¬p x, Hnp) imp.id
theorem forall_of_not_exists_not {A : Type} {p : A → Prop} [D : decidable_pred p] : theorem forall_of_not_exists_not {A : Type} {p : A → Prop} [D : decidable_pred p] :
¬(∃ x, ¬p x) → ∀ x, p x := ¬(∃ x, ¬p x) → ∀ x, p x :=
assume Hne, take x, by_contradiction (assume Hnp : ¬ p x, Hne (exists.intro x Hnp)) imp.syl (forall_imp_forall (λa, not_not_elim)) forall_not_of_not_exists
theorem exists_not_of_not_forall {A : Type} {p : A → Prop} [D : ∀x, decidable (p x)] theorem exists_not_of_not_forall {A : Type} {p : A → Prop} [D : ∀x, decidable (p x)]
[D' : decidable (∃x, ¬p x)] (H : ¬∀x, p x) : [D' : decidable (∃x, ¬p x)] (H : ¬∀x, p x) :
∃x, ¬p x := ∃x, ¬p x :=
by_contradiction by_contradiction (λH1, absurd (λx, not_not_elim (forall_not_of_not_exists H1 x)) H)
(assume H1 : ¬∃x, ¬p x,
have H2 : ∀x, ¬¬p x, from forall_not_of_not_exists H1,
have H3 : ∀x, p x, from take x, not_not_elim (H2 x),
absurd H3 H)
theorem exists_of_not_forall_not {A : Type} {p : A → Prop} [D : ∀x, decidable (p x)] theorem exists_of_not_forall_not {A : Type} {p : A → Prop} [D : ∀x, decidable (p x)]
[D' : decidable (∃x, ¬¬p x)] (H : ¬∀x, ¬ p x) : [D' : decidable (∃x, p x)] (H : ¬∀x, ¬ p x) :
∃x, p x := ∃x, p x :=
obtain x (H : ¬¬ p x), from exists_not_of_not_forall H, by_contradiction (imp.syl H forall_not_of_not_exists)
exists.intro x (not_not_elim H)
theorem ne_self_iff_false {A : Type} (a : A) : (a ≠ a) ↔ false := theorem ne_self_iff_false {A : Type} (a : A) : (a ≠ a) ↔ false :=
iff.intro iff.intro false.of_ne false.elim
(assume H, false.of_ne H)
(assume H, false.elim H)
theorem eq_self_iff_true [simp] {A : Type} (a : A) : (a = a) ↔ true := theorem eq_self_iff_true [simp] {A : Type} (a : A) : (a = a) ↔ true :=
iff_true_intro rfl iff_true_intro rfl
@ -131,20 +93,12 @@ theorem heq_self_iff_true [simp] {A : Type} (a : A) : (a == a) ↔ true :=
iff_true_intro (heq.refl a) iff_true_intro (heq.refl a)
theorem iff_not_self [simp] (a : Prop) : (a ↔ ¬a) ↔ false := theorem iff_not_self [simp] (a : Prop) : (a ↔ ¬a) ↔ false :=
iff.intro iff_false_intro (λH,
(assume H, have H' : ¬a, from (λHa, (mp H Ha) Ha),
have H' : ¬a, from assume Ha, (H ▸ Ha) Ha, H' (iff.mpr H H'))
H' (H⁻¹ ▸ H'))
(assume H, false.elim H)
theorem true_iff_false [simp] : (true ↔ false) ↔ false := theorem true_iff_false [simp] : (true ↔ false) ↔ false :=
not_true_iff_false ▸ (iff_not_self true) not_true ▸ (iff_not_self true)
theorem false_iff_true [simp] : (false ↔ true) ↔ false := theorem false_iff_true [simp] : (false ↔ true) ↔ false :=
not_false_iff_true ▸ (iff_not_self false) not_false_iff ▸ (iff_not_self false)
theorem iff_true_iff [simp] (a : Prop) : (a ↔ true) ↔ a :=
iff.intro (assume H, of_iff_true H) (assume H, iff_true_intro H)
theorem iff_false_iff_not [simp] (a : Prop) : (a ↔ false) ↔ ¬a :=
iff.intro (assume H, not_of_iff_false H) (assume H, iff_false_intro H)

View file

@ -21,43 +21,19 @@ relation.is_equivalence.mk @iff.refl @iff.symm @iff.trans
/- congruences for logic operations -/ /- congruences for logic operations -/
theorem is_congruence_not : is_congruence iff iff not := theorem is_congruence_not : is_congruence iff iff not :=
is_congruence.mk is_congruence.mk @congr_not
(take a b,
assume H : a ↔ b, iff.intro
(assume H1 : ¬a, assume H2 : b, H1 (iff.elim_right H H2))
(assume H1 : ¬b, assume H2 : a, H1 (iff.elim_left H H2)))
theorem is_congruence_and : is_congruence2 iff iff iff and := theorem is_congruence_and : is_congruence2 iff iff iff and :=
is_congruence2.mk is_congruence2.mk @congr_and
(take a1 b1 a2 b2,
assume H1 : a1 ↔ b1, assume H2 : a2 ↔ b2,
iff.intro
(assume H3 : a1 ∧ a2, and_of_and_of_imp_of_imp H3 (iff.elim_left H1) (iff.elim_left H2))
(assume H3 : b1 ∧ b2, and_of_and_of_imp_of_imp H3 (iff.elim_right H1) (iff.elim_right H2)))
theorem is_congruence_or : is_congruence2 iff iff iff or := theorem is_congruence_or : is_congruence2 iff iff iff or :=
is_congruence2.mk is_congruence2.mk @congr_or
(take a1 b1 a2 b2,
assume H1 : a1 ↔ b1, assume H2 : a2 ↔ b2,
iff.intro
(assume H3 : a1 a2, or_of_or_of_imp_of_imp H3 (iff.elim_left H1) (iff.elim_left H2))
(assume H3 : b1 b2, or_of_or_of_imp_of_imp H3 (iff.elim_right H1) (iff.elim_right H2)))
theorem is_congruence_imp : is_congruence2 iff iff iff imp := theorem is_congruence_imp : is_congruence2 iff iff iff imp :=
is_congruence2.mk is_congruence2.mk @congr_imp
(take a1 b1 a2 b2,
assume H1 : a1 ↔ b1, assume H2 : a2 ↔ b2,
iff.intro
(assume H3 : a1 → a2, assume Hb1 : b1, iff.elim_left H2 (H3 ((iff.elim_right H1) Hb1)))
(assume H3 : b1 → b2, assume Ha1 : a1, iff.elim_right H2 (H3 ((iff.elim_left H1) Ha1))))
theorem is_congruence_iff : is_congruence2 iff iff iff iff := theorem is_congruence_iff : is_congruence2 iff iff iff iff :=
is_congruence2.mk is_congruence2.mk @congr_iff
(take a1 b1 a2 b2,
assume H1 : a1 ↔ b1, assume H2 : a2 ↔ b2,
iff.intro
(assume H3 : a1 ↔ a2, iff.trans (iff.symm H1) (iff.trans H3 H2))
(assume H3 : b1 ↔ b2, iff.trans H1 (iff.trans H3 (iff.symm H2))))
definition is_congruence_not_compose [instance] := is_congruence.compose is_congruence_not definition is_congruence_not_compose [instance] := is_congruence.compose is_congruence_not
definition is_congruence_and_compose [instance] := is_congruence.compose21 is_congruence_and definition is_congruence_and_compose [instance] := is_congruence.compose21 is_congruence_and
@ -75,7 +51,7 @@ end general_subst
/- iff can be coerced to implication -/ /- iff can be coerced to implication -/
definition mp_like_iff [instance] : relation.mp_like iff := definition mp_like_iff [instance] : relation.mp_like iff :=
relation.mp_like.mk (λa b (H : a ↔ b), iff.elim_left H) relation.mp_like.mk @iff.mp
/- support for calculations with iff -/ /- support for calculations with iff -/

View file

@ -8,6 +8,12 @@ Universal and existential quantifiers. See also init.logic.
import .connectives import .connectives
open inhabited nonempty open inhabited nonempty
theorem exists_imp_distrib {A : Type} {B : Prop} {P : A → Prop} : ((∃ a : A, P a) → B) ↔ (∀ a : A, P a → B) :=
iff.intro (λ e x H, e (exists.intro x H)) Exists.rec
theorem forall_iff_not_exists {A : Type} {P : A → Prop} : (¬ ∃ a : A, P a) ↔ ∀ a : A, ¬ P a :=
exists_imp_distrib
theorem not_forall_not_of_exists {A : Type} {p : A → Prop} (H : ∃x, p x) : ¬∀x, ¬p x := theorem not_forall_not_of_exists {A : Type} {p : A → Prop} (H : ∃x, p x) : ¬∀x, ¬p x :=
assume H1 : ∀x, ¬p x, assume H1 : ∀x, ¬p x,
obtain (w : A) (Hw : p w), from H, obtain (w : A) (Hw : p w), from H,
@ -18,50 +24,36 @@ assume H1 : ∃x, ¬p x,
obtain (w : A) (Hw : ¬p w), from H1, obtain (w : A) (Hw : ¬p w), from H1,
absurd (H2 w) Hw absurd (H2 w) Hw
theorem forall_congr {A : Type} {φ ψ : A → Prop} (H : ∀x, φ x ↔ ψ x) : (∀x, φ x) ↔ (∀x, ψ x) := theorem forall_congr {A : Type} {φ ψ : A → Prop} : (∀x, φ x ↔ ψ x) → ((∀x, φ x) ↔ (∀x, ψ x)) :=
iff.intro forall_iff_forall
(assume Hl, take x, iff.elim_left (H x) (Hl x))
(assume Hr, take x, iff.elim_right (H x) (Hr x))
theorem exists_congr {A : Type} {φ ψ : A → Prop} (H : ∀x, φ x ↔ ψ x) : (∃x, φ x) ↔ (∃x, ψ x) := theorem exists_congr {A : Type} {φ ψ : A → Prop} : (∀x, φ x ↔ ψ x) → ((∃x, φ x) ↔ (∃x, ψ x)) :=
iff.intro exists_iff_exists
(assume Hex, obtain w Pw, from Hex,
exists.intro w (iff.elim_left (H w) Pw))
(assume Hex, obtain w Qw, from Hex,
exists.intro w (iff.elim_right (H w) Qw))
theorem forall_true_iff_true (A : Type) : (∀x : A, true) ↔ true := theorem forall_true_iff_true (A : Type) : (∀x : A, true) ↔ true :=
iff.intro (assume H, trivial) (assume H, take x, trivial) iff_true_intro (λH, trivial)
theorem forall_p_iff_p (A : Type) [H : inhabited A] (p : Prop) : (∀x : A, p) ↔ p := theorem forall_p_iff_p (A : Type) [H : inhabited A] (p : Prop) : (∀x : A, p) ↔ p :=
iff.intro (assume Hl, inhabited.destruct H (take x, Hl x)) (assume Hr, take x, Hr) iff.intro (inhabited.destruct H) (λHr x, Hr)
theorem exists_p_iff_p (A : Type) [H : inhabited A] (p : Prop) : (∃x : A, p) ↔ p := theorem exists_p_iff_p (A : Type) [H : inhabited A] (p : Prop) : (∃x : A, p) ↔ p :=
iff.intro iff.intro (Exists.rec (λx Hp, Hp)) (inhabited.destruct H exists.intro)
(assume Hl, obtain a Hp, from Hl, Hp)
(assume Hr, inhabited.destruct H (take a, exists.intro a Hr))
theorem forall_and_distribute {A : Type} (φ ψ : A → Prop) : theorem forall_and_distribute {A : Type} (φ ψ : A → Prop) :
(∀x, φ x ∧ ψ x) ↔ (∀x, φ x) ∧ (∀x, ψ x) := (∀x, φ x ∧ ψ x) ↔ (∀x, φ x) ∧ (∀x, ψ x) :=
iff.intro iff.intro
(assume H, and.intro (take x, and.elim_left (H x)) (take x, and.elim_right (H x))) (assume H, and.intro (take x, and.left (H x)) (take x, and.right (H x)))
(assume H, take x, and.intro (and.elim_left H x) (and.elim_right H x)) (assume H x, and.intro (and.left H x) (and.right H x))
theorem exists_or_distribute {A : Type} (φ ψ : A → Prop) : theorem exists_or_distribute {A : Type} (φ ψ : A → Prop) :
(∃x, φ x ψ x) ↔ (∃x, φ x) (∃x, ψ x) := (∃x, φ x ψ x) ↔ (∃x, φ x) (∃x, ψ x) :=
iff.intro iff.intro
(assume H, obtain (w : A) (Hw : φ w ψ w), from H, (Exists.rec (λx, or.imp !exists.intro !exists.intro))
or.elim Hw (or.rec (exists_imp_exists (λx, or.inl))
(assume Hw1 : φ w, or.inl (exists.intro w Hw1)) (exists_imp_exists (λx, or.inr)))
(assume Hw2 : ψ w, or.inr (exists.intro w Hw2)))
(assume H, or.elim H
(assume H1, obtain (w : A) (Hw : φ w), from H1,
exists.intro w (or.inl Hw))
(assume H2, obtain (w : A) (Hw : ψ w), from H2,
exists.intro w (or.inr Hw)))
theorem nonempty_of_exists {A : Type} {P : A → Prop} (H : ∃x, P x) : nonempty A := theorem nonempty_of_exists {A : Type} {P : A → Prop} : (∃x, P x) → nonempty A :=
obtain w Hw, from H, nonempty.intro w Exists.rec (λw H, intro w)
section section
open decidable eq.ops open decidable eq.ops
@ -70,16 +62,12 @@ section
include H include H
definition decidable_forall_eq [instance] : decidable (∀ x, x = a → P x) := definition decidable_forall_eq [instance] : decidable (∀ x, x = a → P x) :=
decidable.rec_on H if pa : P a then inl (λ x heq, eq.substr heq pa)
(λ pa, inl (λ x heq, eq.rec_on (eq.rec_on heq rfl) pa)) else inr (not.mto (λH, H a rfl) pa)
(λ npa, inr (λ h, absurd (h a rfl) npa))
definition decidable_exists_eq [instance] : decidable (∃ x, x = a ∧ P x) := definition decidable_exists_eq [instance] : decidable (∃ x, x = a ∧ P x) :=
decidable.rec_on H if pa : P a then inl (exists.intro a (and.intro rfl pa))
(λ pa, inl (exists.intro a (and.intro rfl pa))) else inr (Exists.rec (λh, and.rec (λheq, eq.substr heq pa)))
(λ npa, inr (λ h,
obtain (w : A) (Hw : w = a ∧ P w), from h,
absurd (and.rec_on Hw (λ h₁ h₂, h₁ ▸ h₂)) npa))
end end
/- exists_unique -/ /- exists_unique -/
@ -96,7 +84,7 @@ exists.intro w (and.intro H1 H2)
theorem exists_unique.elim {A : Type} {p : A → Prop} {b : Prop} theorem exists_unique.elim {A : Type} {p : A → Prop} {b : Prop}
(H2 : ∃!x, p x) (H1 : ∀x, p x → (∀y, p y → y = x) → b) : b := (H2 : ∃!x, p x) (H1 : ∀x, p x → (∀y, p y → y = x) → b) : b :=
obtain w Hw, from H2, obtain w Hw, from H2,
H1 w (and.elim_left Hw) (and.elim_right Hw) H1 w (and.left Hw) (and.right Hw)
/- congruences -/ /- congruences -/
@ -104,23 +92,13 @@ section
variables {A : Type} {p₁ p₂ : A → Prop} (H : ∀x, p₁ x ↔ p₂ x) variables {A : Type} {p₁ p₂ : A → Prop} (H : ∀x, p₁ x ↔ p₂ x)
theorem congr_forall : (∀x, p₁ x) ↔ (∀x, p₂ x) := theorem congr_forall : (∀x, p₁ x) ↔ (∀x, p₂ x) :=
iff.intro forall_congr H
(assume H', take x, iff.mp (H x) (H' x))
(assume H', take x, iff.mpr (H x) (H' x))
theorem congr_exists : (∃x, p₁ x) ↔ (∃x, p₂ x) := theorem congr_exists : (∃x, p₁ x) ↔ (∃x, p₂ x) :=
iff.intro exists_congr H
(assume H', exists.elim H' (λ x H₁, exists.intro x (iff.mp (H x) H₁)))
(assume H', exists.elim H' (λ x H₁, exists.intro x (iff.mpr (H x) H₁)))
include H include H
theorem congr_exists_unique : (∃!x, p₁ x) ↔ (∃!x, p₂ x) := theorem congr_exists_unique : (∃!x, p₁ x) ↔ (∃!x, p₂ x) :=
begin congr_exists (λx, congr_and (H x) (congr_forall
apply congr_exists, (λy, congr_imp (H y) iff.rfl)))
intro x,
apply congr_and (H x),
apply congr_forall,
intro y,
apply congr_imp (H y) !iff.rfl
end
end end