feat(library): clean up "sorry"s in library
Breaking changes: pnat was redefined to use subtype instead of a custom inductive type, which affects the notation for pnat 2 and 3
This commit is contained in:
parent
bcf057f4f3
commit
066b0fcdf9
28 changed files with 1005 additions and 1465 deletions
|
@ -58,6 +58,12 @@ namespace binary
|
|||
(a*b)*c = a*(b*c) : H_assoc
|
||||
... = a*(c*b) : H_comm
|
||||
... = (a*c)*b : H_assoc
|
||||
|
||||
theorem comm4 (a b c d : A) : a*b*(c*d) = a*c*(b*d) :=
|
||||
calc
|
||||
a*b*(c*d) = a*b*c*d : H_assoc
|
||||
... = a*c*b*d : right_comm H_comm H_assoc
|
||||
... = a*c*(b*d) : H_assoc
|
||||
end
|
||||
|
||||
section
|
||||
|
|
|
@ -6,8 +6,8 @@ Author: Jeremy Avigad, Floris van Doorn
|
|||
import logic.cast
|
||||
|
||||
namespace empty
|
||||
protected theorem elim (A : Type) (H : empty) : A :=
|
||||
empty.rec (λe, A) H
|
||||
protected theorem elim (A : Type) : empty → A :=
|
||||
empty.rec (λe, A)
|
||||
|
||||
protected theorem subsingleton [instance] : subsingleton empty :=
|
||||
subsingleton.intro (λ a b, !empty.elim a)
|
||||
|
|
|
@ -26,8 +26,8 @@ lemma veq_of_eq : ∀ {i j : fin n}, i = j → (val i) = j
|
|||
| (mk iv ilt) (mk jv jlt) := assume Peq,
|
||||
show iv = jv, from fin.no_confusion Peq (λ Pe Pqe, Pe)
|
||||
|
||||
lemma eq_iff_veq : ∀ {i j : fin n}, (val i) = j ↔ i = j :=
|
||||
take i j, iff.intro eq_of_veq veq_of_eq
|
||||
lemma eq_iff_veq {i j : fin n} : (val i) = j ↔ i = j :=
|
||||
iff.intro eq_of_veq veq_of_eq
|
||||
|
||||
definition val_inj := @eq_of_veq n
|
||||
|
||||
|
@ -37,10 +37,7 @@ section
|
|||
open decidable
|
||||
protected definition has_decidable_eq [instance] (n : nat) : ∀ (i j : fin n), decidable (i = j)
|
||||
| (mk ival ilt) (mk jval jlt) :=
|
||||
match nat.has_decidable_eq ival jval with
|
||||
| inl veq := inl (by substvars)
|
||||
| inr vne := inr (by intro h; injection h; contradiction)
|
||||
end
|
||||
decidable_of_decidable_of_iff (nat.has_decidable_eq ival jval) eq_iff_veq
|
||||
end
|
||||
|
||||
lemma dinj_lt (n : nat) : dinj (λ i, i < n) fin.mk :=
|
||||
|
|
|
@ -28,10 +28,10 @@ private definition eqv.refl (l : nodup_list A) : l ~ l :=
|
|||
!perm.refl
|
||||
|
||||
private definition eqv.symm {l₁ l₂ : nodup_list A} : l₁ ~ l₂ → l₂ ~ l₁ :=
|
||||
assume p, perm.symm p
|
||||
perm.symm
|
||||
|
||||
private definition eqv.trans {l₁ l₂ l₃ : nodup_list A} : l₁ ~ l₂ → l₂ ~ l₃ → l₁ ~ l₃ :=
|
||||
assume p₁ p₂, perm.trans p₁ p₂
|
||||
perm.trans
|
||||
|
||||
definition finset.nodup_list_setoid [instance] (A : Type) : setoid (nodup_list A) :=
|
||||
setoid.mk (@eqv A) (mk_equivalence (@eqv A) (@eqv.refl A) (@eqv.symm A) (@eqv.trans A))
|
||||
|
@ -123,7 +123,7 @@ theorem not_mem_empty [simp] (a : A) : a ∉ ∅ :=
|
|||
λ aine : a ∈ ∅, aine
|
||||
|
||||
theorem mem_empty_iff [simp] (x : A) : x ∈ ∅ ↔ false :=
|
||||
iff.mpr !iff_false_iff_not !not_mem_empty
|
||||
iff_false_intro !not_mem_empty
|
||||
|
||||
theorem mem_empty_eq (x : A) : x ∈ ∅ = false :=
|
||||
propext !mem_empty_iff
|
||||
|
@ -177,30 +177,18 @@ quot.induction_on s
|
|||
theorem eq_or_mem_of_mem_insert {x a : A} {s : finset A} : x ∈ insert a s → x = a ∨ x ∈ s :=
|
||||
quot.induction_on s (λ l : nodup_list A, λ H, list.eq_or_mem_of_mem_insert H)
|
||||
|
||||
theorem mem_of_mem_insert_of_ne {x a : A} {s : finset A} : x ∈ insert a s → x ≠ a → x ∈ s :=
|
||||
λ xin xne, or.elim (eq_or_mem_of_mem_insert xin) (by contradiction) id
|
||||
theorem mem_of_mem_insert_of_ne {x a : A} {s : finset A} (xin : x ∈ insert a s) : x ≠ a → x ∈ s :=
|
||||
or_resolve_right (eq_or_mem_of_mem_insert xin)
|
||||
|
||||
theorem mem_insert_eq (x a : A) (s : finset A) : x ∈ insert a s = (x = a ∨ x ∈ s) :=
|
||||
propext (iff.intro
|
||||
(!eq_or_mem_of_mem_insert)
|
||||
(suppose x = a ∨ x ∈ s, or.elim this
|
||||
(suppose x = a, eq.subst (eq.symm this) !mem_insert)
|
||||
(suppose x ∈ s, !mem_insert_of_mem this)))
|
||||
propext (iff.intro !eq_or_mem_of_mem_insert
|
||||
(or.rec (λH', (eq.substr H' !mem_insert)) !mem_insert_of_mem))
|
||||
|
||||
theorem insert_empty_eq (a : A) : '{a} = singleton a := rfl
|
||||
|
||||
theorem insert_eq_of_mem {a : A} {s : finset A} (H : a ∈ s) : insert a s = s :=
|
||||
ext
|
||||
take x,
|
||||
begin
|
||||
rewrite [!mem_insert_eq],
|
||||
show x = a ∨ x ∈ s ↔ x ∈ s, from
|
||||
iff.intro
|
||||
(assume H1, or.elim H1
|
||||
(suppose x = a, eq.subst (eq.symm this) H)
|
||||
(suppose x ∈ s, this))
|
||||
(suppose x ∈ s, or.inr this)
|
||||
end
|
||||
ext (λ x, eq.substr (mem_insert_eq x a s)
|
||||
(or_iff_right_of_imp (λH1, eq.substr H1 H)))
|
||||
|
||||
theorem card_insert_of_mem {a : A} {s : finset A} : a ∈ s → card (insert a s) = card s :=
|
||||
quot.induction_on s
|
||||
|
@ -212,9 +200,8 @@ quot.induction_on s
|
|||
|
||||
theorem card_insert_le (a : A) (s : finset A) :
|
||||
card (insert a s) ≤ card s + 1 :=
|
||||
decidable.by_cases
|
||||
(suppose a ∈ s, by rewrite [card_insert_of_mem this]; apply le_succ)
|
||||
(suppose a ∉ s, by rewrite [card_insert_of_not_mem this])
|
||||
if H : a ∈ s then by rewrite [card_insert_of_mem H]; apply le_succ
|
||||
else by rewrite [card_insert_of_not_mem H]
|
||||
|
||||
lemma ne_empty_of_card_eq_succ {s : finset A} {n : nat} : card s = succ n → s ≠ ∅ :=
|
||||
by intros; substvars; contradiction
|
||||
|
|
|
@ -45,49 +45,39 @@ namespace int
|
|||
|
||||
attribute int.of_nat [coercion]
|
||||
|
||||
notation `-[1+` n `]` := int.neg_succ_of_nat n -- for pretty-printing output
|
||||
|
||||
/- definitions of basic functions -/
|
||||
|
||||
definition neg_of_nat (m : ℕ) : ℤ :=
|
||||
nat.cases_on m 0 (take m', neg_succ_of_nat m')
|
||||
definition neg_of_nat : ℕ → ℤ
|
||||
| 0 := 0
|
||||
| (succ m) := -[1+ m]
|
||||
|
||||
definition sub_nat_nat (m n : ℕ) : ℤ :=
|
||||
nat.cases_on (n - m)
|
||||
(of_nat (m - n)) -- m ≥ n
|
||||
(take k, neg_succ_of_nat k) -- m < n, and n - m = succ k
|
||||
match n - m with
|
||||
| 0 := m - n -- m ≥ n
|
||||
| (succ k) := -[1+ k] -- m < n, and n - m = succ k
|
||||
end
|
||||
|
||||
definition neg (a : ℤ) : ℤ :=
|
||||
int.cases_on a
|
||||
(take m, -- a = of_nat m
|
||||
nat.cases_on m 0 (take m', neg_succ_of_nat m'))
|
||||
(take m, of_nat (succ m)) -- a = neg_succ_of_nat m
|
||||
int.cases_on a neg_of_nat succ
|
||||
|
||||
definition add (a b : ℤ) : ℤ :=
|
||||
int.cases_on a
|
||||
(take m, -- a = of_nat m
|
||||
int.cases_on b
|
||||
(take n, of_nat (m + n)) -- b = of_nat n
|
||||
(take n, sub_nat_nat m (succ n))) -- b = neg_succ_of_nat n
|
||||
(take m, -- a = neg_succ_of_nat m
|
||||
int.cases_on b
|
||||
(take n, sub_nat_nat n (succ m)) -- b = of_nat n
|
||||
(take n, neg_of_nat (succ m + succ n))) -- b = neg_succ_of_nat n
|
||||
definition add : ℤ → ℤ → ℤ
|
||||
| (of_nat m) (of_nat n) := m + n
|
||||
| (of_nat m) -[1+ n] := sub_nat_nat m (succ n)
|
||||
| -[1+ m] (of_nat n) := sub_nat_nat n (succ m)
|
||||
| -[1+ m] -[1+ n] := neg_of_nat (succ m + succ n)
|
||||
|
||||
definition mul (a b : ℤ) : ℤ :=
|
||||
int.cases_on a
|
||||
(take m, -- a = of_nat m
|
||||
int.cases_on b
|
||||
(take n, of_nat (m * n)) -- b = of_nat n
|
||||
(take n, neg_of_nat (m * succ n))) -- b = neg_succ_of_nat n
|
||||
(take m, -- a = neg_succ_of_nat m
|
||||
int.cases_on b
|
||||
(take n, neg_of_nat (succ m * n)) -- b = of_nat n
|
||||
(take n, of_nat (succ m * succ n))) -- b = neg_succ_of_nat n
|
||||
definition mul : ℤ → ℤ → ℤ
|
||||
| (of_nat m) (of_nat n) := m * n
|
||||
| (of_nat m) -[1+ n] := neg_of_nat (m * succ n)
|
||||
| -[1+ m] (of_nat n) := neg_of_nat (succ m * n)
|
||||
| -[1+ m] -[1+ n] := succ m * succ n
|
||||
|
||||
/- notation -/
|
||||
|
||||
protected definition prio : num := num.pred std.priority.default
|
||||
|
||||
notation `-[1+` n `]` := int.neg_succ_of_nat n -- for pretty-printing output
|
||||
prefix [priority int.prio] - := int.neg
|
||||
infix [priority int.prio] + := int.add
|
||||
infix [priority int.prio] * := int.mul
|
||||
|
@ -95,30 +85,25 @@ infix [priority int.prio] * := int.mul
|
|||
/- some basic functions and properties -/
|
||||
|
||||
theorem of_nat.inj {m n : ℕ} (H : of_nat m = of_nat n) : m = n :=
|
||||
by injection H; assumption
|
||||
int.no_confusion H imp.id
|
||||
|
||||
theorem of_nat_eq_of_nat (m n : ℕ) : of_nat m = of_nat n ↔ m = n :=
|
||||
iff.intro of_nat.inj !congr_arg
|
||||
|
||||
theorem neg_succ_of_nat.inj {m n : ℕ} (H : neg_succ_of_nat m = neg_succ_of_nat n) : m = n :=
|
||||
by injection H; assumption
|
||||
int.no_confusion H imp.id
|
||||
|
||||
theorem neg_succ_of_nat_eq (n : ℕ) : -[1+ n] = -(n + 1) := rfl
|
||||
|
||||
definition has_decidable_eq [instance] : decidable_eq ℤ :=
|
||||
take a b,
|
||||
int.cases_on a
|
||||
(take m,
|
||||
int.cases_on b
|
||||
(take n,
|
||||
if H : m = n then inl (congr_arg of_nat H) else inr (take H1, H (of_nat.inj H1)))
|
||||
(take n', inr (by contradiction)))
|
||||
(take m',
|
||||
int.cases_on b
|
||||
(take n, inr (by contradiction))
|
||||
(take n',
|
||||
(if H : m' = n' then inl (congr_arg neg_succ_of_nat H) else
|
||||
inr (take H1, H (neg_succ_of_nat.inj H1)))))
|
||||
private definition has_decidable_eq₂ : Π (a b : ℤ), decidable (a = b)
|
||||
| (of_nat m) (of_nat n) := decidable_of_decidable_of_iff
|
||||
(nat.has_decidable_eq m n) (iff.symm (of_nat_eq_of_nat m n))
|
||||
| (of_nat m) -[1+ n] := inr (by contradiction)
|
||||
| -[1+ m] (of_nat n) := inr (by contradiction)
|
||||
| -[1+ m] -[1+ n] := if H : m = n then
|
||||
inl (congr_arg neg_succ_of_nat H) else inr (not.mto neg_succ_of_nat.inj H)
|
||||
|
||||
definition has_decidable_eq [instance] : decidable_eq ℤ := has_decidable_eq₂
|
||||
|
||||
theorem of_nat_add (n m : nat) : of_nat (n + m) = of_nat n + of_nat m := rfl
|
||||
|
||||
|
@ -127,30 +112,23 @@ theorem of_nat_succ (n : ℕ) : of_nat (succ n) = of_nat n + 1 := rfl
|
|||
theorem of_nat_mul (n m : ℕ) : of_nat (n * m) = of_nat n * of_nat m := rfl
|
||||
|
||||
theorem sub_nat_nat_of_ge {m n : ℕ} (H : m ≥ n) : sub_nat_nat m n = of_nat (m - n) :=
|
||||
have H1 : n - m = 0, from sub_eq_zero_of_le H,
|
||||
calc
|
||||
sub_nat_nat m n = nat.cases_on 0 (of_nat (m - n)) _ : H1 ▸ rfl
|
||||
... = of_nat (m - n) : rfl
|
||||
show sub_nat_nat m n = nat.cases_on 0 (m - n) _, from (sub_eq_zero_of_le H) ▸ rfl
|
||||
|
||||
section
|
||||
local attribute sub_nat_nat [reducible]
|
||||
theorem sub_nat_nat_of_lt {m n : ℕ} (H : m < n) :
|
||||
sub_nat_nat m n = neg_succ_of_nat (pred (n - m)) :=
|
||||
sub_nat_nat m n = -[1+ pred (n - m)] :=
|
||||
have H1 : n - m = succ (pred (n - m)), from (succ_pred_of_pos (sub_pos_of_lt H))⁻¹,
|
||||
calc
|
||||
sub_nat_nat m n = nat.cases_on (succ (pred (n - m))) (of_nat (m - n))
|
||||
(take k, neg_succ_of_nat k) : H1 ▸ rfl
|
||||
... = neg_succ_of_nat (pred (n - m)) : rfl
|
||||
show sub_nat_nat m n = nat.cases_on (succ (pred (n - m))) (m - n) _, from H1 ▸ rfl
|
||||
end
|
||||
|
||||
definition nat_abs (a : ℤ) : ℕ := int.cases_on a (take n, n) (take n', succ n')
|
||||
definition nat_abs (a : ℤ) : ℕ := int.cases_on a function.id succ
|
||||
|
||||
theorem nat_abs_of_nat (n : ℕ) : nat_abs (of_nat n) = n := rfl
|
||||
theorem nat_abs_of_nat (n : ℕ) : nat_abs n = n := rfl
|
||||
|
||||
theorem nat_abs_eq_zero {a : ℤ} : nat_abs a = 0 → a = 0 :=
|
||||
int.cases_on a
|
||||
(take m, suppose nat_abs (of_nat m) = 0, congr_arg of_nat this)
|
||||
(take m', suppose nat_abs (neg_succ_of_nat m') = 0, absurd this (succ_ne_zero _))
|
||||
theorem nat_abs_eq_zero : Π {a : ℤ}, nat_abs a = 0 → a = 0
|
||||
| (of_nat m) H := congr_arg of_nat H
|
||||
| -[1+ m'] H := absurd H !succ_ne_zero
|
||||
|
||||
/- int is a quotient of ordered pairs of natural numbers -/
|
||||
|
||||
|
@ -162,24 +140,23 @@ protected theorem equiv.refl [refl] {p : ℕ × ℕ} : p ≡ p := !add.comm
|
|||
|
||||
protected theorem equiv.symm [symm] {p q : ℕ × ℕ} (H : p ≡ q) : q ≡ p :=
|
||||
calc
|
||||
pr1 q + pr2 p = pr2 p + pr1 q : !add.comm
|
||||
pr1 q + pr2 p = pr2 p + pr1 q : add.comm
|
||||
... = pr1 p + pr2 q : H⁻¹
|
||||
... = pr2 q + pr1 p : !add.comm
|
||||
... = pr2 q + pr1 p : add.comm
|
||||
|
||||
protected theorem equiv.trans [trans] {p q r : ℕ × ℕ} (H1 : p ≡ q) (H2 : q ≡ r) : p ≡ r :=
|
||||
have H3 : pr1 p + pr2 r + pr2 q = pr2 p + pr1 r + pr2 q, from
|
||||
calc
|
||||
pr1 p + pr2 r + pr2 q = pr1 p + pr2 q + pr2 r : by rewrite [*add.assoc, add.comm (pr₂ q)]
|
||||
add.cancel_right (calc
|
||||
pr1 p + pr2 r + pr2 q = pr1 p + pr2 q + pr2 r : add.right_comm
|
||||
... = pr2 p + pr1 q + pr2 r : {H1}
|
||||
... = pr2 p + (pr1 q + pr2 r) : add.assoc
|
||||
... = pr2 p + (pr2 q + pr1 r) : {H2}
|
||||
... = pr2 p + pr1 r + pr2 q : by rewrite [add.assoc, add.comm (pr₂ q)],
|
||||
show pr1 p + pr2 r = pr2 p + pr1 r, from add.cancel_right H3
|
||||
... = pr2 p + pr2 q + pr1 r : add.assoc
|
||||
... = pr2 p + pr1 r + pr2 q : add.right_comm)
|
||||
|
||||
protected theorem equiv_equiv : is_equivalence int.equiv :=
|
||||
is_equivalence.mk @equiv.refl @equiv.symm @equiv.trans
|
||||
|
||||
protected theorem equiv_cases {p q : ℕ × ℕ} (H : int.equiv p q) :
|
||||
protected theorem equiv_cases {p q : ℕ × ℕ} (H : p ≡ q) :
|
||||
(pr1 p ≥ pr2 p ∧ pr1 q ≥ pr2 q) ∨ (pr1 p < pr2 p ∧ pr1 q < pr2 q) :=
|
||||
or.elim (@le_or_gt (pr2 p) (pr1 p))
|
||||
(suppose pr1 p ≥ pr2 p,
|
||||
|
@ -199,109 +176,83 @@ theorem abstr_of_ge {p : ℕ × ℕ} (H : pr1 p ≥ pr2 p) : abstr p = of_nat (p
|
|||
sub_nat_nat_of_ge H
|
||||
|
||||
theorem abstr_of_lt {p : ℕ × ℕ} (H : pr1 p < pr2 p) :
|
||||
abstr p = neg_succ_of_nat (pred (pr2 p - pr1 p)) :=
|
||||
abstr p = -[1+ pred (pr2 p - pr1 p)] :=
|
||||
sub_nat_nat_of_lt H
|
||||
|
||||
definition repr (a : ℤ) : ℕ × ℕ := int.cases_on a (take m, (m, 0)) (take m, (0, succ m))
|
||||
definition repr : ℤ → ℕ × ℕ
|
||||
| (of_nat m) := (m, 0)
|
||||
| -[1+ m] := (0, succ m)
|
||||
|
||||
theorem abstr_repr (a : ℤ) : abstr (repr a) = a :=
|
||||
int.cases_on a (take m, (sub_nat_nat_of_ge (zero_le m))) (take m, rfl)
|
||||
theorem abstr_repr : Π (a : ℤ), abstr (repr a) = a
|
||||
| (of_nat m) := (sub_nat_nat_of_ge (zero_le m))
|
||||
| -[1+ m] := rfl
|
||||
|
||||
theorem repr_sub_nat_nat (m n : ℕ) : repr (sub_nat_nat m n) ≡ (m, n) :=
|
||||
or.elim (@le_or_gt n m)
|
||||
(suppose m ≥ n,
|
||||
have repr (sub_nat_nat m n) = (m - n, 0), from sub_nat_nat_of_ge this ▸ rfl,
|
||||
this⁻¹ ▸
|
||||
(calc
|
||||
m - n + n = m : sub_add_cancel `m ≥ n`
|
||||
... = 0 + m : zero_add))
|
||||
(suppose H : m < n,
|
||||
have repr (sub_nat_nat m n) = (0, succ (pred (n - m))), from sub_nat_nat_of_lt H ▸ rfl,
|
||||
this⁻¹ ▸
|
||||
(calc
|
||||
0 + n = n : zero_add
|
||||
... = n - m + m : sub_add_cancel (le_of_lt H)
|
||||
... = succ (pred (n - m)) + m : (succ_pred_of_pos (sub_pos_of_lt H))⁻¹))
|
||||
lt_ge_by_cases
|
||||
(take H : m < n,
|
||||
have H1 : repr (sub_nat_nat m n) = (0, n - m), by
|
||||
rewrite [sub_nat_nat_of_lt H, -(succ_pred_of_pos (sub_pos_of_lt H))],
|
||||
H1⁻¹ ▸ (!zero_add ⬝ (sub_add_cancel (le_of_lt H))⁻¹))
|
||||
(take H : m ≥ n,
|
||||
have H1 : repr (sub_nat_nat m n) = (m - n, 0), from sub_nat_nat_of_ge H ▸ rfl,
|
||||
H1⁻¹ ▸ ((sub_add_cancel H) ⬝ !zero_add⁻¹))
|
||||
|
||||
theorem repr_abstr (p : ℕ × ℕ) : repr (abstr p) ≡ p :=
|
||||
!prod.eta ▸ !repr_sub_nat_nat
|
||||
|
||||
theorem abstr_eq {p q : ℕ × ℕ} (Hequiv : p ≡ q) : abstr p = abstr q :=
|
||||
or.elim (int.equiv_cases Hequiv)
|
||||
(assume H2,
|
||||
have H3 : pr1 p ≥ pr2 p, from and.elim_left H2,
|
||||
have H4 : pr1 q ≥ pr2 q, from and.elim_right H2,
|
||||
have H5 : pr1 p = pr1 q - pr2 q + pr2 p, from
|
||||
calc
|
||||
pr1 p = pr1 p + pr2 q - pr2 q : add_sub_cancel
|
||||
... = pr2 p + pr1 q - pr2 q : Hequiv
|
||||
... = pr2 p + (pr1 q - pr2 q) : add_sub_assoc H4
|
||||
... = pr1 q - pr2 q + pr2 p : add.comm,
|
||||
have H6 : pr1 p - pr2 p = pr1 q - pr2 q, from
|
||||
calc
|
||||
pr1 p - pr2 p = pr1 q - pr2 q + pr2 p - pr2 p : H5
|
||||
(and.rec (assume (Hp : pr1 p ≥ pr2 p) (Hq : pr1 q ≥ pr2 q),
|
||||
have H : pr1 p - pr2 p = pr1 q - pr2 q, from
|
||||
calc pr1 p - pr2 p
|
||||
= pr1 p + pr2 q - pr2 q - pr2 p : add_sub_cancel
|
||||
... = pr2 p + pr1 q - pr2 q - pr2 p : Hequiv
|
||||
... = pr2 p + (pr1 q - pr2 q) - pr2 p : add_sub_assoc Hq
|
||||
... = pr1 q - pr2 q + pr2 p - pr2 p : add.comm
|
||||
... = pr1 q - pr2 q : add_sub_cancel,
|
||||
abstr_of_ge H3 ⬝ congr_arg of_nat H6 ⬝ (abstr_of_ge H4)⁻¹)
|
||||
(assume H2,
|
||||
have H3 : pr1 p < pr2 p, from and.elim_left H2,
|
||||
have H4 : pr1 q < pr2 q, from and.elim_right H2,
|
||||
have H5 : pr2 p = pr2 q - pr1 q + pr1 p, from
|
||||
calc
|
||||
pr2 p = pr2 p + pr1 q - pr1 q : add_sub_cancel
|
||||
... = pr1 p + pr2 q - pr1 q : Hequiv
|
||||
... = pr1 p + (pr2 q - pr1 q) : add_sub_assoc (le_of_lt H4)
|
||||
... = pr2 q - pr1 q + pr1 p : add.comm,
|
||||
have H6 : pr2 p - pr1 p = pr2 q - pr1 q, from
|
||||
calc
|
||||
pr2 p - pr1 p = pr2 q - pr1 q + pr1 p - pr1 p : H5
|
||||
abstr_of_ge Hp ⬝ (H ▸ rfl) ⬝ (abstr_of_ge Hq)⁻¹))
|
||||
(and.rec (assume (Hp : pr1 p < pr2 p) (Hq : pr1 q < pr2 q),
|
||||
have H : pr2 p - pr1 p = pr2 q - pr1 q, from
|
||||
calc pr2 p - pr1 p
|
||||
= pr2 p + pr1 q - pr1 q - pr1 p : add_sub_cancel
|
||||
... = pr1 p + pr2 q - pr1 q - pr1 p : Hequiv
|
||||
... = pr1 p + (pr2 q - pr1 q) - pr1 p : add_sub_assoc (le_of_lt Hq)
|
||||
... = pr2 q - pr1 q + pr1 p - pr1 p : add.comm
|
||||
... = pr2 q - pr1 q : add_sub_cancel,
|
||||
abstr_of_lt H3 ⬝ congr_arg neg_succ_of_nat (congr_arg pred H6)⬝ (abstr_of_lt H4)⁻¹)
|
||||
abstr_of_lt Hp ⬝ (H ▸ rfl) ⬝ (abstr_of_lt Hq)⁻¹))
|
||||
|
||||
theorem equiv_iff (p q : ℕ × ℕ) : (p ≡ q) ↔ ((p ≡ p) ∧ (q ≡ q) ∧ (abstr p = abstr q)) :=
|
||||
iff.intro
|
||||
(assume H : int.equiv p q,
|
||||
and.intro !equiv.refl (and.intro !equiv.refl (abstr_eq H)))
|
||||
(assume H : int.equiv p p ∧ int.equiv q q ∧ abstr p = abstr q,
|
||||
have H1 : abstr p = abstr q, from and.elim_right (and.elim_right H),
|
||||
equiv.trans (H1 ▸ equiv.symm (repr_abstr p)) (repr_abstr q))
|
||||
theorem equiv_iff (p q : ℕ × ℕ) : (p ≡ q) ↔ (abstr p = abstr q) :=
|
||||
iff.intro abstr_eq (assume H, equiv.trans (H ▸ equiv.symm (repr_abstr p)) (repr_abstr q))
|
||||
|
||||
theorem equiv_iff3 (p q : ℕ × ℕ) : (p ≡ q) ↔ ((p ≡ p) ∧ (q ≡ q) ∧ (abstr p = abstr q)) :=
|
||||
iff.trans !equiv_iff (iff.symm
|
||||
(iff.trans (and_iff_right !equiv.refl) (and_iff_right !equiv.refl)))
|
||||
|
||||
theorem eq_abstr_of_equiv_repr {a : ℤ} {p : ℕ × ℕ} (Hequiv : repr a ≡ p) : a = abstr p :=
|
||||
calc
|
||||
a = abstr (repr a) : abstr_repr
|
||||
... = abstr p : abstr_eq Hequiv
|
||||
!abstr_repr⁻¹ ⬝ abstr_eq Hequiv
|
||||
|
||||
theorem eq_of_repr_equiv_repr {a b : ℤ} (H : repr a ≡ repr b) : a = b :=
|
||||
calc
|
||||
a = abstr (repr a) : abstr_repr
|
||||
... = abstr (repr b) : abstr_eq H
|
||||
... = b : abstr_repr
|
||||
eq_abstr_of_equiv_repr H ⬝ !abstr_repr
|
||||
|
||||
section
|
||||
local attribute abstr [reducible]
|
||||
local attribute dist [reducible]
|
||||
theorem nat_abs_abstr (p : ℕ × ℕ) : nat_abs (abstr p) = dist (pr1 p) (pr2 p) :=
|
||||
let m := pr1 p, n := pr2 p in
|
||||
or.elim (@le_or_gt n m)
|
||||
(assume H : m ≥ n,
|
||||
calc
|
||||
nat_abs (abstr (m, n)) = nat_abs (of_nat (m - n)) : int.abstr_of_ge H
|
||||
... = dist m n : dist_eq_sub_of_ge H)
|
||||
theorem nat_abs_abstr : Π (p : ℕ × ℕ), nat_abs (abstr p) = dist (pr1 p) (pr2 p)
|
||||
| (m, n) := lt_ge_by_cases
|
||||
(assume H : m < n,
|
||||
calc
|
||||
nat_abs (abstr (m, n)) = nat_abs (neg_succ_of_nat (pred (n - m))) : int.abstr_of_lt H
|
||||
... = succ (pred (n - m)) : rfl
|
||||
nat_abs (abstr (m, n)) = nat_abs (-[1+ pred (n - m)]) : int.abstr_of_lt H
|
||||
... = n - m : succ_pred_of_pos (sub_pos_of_lt H)
|
||||
... = dist m n : dist_eq_sub_of_le (le_of_lt H))
|
||||
(assume H : m ≥ n, (abstr_of_ge H)⁻¹ ▸ (dist_eq_sub_of_ge H)⁻¹)
|
||||
end
|
||||
|
||||
theorem cases_of_nat (a : ℤ) : (∃n : ℕ, a = of_nat n) ∨ (∃n : ℕ, a = - of_nat n) :=
|
||||
int.cases_on a
|
||||
(take n, or.inl (exists.intro n rfl))
|
||||
(take n', or.inr (exists.intro (succ n') rfl))
|
||||
|
||||
theorem cases_of_nat_succ (a : ℤ) : (∃n : ℕ, a = of_nat n) ∨ (∃n : ℕ, a = - (of_nat (succ n))) :=
|
||||
int.cases_on a (take m, or.inl (exists.intro _ rfl)) (take m, or.inr (exists.intro _ rfl))
|
||||
|
||||
theorem cases_of_nat (a : ℤ) : (∃n : ℕ, a = of_nat n) ∨ (∃n : ℕ, a = - of_nat n) :=
|
||||
or.imp_right (Exists.rec (take n, (exists.intro _))) !cases_of_nat_succ
|
||||
|
||||
theorem by_cases_of_nat {P : ℤ → Prop} (a : ℤ)
|
||||
(H1 : ∀n : ℕ, P (of_nat n)) (H2 : ∀n : ℕ, P (- of_nat n)) :
|
||||
P a :=
|
||||
|
@ -324,87 +275,55 @@ or.elim (cases_of_nat_succ a)
|
|||
|
||||
definition padd (p q : ℕ × ℕ) : ℕ × ℕ := (pr1 p + pr1 q, pr2 p + pr2 q)
|
||||
|
||||
theorem repr_add (a b : ℤ) : repr (add a b) ≡ padd (repr a) (repr b) :=
|
||||
int.cases_on a
|
||||
(take m,
|
||||
int.cases_on b
|
||||
(take n, !equiv.refl)
|
||||
(take n',
|
||||
have H1 : int.equiv (repr (add (of_nat m) (neg_succ_of_nat n'))) (m, succ n'),
|
||||
from !repr_sub_nat_nat,
|
||||
have H2 : padd (repr (of_nat m)) (repr (neg_succ_of_nat n')) = (m, 0 + succ n'),
|
||||
from rfl,
|
||||
(!zero_add ▸ H2)⁻¹ ▸ H1))
|
||||
(take m',
|
||||
int.cases_on b
|
||||
(take n,
|
||||
have H1 : int.equiv (repr (add (neg_succ_of_nat m') (of_nat n))) (n, succ m'),
|
||||
from !repr_sub_nat_nat,
|
||||
have H2 : padd (repr (neg_succ_of_nat m')) (repr (of_nat n)) = (0 + n, succ m'),
|
||||
from rfl,
|
||||
(!zero_add ▸ H2)⁻¹ ▸ H1)
|
||||
(take n',!repr_sub_nat_nat))
|
||||
theorem repr_add : Π (a b : ℤ), repr (add a b) ≡ padd (repr a) (repr b)
|
||||
| (of_nat m) (of_nat n) := !equiv.refl
|
||||
| (of_nat m) -[1+ n] := (!zero_add ▸ rfl)⁻¹ ▸ !repr_sub_nat_nat
|
||||
| -[1+ m] (of_nat n) := (!zero_add ▸ rfl)⁻¹ ▸ !repr_sub_nat_nat
|
||||
| -[1+ m] -[1+ n] := !repr_sub_nat_nat
|
||||
|
||||
theorem padd_congr {p p' q q' : ℕ × ℕ} (Ha : p ≡ p') (Hb : q ≡ q') : padd p q ≡ padd p' q' :=
|
||||
calc
|
||||
pr1 (padd p q) + pr2 (padd p' q') = pr1 p + pr2 p' + (pr1 q + pr2 q') :
|
||||
by rewrite [↑padd, *add.assoc, add.left_comm (pr₁ q)]
|
||||
calc pr1 p + pr1 q + (pr2 p' + pr2 q')
|
||||
= pr1 p + pr2 p' + (pr1 q + pr2 q') : add.comm4
|
||||
... = pr2 p + pr1 p' + (pr1 q + pr2 q') : {Ha}
|
||||
... = pr2 p + pr1 p' + (pr2 q + pr1 q') : {Hb}
|
||||
... = pr2 (padd p q) + pr1 (padd p' q') : by rewrite [↑padd, *add.assoc, add.left_comm (pr₁ p')]
|
||||
... = pr2 p + pr2 q + (pr1 p' + pr1 q') : add.comm4
|
||||
|
||||
theorem padd_comm (p q : ℕ × ℕ) : padd p q = padd q p :=
|
||||
calc
|
||||
padd p q = (pr1 p + pr1 q, pr2 p + pr2 q) : rfl
|
||||
... = (pr1 q + pr1 p, pr2 p + pr2 q) : add.comm
|
||||
calc (pr1 p + pr1 q, pr2 p + pr2 q)
|
||||
= (pr1 q + pr1 p, pr2 p + pr2 q) : add.comm
|
||||
... = (pr1 q + pr1 p, pr2 q + pr2 p) : add.comm
|
||||
... = padd q p : rfl
|
||||
|
||||
theorem padd_assoc (p q r : ℕ × ℕ) : padd (padd p q) r = padd p (padd q r) :=
|
||||
calc
|
||||
padd (padd p q) r = (pr1 p + pr1 q + pr1 r, pr2 p + pr2 q + pr2 r) : rfl
|
||||
... = (pr1 p + (pr1 q + pr1 r), pr2 p + pr2 q + pr2 r) : add.assoc
|
||||
calc (pr1 p + pr1 q + pr1 r, pr2 p + pr2 q + pr2 r)
|
||||
= (pr1 p + (pr1 q + pr1 r), pr2 p + pr2 q + pr2 r) : add.assoc
|
||||
... = (pr1 p + (pr1 q + pr1 r), pr2 p + (pr2 q + pr2 r)) : add.assoc
|
||||
... = padd p (padd q r) : rfl
|
||||
|
||||
theorem add.comm (a b : ℤ) : a + b = b + a :=
|
||||
begin
|
||||
apply eq_of_repr_equiv_repr,
|
||||
apply equiv.trans,
|
||||
apply repr_add,
|
||||
apply equiv.symm,
|
||||
apply eq.subst (padd_comm (repr b) (repr a)),
|
||||
apply repr_add
|
||||
end
|
||||
eq_of_repr_equiv_repr (equiv.trans !repr_add
|
||||
(equiv.symm (!padd_comm ▸ !repr_add)))
|
||||
|
||||
theorem add.assoc (a b c : ℤ) : a + b + c = a + (b + c) :=
|
||||
assert H1 : repr (a + b + c) ≡ padd (padd (repr a) (repr b)) (repr c), from
|
||||
equiv.trans (repr_add (a + b) c) (padd_congr !repr_add !equiv.refl),
|
||||
assert H2 : repr (a + (b + c)) ≡ padd (repr a) (padd (repr b) (repr c)), from
|
||||
equiv.trans (repr_add a (b + c)) (padd_congr !equiv.refl !repr_add),
|
||||
begin
|
||||
apply eq_of_repr_equiv_repr,
|
||||
apply equiv.trans,
|
||||
apply H1,
|
||||
apply eq.subst (padd_assoc _ _ _)⁻¹,
|
||||
apply equiv.symm,
|
||||
apply H2
|
||||
end
|
||||
eq_of_repr_equiv_repr (calc
|
||||
repr (a + b + c)
|
||||
≡ padd (repr (a + b)) (repr c) : repr_add
|
||||
... ≡ padd (padd (repr a) (repr b)) (repr c) : padd_congr !repr_add !equiv.refl
|
||||
... = padd (repr a) (padd (repr b) (repr c)) : !padd_assoc
|
||||
... ≡ padd (repr a) (repr (b + c)) : padd_congr !equiv.refl !repr_add
|
||||
... ≡ repr (a + (b + c)) : repr_add)
|
||||
|
||||
theorem add_zero (a : ℤ) : a + 0 = a := int.cases_on a (take m, rfl) (take m', rfl)
|
||||
theorem add_zero : Π (a : ℤ), a + 0 = a := int.rec (λm, rfl) (λm, rfl)
|
||||
|
||||
theorem zero_add (a : ℤ) : 0 + a = a := add.comm a 0 ▸ add_zero a
|
||||
theorem zero_add (a : ℤ) : 0 + a = a := !add.comm ▸ !add_zero
|
||||
|
||||
/- negation -/
|
||||
|
||||
definition pneg (p : ℕ × ℕ) : ℕ × ℕ := (pr2 p, pr1 p)
|
||||
|
||||
-- note: this is =, not just ≡
|
||||
theorem repr_neg (a : ℤ) : repr (- a) = pneg (repr a) :=
|
||||
int.cases_on a
|
||||
(take m,
|
||||
nat.cases_on m rfl (take m', rfl))
|
||||
(take m', rfl)
|
||||
theorem repr_neg : Π (a : ℤ), repr (- a) = pneg (repr a)
|
||||
| 0 := rfl
|
||||
| (succ m) := rfl
|
||||
| -[1+ m] := rfl
|
||||
|
||||
theorem pneg_congr {p p' : ℕ × ℕ} (H : p ≡ p') : pneg p ≡ pneg p' := eq.symm H
|
||||
|
||||
|
@ -423,8 +342,13 @@ theorem padd_pneg (p : ℕ × ℕ) : padd p (pneg p) ≡ (0, 0) :=
|
|||
show pr1 p + pr2 p + 0 = pr2 p + pr1 p + 0, from !nat.add.comm ▸ rfl
|
||||
|
||||
theorem padd_padd_pneg (p q : ℕ × ℕ) : padd (padd p q) (pneg q) ≡ p :=
|
||||
show pr1 p + pr1 q + pr2 q + pr2 p = pr2 p + pr2 q + pr1 q + pr1 p,
|
||||
from sorry -- by simp
|
||||
calc pr1 p + pr1 q + pr2 q + pr2 p
|
||||
= pr1 p + (pr1 q + pr2 q) + pr2 p : nat.add.assoc
|
||||
... = pr1 p + (pr1 q + pr2 q + pr2 p) : nat.add.assoc
|
||||
... = pr1 p + (pr2 q + pr1 q + pr2 p) : nat.add.comm
|
||||
... = pr1 p + (pr2 q + pr2 p + pr1 q) : add.right_comm
|
||||
... = pr1 p + (pr2 p + pr2 q + pr1 q) : nat.add.comm
|
||||
... = pr2 p + pr2 q + pr1 q + pr1 p : nat.add.comm
|
||||
|
||||
theorem add.left_inv (a : ℤ) : -a + a = 0 :=
|
||||
have H : repr (-a + a) ≡ repr 0, from
|
||||
|
@ -450,28 +374,20 @@ calc
|
|||
... = pabs (repr a) : nat_abs_abstr
|
||||
|
||||
theorem nat_abs_add_le (a b : ℤ) : nat_abs (a + b) ≤ nat_abs a + nat_abs b :=
|
||||
have H : nat_abs (a + b) = pabs (padd (repr a) (repr b)), from
|
||||
calc
|
||||
calc
|
||||
nat_abs (a + b) = pabs (repr (a + b)) : nat_abs_eq_pabs_repr
|
||||
... = pabs (padd (repr a) (repr b)) : pabs_congr !repr_add,
|
||||
have H1 : nat_abs a = pabs (repr a), from !nat_abs_eq_pabs_repr,
|
||||
have H2 : nat_abs b = pabs (repr b), from !nat_abs_eq_pabs_repr,
|
||||
have H3 : pabs (padd (repr a) (repr b)) ≤ pabs (repr a) + pabs (repr b),
|
||||
from !dist_add_add_le_add_dist_dist,
|
||||
H⁻¹ ▸ H1⁻¹ ▸ H2⁻¹ ▸ H3
|
||||
... = pabs (padd (repr a) (repr b)) : pabs_congr !repr_add
|
||||
... ≤ pabs (repr a) + pabs (repr b) : dist_add_add_le_add_dist_dist
|
||||
... = pabs (repr a) + nat_abs b : nat_abs_eq_pabs_repr
|
||||
... = nat_abs a + nat_abs b : nat_abs_eq_pabs_repr
|
||||
|
||||
section
|
||||
local attribute nat_abs [reducible]
|
||||
theorem nat_abs_mul (a b : ℤ) : nat_abs (a * b) = #nat (nat_abs a) * (nat_abs b) :=
|
||||
int.cases_on a
|
||||
(take m,
|
||||
int.cases_on b
|
||||
(take n, rfl)
|
||||
(take n', !nat_abs_neg ▸ rfl))
|
||||
(take m',
|
||||
int.cases_on b
|
||||
(take n, !nat_abs_neg ▸ rfl)
|
||||
(take n', rfl))
|
||||
theorem nat_abs_mul : Π (a b : ℤ), nat_abs (a * b) = (nat_abs a) * (nat_abs b)
|
||||
| (of_nat m) (of_nat n) := rfl
|
||||
| (of_nat m) -[1+ n] := !nat_abs_neg ▸ rfl
|
||||
| -[1+ m] (of_nat n) := !nat_abs_neg ▸ rfl
|
||||
| -[1+ m] -[1+ n] := rfl
|
||||
end
|
||||
|
||||
/- multiplication -/
|
||||
|
@ -483,65 +399,41 @@ theorem repr_neg_of_nat (m : ℕ) : repr (neg_of_nat m) = (0, m) :=
|
|||
nat.cases_on m rfl (take m', rfl)
|
||||
|
||||
-- note: we have =, not just ≡
|
||||
theorem repr_mul (a b : ℤ) : repr (mul a b) = pmul (repr a) (repr b) :=
|
||||
int.cases_on a
|
||||
(take m,
|
||||
int.cases_on b
|
||||
(take n,
|
||||
(calc
|
||||
pmul (repr m) (repr n) = (m * n + 0 * 0, m * 0 + 0 * n) : rfl
|
||||
... = (m * n + 0 * 0, m * 0 + 0) : zero_mul)⁻¹)
|
||||
(take n',
|
||||
(calc
|
||||
pmul (repr m) (repr (neg_succ_of_nat n')) =
|
||||
(m * 0 + 0 * succ n', m * succ n' + 0 * 0) : rfl
|
||||
... = (m * 0 + 0, m * succ n' + 0 * 0) : zero_mul
|
||||
... = repr (mul m (neg_succ_of_nat n')) : repr_neg_of_nat)⁻¹))
|
||||
(take m',
|
||||
int.cases_on b
|
||||
(take n,
|
||||
(calc
|
||||
pmul (repr (neg_succ_of_nat m')) (repr n) =
|
||||
(0 * n + succ m' * 0, 0 * 0 + succ m' * n) : rfl
|
||||
... = (0 + succ m' * 0, 0 * 0 + succ m' * n) : zero_mul
|
||||
... = (0 + succ m' * 0, succ m' * n) : {!nat.zero_add}
|
||||
... = repr (mul (neg_succ_of_nat m') n) : repr_neg_of_nat)⁻¹)
|
||||
(take n',
|
||||
(calc
|
||||
pmul (repr (neg_succ_of_nat m')) (repr (neg_succ_of_nat n')) =
|
||||
(0 + succ m' * succ n', 0 * succ n') : rfl
|
||||
... = (succ m' * succ n', 0 * succ n') : nat.zero_add
|
||||
... = (succ m' * succ n', 0) : zero_mul
|
||||
... = repr (mul (neg_succ_of_nat m') (neg_succ_of_nat n')) : rfl)⁻¹))
|
||||
theorem repr_mul : Π (a b : ℤ), repr (a * b) = pmul (repr a) (repr b)
|
||||
| (of_nat m) (of_nat n) := calc
|
||||
(m * n + 0 * 0, m * 0 + 0) = (m * n + 0 * 0, m * 0 + 0 * n) : zero_mul
|
||||
| (of_nat m) -[1+ n] := calc
|
||||
repr (m * -[1+ n]) = (m * 0 + 0, m * succ n + 0 * 0) : repr_neg_of_nat
|
||||
... = (m * 0 + 0 * succ n, m * succ n + 0 * 0) : zero_mul
|
||||
| -[1+ m] (of_nat n) := calc
|
||||
repr (-[1+ m] * n) = (0 + succ m * 0, succ m * n) : repr_neg_of_nat
|
||||
... = (0 + succ m * 0, 0 + succ m * n) : nat.zero_add
|
||||
... = (0 * n + succ m * 0, 0 + succ m * n) : zero_mul
|
||||
| -[1+ m] -[1+ n] := calc
|
||||
(succ m * succ n, 0) = (succ m * succ n, 0 * succ n) : zero_mul
|
||||
... = (0 + succ m * succ n, 0 * succ n) : nat.zero_add
|
||||
|
||||
theorem equiv_mul_prep {xa ya xb yb xn yn xm ym : ℕ}
|
||||
(H1 : xa + yb = ya + xb) (H2 : xn + ym = yn + xm)
|
||||
: xa * xn + ya * yn + (xb * ym + yb * xm) = xa * yn + ya * xn + (xb * xm + yb * ym) :=
|
||||
have H3 : xa * xn + ya * yn + (xb * ym + yb * xm) + (yb * xn + xb * yn + (xb * xn + yb * yn))
|
||||
= xa * yn + ya * xn + (xb * xm + yb * ym) + (yb * xn + xb * yn + (xb * xn + yb * yn)), from
|
||||
calc
|
||||
xa * xn + ya * yn + (xb * ym + yb * xm) + (yb * xn + xb * yn + (xb * xn + yb * yn))
|
||||
= xa * xn + yb * xn + (ya * yn + xb * yn) + (xb * xn + xb * ym + (yb * yn + yb * xm))
|
||||
: sorry -- by simp
|
||||
... = (xa + yb) * xn + (ya + xb) * yn + (xb * (xn + ym) + yb * (yn + xm)) : sorry -- by simp
|
||||
... = (ya + xb) * xn + (xa + yb) * yn + (xb * (yn + xm) + yb * (xn + ym)) : sorry -- by simp
|
||||
... = ya * xn + xb * xn + (xa * yn + yb * yn) + (xb * yn + xb * xm + (yb*xn + yb*ym))
|
||||
: sorry -- by simp
|
||||
... = xa * yn + ya * xn + (xb * xm + yb * ym) + (yb * xn + xb * yn + (xb * xn + yb * yn))
|
||||
: sorry, -- by simp,
|
||||
nat.add.cancel_right H3
|
||||
: xa*xn+ya*yn+(xb*ym+yb*xm) = xa*yn+ya*xn+(xb*xm+yb*ym) :=
|
||||
nat.add.cancel_right (calc
|
||||
xa*xn+ya*yn + (xb*ym+yb*xm) + (yb*xn+xb*yn + (xb*xn+yb*yn))
|
||||
= xa*xn+ya*yn + (yb*xn+xb*yn) + (xb*ym+yb*xm + (xb*xn+yb*yn)) : add.comm4
|
||||
... = xa*xn+ya*yn + (yb*xn+xb*yn) + (xb*xn+yb*yn + (xb*ym+yb*xm)) : nat.add.comm
|
||||
... = xa*xn+yb*xn + (ya*yn+xb*yn) + (xb*xn+xb*ym + (yb*yn+yb*xm)) : !congr_arg2 add.comm4 add.comm4
|
||||
... = ya*xn+xb*xn + (xa*yn+yb*yn) + (xb*yn+xb*xm + (yb*xn+yb*ym))
|
||||
: by rewrite[-+mul.left_distrib,-+mul.right_distrib]; exact H1 ▸ H2 ▸ rfl
|
||||
... = ya*xn+xa*yn + (xb*xn+yb*yn) + (xb*yn+yb*xn + (xb*xm+yb*ym)) : !congr_arg2 add.comm4 add.comm4
|
||||
... = xa*yn+ya*xn + (xb*xn+yb*yn) + (yb*xn+xb*yn + (xb*xm+yb*ym)) : !nat.add.comm ▸ !nat.add.comm ▸ rfl
|
||||
... = xa*yn+ya*xn + (yb*xn+xb*yn) + (xb*xn+yb*yn + (xb*xm+yb*ym)) : add.comm4
|
||||
... = xa*yn+ya*xn + (yb*xn+xb*yn) + (xb*xm+yb*ym + (xb*xn+yb*yn)) : nat.add.comm
|
||||
... = xa*yn+ya*xn + (xb*xm+yb*ym) + (yb*xn+xb*yn + (xb*xn+yb*yn)) : add.comm4)
|
||||
|
||||
theorem pmul_congr {p p' q q' : ℕ × ℕ} (H1 : p ≡ p') (H2 : q ≡ q') : pmul p q ≡ pmul p' q' :=
|
||||
equiv_mul_prep H1 H2
|
||||
theorem pmul_congr {p p' q q' : ℕ × ℕ} : p ≡ p' → q ≡ q' → pmul p q ≡ pmul p' q' := equiv_mul_prep
|
||||
|
||||
theorem pmul_comm (p q : ℕ × ℕ) : pmul p q = pmul q p :=
|
||||
calc
|
||||
(pr1 p * pr1 q + pr2 p * pr2 q, pr1 p * pr2 q + pr2 p * pr1 q) =
|
||||
(pr1 q * pr1 p + pr2 p * pr2 q, pr1 p * pr2 q + pr2 p * pr1 q) : mul.comm
|
||||
... = (pr1 q * pr1 p + pr2 q * pr2 p, pr1 p * pr2 q + pr2 p * pr1 q) : mul.comm
|
||||
... = (pr1 q * pr1 p + pr2 q * pr2 p, pr2 q * pr1 p + pr2 p * pr1 q) : mul.comm
|
||||
... = (pr1 q * pr1 p + pr2 q * pr2 p, pr2 q * pr1 p + pr1 q * pr2 p) : mul.comm
|
||||
... = (pr1 q * pr1 p + pr2 q * pr2 p, pr1 q * pr2 p + pr2 q * pr1 p) : nat.add.comm
|
||||
show (_,_) = (_,_), from !congr_arg2
|
||||
(!congr_arg2 !mul.comm !mul.comm) (!nat.add.comm ⬝ (!congr_arg2 !mul.comm !mul.comm))
|
||||
|
||||
theorem mul.comm (a b : ℤ) : a * b = b * a :=
|
||||
eq_of_repr_equiv_repr
|
||||
|
@ -550,10 +442,14 @@ eq_of_repr_equiv_repr
|
|||
... = pmul (repr b) (repr a) : pmul_comm
|
||||
... = repr (b * a) : repr_mul) ▸ !equiv.refl)
|
||||
|
||||
theorem pmul_assoc (p q r: ℕ × ℕ) : pmul (pmul p q) r = pmul p (pmul q r) :=
|
||||
begin
|
||||
unfold pmul, apply sorry -- simp
|
||||
end
|
||||
private theorem pmul_assoc_prep {p1 p2 q1 q2 r1 r2 : ℕ} :
|
||||
((p1*q1+p2*q2)*r1+(p1*q2+p2*q1)*r2, (p1*q1+p2*q2)*r2+(p1*q2+p2*q1)*r1) =
|
||||
(p1*(q1*r1+q2*r2)+p2*(q1*r2+q2*r1), p1*(q1*r2+q2*r1)+p2*(q1*r1+q2*r2)) :=
|
||||
by rewrite[+mul.left_distrib,+mul.right_distrib,*mul.assoc];
|
||||
exact (congr_arg2 pair (!add.comm4 ⬝ (!congr_arg !nat.add.comm))
|
||||
(!add.comm4 ⬝ (!congr_arg !nat.add.comm)))
|
||||
|
||||
theorem pmul_assoc (p q r: ℕ × ℕ) : pmul (pmul p q) r = pmul p (pmul q r) := pmul_assoc_prep
|
||||
|
||||
theorem mul.assoc (a b c : ℤ) : (a * b) * c = a * (b * c) :=
|
||||
eq_of_repr_equiv_repr
|
||||
|
@ -564,54 +460,41 @@ eq_of_repr_equiv_repr
|
|||
... = pmul (repr a) (repr (b * c)) : repr_mul
|
||||
... = repr (a * (b * c)) : repr_mul) ▸ !equiv.refl)
|
||||
|
||||
set_option pp.coercions true
|
||||
theorem mul_one : Π (a : ℤ), a * 1 = a
|
||||
| (of_nat m) := !zero_add -- zero_add happens to be def. = to this thm
|
||||
| -[1+ m] := !nat.zero_add ▸ rfl
|
||||
|
||||
theorem mul_one (a : ℤ) : a * 1 = a :=
|
||||
eq_of_repr_equiv_repr (int.equiv_of_eq
|
||||
((calc
|
||||
repr (a * 1) = pmul (repr a) (repr 1) : repr_mul
|
||||
... = (pr1 (repr a), pr2 (repr a)) :
|
||||
begin
|
||||
esimp [pmul, nat.of_num, num.to.int, repr],
|
||||
rewrite [+mul_zero, +mul_one, nat.zero_add]
|
||||
end
|
||||
... = repr a : prod.eta)))
|
||||
|
||||
theorem one_mul (a : ℤ) : 1 * a = a :=
|
||||
mul.comm a 1 ▸ mul_one a
|
||||
|
||||
private theorem mul_distrib_prep {a1 a2 b1 b2 c1 c2 : ℕ} :
|
||||
((a1+b1)*c1+(a2+b2)*c2, (a1+b1)*c2+(a2+b2)*c1) =
|
||||
(a1*c1+a2*c2+(b1*c1+b2*c2), a1*c2+a2*c1+(b1*c2+b2*c1)) :=
|
||||
by rewrite[+mul.right_distrib] ⬝ (!congr_arg2 !add.comm4 !add.comm4)
|
||||
|
||||
theorem mul.right_distrib (a b c : ℤ) : (a + b) * c = a * c + b * c :=
|
||||
eq_of_repr_equiv_repr
|
||||
(calc
|
||||
repr ((a + b) * c) = pmul (repr (a + b)) (repr c) : repr_mul
|
||||
... ≡ pmul (padd (repr a) (repr b)) (repr c) : pmul_congr !repr_add equiv.refl
|
||||
... = padd (pmul (repr a) (repr c)) (pmul (repr b) (repr c)) : sorry -- by simp
|
||||
... = padd (repr (a * c)) (pmul (repr b) (repr c)) : {(repr_mul a c)⁻¹}
|
||||
... = padd (pmul (repr a) (repr c)) (pmul (repr b) (repr c)) : mul_distrib_prep
|
||||
... = padd (repr (a * c)) (pmul (repr b) (repr c)) : repr_mul
|
||||
... = padd (repr (a * c)) (repr (b * c)) : repr_mul
|
||||
... ≡ repr (a * c + b * c) : equiv.symm !repr_add)
|
||||
... ≡ repr (a * c + b * c) : repr_add)
|
||||
|
||||
theorem mul.left_distrib (a b c : ℤ) : a * (b + c) = a * b + a * c :=
|
||||
calc
|
||||
a * (b + c) = (b + c) * a : mul.comm a (b + c)
|
||||
... = b * a + c * a : mul.right_distrib b c a
|
||||
... = a * b + c * a : {mul.comm b a}
|
||||
... = a * b + a * c : {mul.comm c a}
|
||||
a * (b + c) = (b + c) * a : mul.comm
|
||||
... = b * a + c * a : mul.right_distrib
|
||||
... = a * b + c * a : mul.comm
|
||||
... = a * b + a * c : mul.comm
|
||||
|
||||
theorem zero_ne_one : (0 : int) ≠ 1 :=
|
||||
assume H : 0 = 1,
|
||||
show false, from succ_ne_zero 0 ((of_nat.inj H)⁻¹)
|
||||
assume H : 0 = 1, !succ_ne_zero (of_nat.inj H)⁻¹
|
||||
|
||||
theorem eq_zero_or_eq_zero_of_mul_eq_zero {a b : ℤ} (H : a * b = 0) : a = 0 ∨ b = 0 :=
|
||||
have H2 : (nat_abs a) * (nat_abs b) = nat.zero, from
|
||||
calc
|
||||
(nat_abs a) * (nat_abs b) = (nat_abs (a * b)) : (nat_abs_mul a b)⁻¹
|
||||
... = (nat_abs 0) : {H}
|
||||
... = nat.zero : nat_abs_of_nat nat.zero,
|
||||
have H3 : (nat_abs a) = nat.zero ∨ (nat_abs b) = nat.zero,
|
||||
from eq_zero_or_eq_zero_of_mul_eq_zero H2,
|
||||
or_of_or_of_imp_of_imp H3
|
||||
(assume H : (nat_abs a) = nat.zero, nat_abs_eq_zero H)
|
||||
(assume H : (nat_abs b) = nat.zero, nat_abs_eq_zero H)
|
||||
or.imp nat_abs_eq_zero nat_abs_eq_zero (eq_zero_or_eq_zero_of_mul_eq_zero (H ▸ (nat_abs_mul a b)⁻¹))
|
||||
|
||||
section migrate_algebra
|
||||
open [classes] algebra
|
||||
|
@ -628,7 +511,7 @@ section migrate_algebra
|
|||
add_comm := add.comm,
|
||||
mul := mul,
|
||||
mul_assoc := mul.assoc,
|
||||
one := (of_num 1),
|
||||
one := 1,
|
||||
one_mul := one_mul,
|
||||
mul_one := mul_one,
|
||||
left_distrib := mul.left_distrib,
|
||||
|
@ -647,17 +530,14 @@ section migrate_algebra
|
|||
end migrate_algebra
|
||||
|
||||
/- additional properties -/
|
||||
|
||||
theorem of_nat_sub {m n : ℕ} (H : #nat m ≥ n) : of_nat (#nat m - n) = of_nat m - of_nat n :=
|
||||
have H1 : m = (#nat m - n + n), from (nat.sub_add_cancel H)⁻¹,
|
||||
have H2 : m = (#nat m - n) + n, from congr_arg of_nat H1,
|
||||
(sub_eq_of_eq_add H2)⁻¹
|
||||
theorem of_nat_sub {m n : ℕ} (H : m ≥ n) : m - n = sub m n :=
|
||||
(sub_eq_of_eq_add (!congr_arg (nat.sub_add_cancel H)⁻¹))⁻¹
|
||||
|
||||
theorem neg_succ_of_nat_eq' (m : ℕ) : -[1+ m] = -m - 1 :=
|
||||
by rewrite [neg_succ_of_nat_eq, of_nat_add, neg_add]
|
||||
|
||||
definition succ (a : ℤ) := a + (nat.succ zero)
|
||||
definition pred (a : ℤ) := a - (nat.succ zero)
|
||||
definition succ (a : ℤ) := a + (succ zero)
|
||||
definition pred (a : ℤ) := a - (succ zero)
|
||||
theorem pred_succ (a : ℤ) : pred (succ a) = a := !sub_add_cancel
|
||||
theorem succ_pred (a : ℤ) : succ (pred a) = a := !add_sub_cancel
|
||||
theorem neg_succ (a : ℤ) : -succ a = pred (-a) :=
|
||||
|
@ -675,18 +555,12 @@ theorem succ_neg_nat_succ (n : ℕ) : succ (-nat.succ n) = -n := !succ_neg_succ
|
|||
|
||||
definition rec_nat_on [unfold 2] {P : ℤ → Type} (z : ℤ) (H0 : P 0)
|
||||
(Hsucc : Π⦃n : ℕ⦄, P n → P (succ n)) (Hpred : Π⦃n : ℕ⦄, P (-n) → P (-nat.succ n)) : P z :=
|
||||
begin
|
||||
induction z with n n,
|
||||
{exact nat.rec_on n H0 Hsucc},
|
||||
{induction n with m ih,
|
||||
exact Hpred H0,
|
||||
exact Hpred ih}
|
||||
end
|
||||
int.rec (nat.rec H0 Hsucc) (λn, nat.rec H0 Hpred (nat.succ n)) z
|
||||
|
||||
--the only computation rule of rec_nat_on which is not definitional
|
||||
theorem rec_nat_on_neg {P : ℤ → Type} (n : nat) (H0 : P zero)
|
||||
(Hsucc : Π⦃n : nat⦄, P n → P (succ n)) (Hpred : Π⦃n : nat⦄, P (-n) → P (-nat.succ n))
|
||||
: rec_nat_on (-nat.succ n) H0 Hsucc Hpred = Hpred (rec_nat_on (-n) H0 Hsucc Hpred) :=
|
||||
nat.rec_on n rfl (λn H, rfl)
|
||||
nat.rec rfl (λn H, rfl) n
|
||||
|
||||
end int
|
||||
|
|
|
@ -14,8 +14,8 @@ open int eq.ops
|
|||
namespace int
|
||||
|
||||
private definition nonneg (a : ℤ) : Prop := int.cases_on a (take n, true) (take n, false)
|
||||
definition le (a b : ℤ) : Prop := nonneg (sub b a)
|
||||
definition lt (a b : ℤ) : Prop := le (add a 1) b
|
||||
definition le (a b : ℤ) : Prop := nonneg (b - a)
|
||||
definition lt (a b : ℤ) : Prop := le (a + 1) b
|
||||
|
||||
infix [priority int.prio] - := int.sub
|
||||
infix [priority int.prio] <= := int.le
|
||||
|
@ -28,27 +28,25 @@ definition decidable_le [instance] (a b : ℤ) : decidable (a ≤ b) := decidabl
|
|||
definition decidable_lt [instance] (a b : ℤ) : decidable (a < b) := decidable_nonneg _
|
||||
|
||||
private theorem nonneg.elim {a : ℤ} : nonneg a → ∃n : ℕ, a = n :=
|
||||
int.cases_on a (take n H, exists.intro n rfl) (take n' H, false.elim H)
|
||||
int.cases_on a (take n H, exists.intro n rfl) (take n', false.elim)
|
||||
|
||||
private theorem nonneg_or_nonneg_neg (a : ℤ) : nonneg a ∨ nonneg (-a) :=
|
||||
int.cases_on a (take n, or.inl trivial) (take n, or.inr trivial)
|
||||
|
||||
theorem le.intro {a b : ℤ} {n : ℕ} (H : a + n = b) : a ≤ b :=
|
||||
have b - a = n, from (eq_add_neg_of_add_eq (!add.comm ▸ H))⁻¹,
|
||||
have nonneg n, from true.intro,
|
||||
show nonneg (b - a), from `b - a = n`⁻¹ ▸ this
|
||||
have n = b - a, from eq_add_neg_of_add_eq (!add.comm ▸ H),
|
||||
show nonneg (b - a), from this ▸ trivial
|
||||
|
||||
theorem le.elim {a b : ℤ} (H : a ≤ b) : ∃n : ℕ, a + n = b :=
|
||||
obtain (n : ℕ) (H1 : b - a = n), from nonneg.elim H,
|
||||
exists.intro n (!add.comm ▸ iff.mpr !add_eq_iff_eq_add_neg (H1⁻¹))
|
||||
|
||||
theorem le.total (a b : ℤ) : a ≤ b ∨ b ≤ a :=
|
||||
or.elim (nonneg_or_nonneg_neg (b - a))
|
||||
(assume H, or.inl H)
|
||||
or.imp_right
|
||||
(assume H : nonneg (-(b - a)),
|
||||
have -(b - a) = a - b, from neg_sub b a,
|
||||
have nonneg (a - b), from this ▸ H,
|
||||
or.inr this)
|
||||
have -(b - a) = a - b, from !neg_sub,
|
||||
show nonneg (a - b), from this ▸ H) -- too bad: can't do it in one step
|
||||
(nonneg_or_nonneg_neg (b - a))
|
||||
|
||||
theorem of_nat_le_of_nat_of_le {m n : ℕ} (H : #nat m ≤ n) : of_nat m ≤ of_nat n :=
|
||||
obtain (k : ℕ) (Hk : m + k = n), from nat.le.elim H,
|
||||
|
@ -133,12 +131,8 @@ theorem lt.irrefl (a : ℤ) : ¬ a < a :=
|
|||
(suppose a < a,
|
||||
obtain (n : ℕ) (Hn : a + succ n = a), from lt.elim this,
|
||||
have a + succ n = a + 0, from
|
||||
calc
|
||||
a + succ n = a : Hn
|
||||
... = a + 0 : by rewrite [add_zero],
|
||||
have nat.succ n = 0, from add.left_cancel this,
|
||||
have nat.succ n = 0, from of_nat.inj this,
|
||||
absurd this !succ_ne_zero)
|
||||
Hn ⬝ !add_zero⁻¹,
|
||||
!succ_ne_zero (of_nat.inj (add.left_cancel this)))
|
||||
|
||||
theorem ne_of_lt {a b : ℤ} (H : a < b) : a ≠ b :=
|
||||
(suppose a = b, absurd (this ▸ H) (lt.irrefl b))
|
||||
|
|
|
@ -461,7 +461,7 @@ lemma mem_of_dinj_of_mem_dmap (Pdi : dinj p f) :
|
|||
|
||||
lemma not_mem_dmap_of_dinj_of_not_mem (Pdi : dinj p f) {l : list A} {a} (Pa : p a) :
|
||||
a ∉ l → (f a Pa) ∉ dmap p f l :=
|
||||
not_imp_not_of_imp (mem_of_dinj_of_mem_dmap Pdi Pa)
|
||||
not.mto (mem_of_dinj_of_mem_dmap Pdi Pa)
|
||||
|
||||
end dmap
|
||||
|
||||
|
|
|
@ -65,7 +65,7 @@ theorem exists_eq_succ_of_ne_zero {n : ℕ} (H : n ≠ 0) : ∃k : ℕ, n = succ
|
|||
exists.intro _ (or_resolve_right !eq_zero_or_eq_succ_pred H)
|
||||
|
||||
theorem succ.inj {n m : ℕ} (H : succ n = succ m) : n = m :=
|
||||
nat.no_confusion H (λe, e)
|
||||
nat.no_confusion H imp.id
|
||||
|
||||
abbreviation eq_of_succ_eq_succ := @succ.inj
|
||||
|
||||
|
@ -93,8 +93,7 @@ have stronger : P a ∧ P (succ a), from
|
|||
|
||||
theorem sub_induction {P : ℕ → ℕ → Prop} (n m : ℕ) (H1 : ∀m, P 0 m)
|
||||
(H2 : ∀n, P (succ n) 0) (H3 : ∀n m, P n m → P (succ n) (succ m)) : P n m :=
|
||||
have general : ∀m, P n m, from nat.induction_on n
|
||||
(take m : ℕ, H1 m)
|
||||
have general : ∀m, P n m, from nat.induction_on n H1
|
||||
(take k : ℕ,
|
||||
assume IH : ∀m, P k m,
|
||||
take m : ℕ,
|
||||
|
@ -146,11 +145,14 @@ nat.induction_on k
|
|||
... = n + succ (m + l) : add_succ
|
||||
... = n + (m + succ l) : add_succ)
|
||||
|
||||
theorem add.left_comm [simp] (n m k : ℕ) : n + (m + k) = m + (n + k) :=
|
||||
left_comm add.comm add.assoc n m k
|
||||
theorem add.left_comm [simp] : Π (n m k : ℕ), n + (m + k) = m + (n + k) :=
|
||||
left_comm add.comm add.assoc
|
||||
|
||||
theorem add.right_comm (n m k : ℕ) : n + m + k = n + k + m :=
|
||||
right_comm add.comm add.assoc n m k
|
||||
theorem add.right_comm : Π (n m k : ℕ), n + m + k = n + k + m :=
|
||||
right_comm add.comm add.assoc
|
||||
|
||||
theorem add.comm4 : Π {n m k l : ℕ}, n + m + (k + l) = n + k + (m + l) :=
|
||||
comm4 add.comm add.assoc
|
||||
|
||||
theorem add.cancel_left {n m k : ℕ} : n + m = n + k → m = k :=
|
||||
nat.induction_on n
|
||||
|
|
|
@ -13,13 +13,13 @@ namespace nat
|
|||
/- div -/
|
||||
|
||||
-- auxiliary lemma used to justify div
|
||||
private definition div_rec_lemma {x y : nat} (H : 0 < y ∧ y ≤ x) : x - y < x :=
|
||||
and.rec_on H (λ ypos ylex, sub_lt (lt_of_lt_of_le ypos ylex) ypos)
|
||||
private definition div_rec_lemma {x y : nat} : 0 < y ∧ y ≤ x → x - y < x :=
|
||||
and.rec (λ ypos ylex, sub_lt (lt_of_lt_of_le ypos ylex) ypos)
|
||||
|
||||
private definition div.F (x : nat) (f : Π x₁, x₁ < x → nat → nat) (y : nat) : nat :=
|
||||
if H : 0 < y ∧ y ≤ x then f (x - y) (div_rec_lemma H) y + 1 else zero
|
||||
|
||||
definition divide (x y : nat) := fix div.F x y
|
||||
definition divide := fix div.F
|
||||
notation a div b := divide a b
|
||||
|
||||
theorem divide_def (x y : nat) : divide x y = if 0 < y ∧ y ≤ x then divide (x - y) y + 1 else 0 :=
|
||||
|
@ -32,7 +32,7 @@ theorem div_eq_zero_of_lt {a b : ℕ} (h : a < b) : a div b = 0 :=
|
|||
divide_def a b ⬝ if_neg (!not_and_of_not_right (not_le_of_gt h))
|
||||
|
||||
theorem zero_div (b : ℕ) : 0 div b = 0 :=
|
||||
divide_def 0 b ⬝ if_neg (λ h, and.rec_on h (λ l r, absurd (lt_of_lt_of_le l r) (lt.irrefl 0)))
|
||||
divide_def 0 b ⬝ if_neg (and.rec not_le_of_gt)
|
||||
|
||||
theorem div_eq_succ_sub_div {a b : ℕ} (h₁ : b > 0) (h₂ : a ≥ b) : a div b = succ ((a - b) div b) :=
|
||||
divide_def a b ⬝ if_pos (and.intro h₁ h₂)
|
||||
|
@ -53,9 +53,10 @@ nat.induction_on y
|
|||
... = x div z + zero : add_zero)
|
||||
(take y,
|
||||
assume IH : (x + y * z) div z = x div z + y, calc
|
||||
(x + succ y * z) div z = (x + y * z + z) div z : by rewrite [-add_one, mul.right_distrib, one_mul, add.assoc]
|
||||
(x + succ y * z) div z = (x + (y * z + z)) div z : succ_mul
|
||||
... = (x + y * z + z) div z : add.assoc
|
||||
... = succ ((x + y * z) div z) : !add_div_self H
|
||||
... = x div z + succ y : by rewrite [IH])
|
||||
... = succ (x div z + y) : IH)
|
||||
|
||||
theorem add_mul_div_self_left (x z : ℕ) {y : ℕ} (H : y > 0) : (x + y * z) div y = x div y + z :=
|
||||
!mul.comm ▸ add_mul_div_self H
|
||||
|
@ -75,7 +76,7 @@ theorem mul_div_cancel_left {m : ℕ} (n : ℕ) (H : m > 0) : m * n div m = n :=
|
|||
private definition mod.F (x : nat) (f : Π x₁, x₁ < x → nat → nat) (y : nat) : nat :=
|
||||
if H : 0 < y ∧ y ≤ x then f (x - y) (div_rec_lemma H) y else x
|
||||
|
||||
definition modulo (x y : nat) := fix mod.F x y
|
||||
definition modulo := fix mod.F
|
||||
notation a mod b := modulo a b
|
||||
notation a `≡` b `[mod`:100 c `]`:0 := a mod c = b mod c
|
||||
|
||||
|
@ -166,12 +167,11 @@ by_cases_zero_pos y
|
|||
(take x,
|
||||
assume IH : ∀x', x' ≤ x → x' = x' div y * y + x' mod y,
|
||||
show succ x = succ x div y * y + succ x mod y, from
|
||||
by_cases -- (succ x < y)
|
||||
(assume H1 : succ x < y,
|
||||
assert H2 : succ x div y = 0, from div_eq_zero_of_lt H1,
|
||||
assert H3 : succ x mod y = succ x, from mod_eq_of_lt H1,
|
||||
by rewrite [H2, H3, zero_mul, zero_add])
|
||||
(assume H1 : ¬ succ x < y,
|
||||
if H1 : succ x < y then
|
||||
have H2 : succ x div y = 0, from div_eq_zero_of_lt H1,
|
||||
have H3 : succ x mod y = succ x, from mod_eq_of_lt H1,
|
||||
H2⁻¹ ▸ H3⁻¹ ▸ !zero_mul⁻¹ ▸ !zero_add⁻¹
|
||||
else
|
||||
have H2 : y ≤ succ x, from le_of_not_gt H1,
|
||||
have H3 : succ x div y = succ ((succ x - y) div y), from div_eq_succ_sub_div H H2,
|
||||
have H4 : succ x mod y = (succ x - y) mod y, from mod_eq_sub_mod H H2,
|
||||
|
@ -184,7 +184,7 @@ by_cases_zero_pos y
|
|||
... = ((succ x - y) div y) * y + y + (succ x - y) mod y : H4
|
||||
... = ((succ x - y) div y) * y + (succ x - y) mod y + y : add.right_comm
|
||||
... = succ x - y + y : {!(IH _ H6)⁻¹}
|
||||
... = succ x : sub_add_cancel H2)⁻¹)))
|
||||
... = succ x : sub_add_cancel H2)⁻¹))
|
||||
|
||||
theorem mod_eq_sub_div_mul (x y : ℕ) : x mod y = x - x div y * y :=
|
||||
eq_sub_of_add_eq (!add.comm ▸ !eq_div_mul_add_mod)⁻¹
|
||||
|
@ -244,10 +244,9 @@ have H6 : y > 0, from lt_of_le_of_lt !zero_le H1,
|
|||
show q1 = q2, from eq_of_mul_eq_mul_right H6 H5
|
||||
|
||||
theorem mul_div_mul_left {z : ℕ} (x y : ℕ) (zpos : z > 0) : (z * x) div (z * y) = x div y :=
|
||||
by_cases
|
||||
(suppose y = 0, by rewrite [this, mul_zero, *div_zero])
|
||||
(suppose y ≠ 0,
|
||||
have ypos : y > 0, from pos_of_ne_zero this,
|
||||
if H : y = 0 then H⁻¹ ▸ !mul_zero⁻¹ ▸ !div_zero⁻¹ ▸ !div_zero
|
||||
else
|
||||
have ypos : y > 0, from pos_of_ne_zero H,
|
||||
have zypos : z * y > 0, from mul_pos zpos ypos,
|
||||
have H1 : (z * x) mod (z * y) < z * y, from !mod_lt zypos,
|
||||
have H2 : z * (x mod y) < z * y, from mul_lt_mul_of_pos_left (!mod_lt ypos) zpos,
|
||||
|
@ -256,20 +255,17 @@ by_cases
|
|||
((z * x) div (z * y)) * (z * y) + (z * x) mod (z * y) = z * x : eq_div_mul_add_mod
|
||||
... = z * (x div y * y + x mod y) : eq_div_mul_add_mod
|
||||
... = z * (x div y * y) + z * (x mod y) : mul.left_distrib
|
||||
... = (x div y) * (z * y) + z * (x mod y) : mul.left_comm))
|
||||
... = (x div y) * (z * y) + z * (x mod y) : mul.left_comm)
|
||||
|
||||
theorem mul_div_mul_right {x z y : ℕ} (zpos : z > 0) : (x * z) div (y * z) = x div y :=
|
||||
!mul.comm ▸ !mul.comm ▸ !mul_div_mul_left zpos
|
||||
|
||||
theorem mul_mod_mul_left (z x y : ℕ) : (z * x) mod (z * y) = z * (x mod y) :=
|
||||
or.elim (eq_zero_or_pos z)
|
||||
(assume H : z = 0,
|
||||
calc
|
||||
(z * x) mod (z * y) = (0 * x) mod (z * y) : by subst z
|
||||
... = 0 mod (z * y) : zero_mul
|
||||
(assume H : z = 0, H⁻¹ ▸ calc
|
||||
(0 * x) mod (z * y) = 0 mod (z * y) : zero_mul
|
||||
... = 0 : zero_mod
|
||||
... = 0 * (x mod y) : zero_mul
|
||||
... = z * (x mod y) : by subst z)
|
||||
... = 0 * (x mod y) : zero_mul)
|
||||
(assume zpos : z > 0,
|
||||
or.elim (eq_zero_or_pos y)
|
||||
(assume H : y = 0, by rewrite [H, mul_zero, *mod_zero])
|
||||
|
@ -288,12 +284,8 @@ theorem mul_mod_mul_right (x z y : ℕ) : (x * z) mod (y * z) = (x mod y) * z :=
|
|||
mul.comm z x ▸ mul.comm z y ▸ !mul.comm ▸ !mul_mod_mul_left
|
||||
|
||||
theorem mod_self (n : ℕ) : n mod n = 0 :=
|
||||
nat.cases_on n (by unfold modulo)
|
||||
(take n,
|
||||
assert (succ n * 1) mod (succ n * 1) = succ n * (1 mod 1),
|
||||
from !mul_mod_mul_left,
|
||||
assert (succ n) mod (succ n) = succ n * (1 mod 1), by rewrite [*mul_one at this]; exact this,
|
||||
by rewrite this)
|
||||
nat.cases_on n !zero_mod
|
||||
(take n, !mul_zero ▸ !mul_one ▸ !mul_mod_mul_left)
|
||||
|
||||
theorem mul_mod_eq_mod_mul_mod (m n k : nat) : (m * n) mod k = ((m mod k) * n) mod k :=
|
||||
calc
|
||||
|
@ -309,8 +301,7 @@ assert n div 1 * 1 + n mod 1 = n, from !eq_div_mul_add_mod⁻¹,
|
|||
begin rewrite [-this at {2}, mul_one, mod_one] end
|
||||
|
||||
theorem div_self {n : ℕ} (H : n > 0) : n div n = 1 :=
|
||||
assert (n * 1) div (n * 1) = 1, from !mul_div_mul_left H,
|
||||
by rewrite [-this, *mul_one]
|
||||
!mul_one ▸ (!mul_div_mul_left H)
|
||||
|
||||
theorem div_mul_cancel_of_mod_eq_zero {m n : ℕ} (H : m mod n = 0) : m div n * n = m :=
|
||||
by rewrite [eq_div_mul_add_mod m n at {2}, H, add_zero]
|
||||
|
|
|
@ -22,47 +22,37 @@ local infixl `≺`:50 := pair_nat.lt
|
|||
private definition gcd.lt.dec (x y₁ : nat) : (succ y₁, x mod succ y₁) ≺ (x, succ y₁) :=
|
||||
!mod_lt (succ_pos y₁)
|
||||
|
||||
definition gcd.F (p₁ : nat × nat) : (Π p₂ : nat × nat, p₂ ≺ p₁ → nat) → nat :=
|
||||
prod.cases_on p₁ (λx y, nat.cases_on y
|
||||
(λ f, x)
|
||||
(λ y₁ (f : Πp₂, p₂ ≺ (x, succ y₁) → nat), f (succ y₁, x mod succ y₁) !gcd.lt.dec))
|
||||
definition gcd.F : Π (p₁ : nat × nat), (Π p₂ : nat × nat, p₂ ≺ p₁ → nat) → nat
|
||||
| (x, 0) f := x
|
||||
| (x, succ y) f := f (succ y, x mod succ y) !gcd.lt.dec
|
||||
|
||||
definition gcd (x y : nat) := fix gcd.F (pair x y)
|
||||
definition gcd (x y : nat) := fix gcd.F (x, y)
|
||||
|
||||
theorem gcd_zero_right (x : nat) : gcd x 0 = x :=
|
||||
well_founded.fix_eq gcd.F (x, 0)
|
||||
theorem gcd_zero_right (x : nat) : gcd x 0 = x := rfl
|
||||
|
||||
theorem gcd_succ (x y : nat) : gcd x (succ y) = gcd (succ y) (x mod succ y) :=
|
||||
well_founded.fix_eq gcd.F (x, succ y)
|
||||
|
||||
theorem gcd_one_right (n : ℕ) : gcd n 1 = 1 :=
|
||||
calc gcd n 1 = gcd 1 (n mod 1) : gcd_succ n zero
|
||||
calc gcd n 1 = gcd 1 (n mod 1) : gcd_succ
|
||||
... = gcd 1 0 : mod_one
|
||||
... = 1 : gcd_zero_right
|
||||
|
||||
theorem gcd_def (x y : ℕ) : gcd x y = if y = 0 then x else gcd y (x mod y) :=
|
||||
nat.cases_on y
|
||||
(calc gcd x 0 = x : gcd_zero_right x
|
||||
... = if 0 = 0 then x else gcd zero (x mod zero) : (if_pos rfl)⁻¹)
|
||||
(λy₁, calc
|
||||
gcd x (succ y₁) = gcd (succ y₁) (x mod succ y₁) : gcd_succ x y₁
|
||||
... = if succ y₁ = 0 then x else gcd (succ y₁) (x mod succ y₁) : (if_neg (succ_ne_zero y₁))⁻¹)
|
||||
theorem gcd_def (x : ℕ) : Π (y : ℕ), gcd x y = if y = 0 then x else gcd y (x mod y)
|
||||
| 0 := !gcd_zero_right
|
||||
| (succ y) := !gcd_succ ⬝ (if_neg !succ_ne_zero)⁻¹
|
||||
|
||||
theorem gcd_self (n : ℕ) : gcd n n = n :=
|
||||
nat.cases_on n
|
||||
rfl
|
||||
(λn₁, calc
|
||||
gcd (succ n₁) (succ n₁) = gcd (succ n₁) (succ n₁ mod succ n₁) : gcd_succ (succ n₁) n₁
|
||||
... = gcd (succ n₁) 0 : mod_self (succ n₁)
|
||||
... = succ n₁ : gcd_zero_right)
|
||||
|
||||
theorem gcd_zero_left (n : nat) : gcd 0 n = n :=
|
||||
nat.cases_on n
|
||||
rfl
|
||||
(λ n₁, calc
|
||||
theorem gcd_self : Π (n : ℕ), gcd n n = n
|
||||
| 0 := rfl
|
||||
| (succ n₁) := calc
|
||||
gcd (succ n₁) (succ n₁) = gcd (succ n₁) (succ n₁ mod succ n₁) : gcd_succ
|
||||
... = gcd (succ n₁) 0 : mod_self
|
||||
|
||||
theorem gcd_zero_left : Π (n : ℕ), gcd 0 n = n
|
||||
| 0 := rfl
|
||||
| (succ n₁) := calc
|
||||
gcd 0 (succ n₁) = gcd (succ n₁) (0 mod succ n₁) : gcd_succ
|
||||
... = gcd (succ n₁) 0 : zero_mod
|
||||
... = (succ n₁) : gcd_zero_right)
|
||||
|
||||
theorem gcd_of_pos (m : ℕ) {n : ℕ} (H : n > 0) : gcd m n = gcd n (m mod n) :=
|
||||
gcd_def m n ⬝ if_neg (ne_zero_of_pos H)
|
||||
|
@ -70,8 +60,7 @@ gcd_def m n ⬝ if_neg (ne_zero_of_pos H)
|
|||
theorem gcd_rec (m n : ℕ) : gcd m n = gcd n (m mod n) :=
|
||||
by_cases_zero_pos n
|
||||
(calc
|
||||
gcd m 0 = m : gcd_zero_right
|
||||
... = gcd 0 m : gcd_zero_left
|
||||
m = gcd 0 m : gcd_zero_left
|
||||
... = gcd 0 (m mod 0) : mod_zero)
|
||||
(take n, assume H : 0 < n, gcd_of_pos m H)
|
||||
|
||||
|
@ -80,49 +69,32 @@ theorem gcd.induction {P : ℕ → ℕ → Prop}
|
|||
(H0 : ∀m, P m 0)
|
||||
(H1 : ∀m n, 0 < n → P n (m mod n) → P m n) :
|
||||
P m n :=
|
||||
let Q : nat × nat → Prop := λ p : nat × nat, P (pr₁ p) (pr₂ p) in
|
||||
have aux : Q (m, n), from
|
||||
well_founded.induction (m, n) (λp, prod.cases_on p
|
||||
(λm n, nat.cases_on n
|
||||
(λ ih, show P (pr₁ (m, 0)) (pr₂ (m, 0)), from H0 m)
|
||||
(λ n₁ (ih : ∀p₂, p₂ ≺ (m, succ n₁) → P (pr₁ p₂) (pr₂ p₂)),
|
||||
have hlt₁ : 0 < succ n₁, from succ_pos n₁,
|
||||
have hlt₂ : (succ n₁, m mod succ n₁) ≺ (m, succ n₁), from gcd.lt.dec _ _,
|
||||
have hp : P (succ n₁) (m mod succ n₁), from ih _ hlt₂,
|
||||
show P m (succ n₁), from
|
||||
H1 m (succ n₁) hlt₁ hp))),
|
||||
aux
|
||||
induction (m, n) (prod.rec (λm, nat.rec (λ IH, H0 m)
|
||||
(λ n₁ v (IH : ∀p₂, p₂ ≺ (m, succ n₁) → P (pr₁ p₂) (pr₂ p₂)),
|
||||
H1 m (succ n₁) !succ_pos (IH _ !gcd.lt.dec))))
|
||||
|
||||
theorem gcd_dvd (m n : ℕ) : (gcd m n ∣ m) ∧ (gcd m n ∣ n) :=
|
||||
gcd.induction m n
|
||||
(take m,
|
||||
show (gcd m 0 ∣ m) ∧ (gcd m 0 ∣ 0), by rewrite [*gcd_zero_right]; split; apply dvd.refl; apply dvd_zero)
|
||||
(take m n,
|
||||
assume npos : 0 < n,
|
||||
assume IH : (gcd n (m mod n) ∣ n) ∧ (gcd n (m mod n) ∣ (m mod n)),
|
||||
(take m, and.intro (!one_mul ▸ !dvd_mul_left) !dvd_zero)
|
||||
(take m n (npos : 0 < n), and.rec
|
||||
(assume (IH₁ : gcd n (m mod n) ∣ n) (IH₂ : gcd n (m mod n) ∣ (m mod n)),
|
||||
have H : (gcd n (m mod n) ∣ (m div n * n + m mod n)), from
|
||||
dvd_add (dvd.trans (and.elim_left IH) !dvd_mul_left) (and.elim_right IH),
|
||||
dvd_add (dvd.trans IH₁ !dvd_mul_left) IH₂,
|
||||
have H1 : (gcd n (m mod n) ∣ m), from !eq_div_mul_add_mod⁻¹ ▸ H,
|
||||
have gcd_eq : gcd n (m mod n) = gcd m n, from !gcd_rec⁻¹,
|
||||
show (gcd m n ∣ m) ∧ (gcd m n ∣ n), from gcd_eq ▸ (and.intro H1 (and.elim_left IH)))
|
||||
show (gcd m n ∣ m) ∧ (gcd m n ∣ n), from !gcd_rec⁻¹ ▸ (and.intro H1 IH₁)))
|
||||
|
||||
theorem gcd_dvd_left (m n : ℕ) : gcd m n ∣ m := and.elim_left !gcd_dvd
|
||||
theorem gcd_dvd_left (m n : ℕ) : gcd m n ∣ m := and.left !gcd_dvd
|
||||
|
||||
theorem gcd_dvd_right (m n : ℕ) : gcd m n ∣ n := and.elim_right !gcd_dvd
|
||||
theorem gcd_dvd_right (m n : ℕ) : gcd m n ∣ n := and.right !gcd_dvd
|
||||
|
||||
theorem dvd_gcd {m n k : ℕ} : k ∣ m → k ∣ n → k ∣ gcd m n :=
|
||||
gcd.induction m n
|
||||
(take m, assume (h₁ : k ∣ m) (h₂ : k ∣ 0),
|
||||
show k ∣ gcd m 0, from !gcd_zero_right⁻¹ ▸ h₁)
|
||||
(take m n,
|
||||
assume npos : n > 0,
|
||||
assume IH : k ∣ n → k ∣ m mod n → k ∣ gcd n (m mod n),
|
||||
assume H1 : k ∣ m,
|
||||
assume H2 : k ∣ n,
|
||||
assert k ∣ m div n * n + m mod n, from !eq_div_mul_add_mod ▸ H1,
|
||||
assert k ∣ m mod n, from nat.dvd_of_dvd_add_left this (dvd.trans H2 !dvd_mul_left),
|
||||
have gcd_eq : gcd n (m mod n) = gcd m n, from !gcd_rec⁻¹,
|
||||
show k ∣ gcd m n, from gcd_eq ▸ IH H2 `k ∣ m mod n`)
|
||||
gcd.induction m n (take m, imp.intro)
|
||||
(take m n (npos : n > 0)
|
||||
(IH : k ∣ n → k ∣ m mod n → k ∣ gcd n (m mod n))
|
||||
(H1 : k ∣ m) (H2 : k ∣ n),
|
||||
have H3 : k ∣ m div n * n + m mod n, from !eq_div_mul_add_mod ▸ H1,
|
||||
have H4 : k ∣ m mod n, from dvd_of_dvd_add_left H3 (dvd.trans H2 !dvd_mul_left),
|
||||
!gcd_rec⁻¹ ▸ IH H2 H4)
|
||||
|
||||
theorem gcd.comm (m n : ℕ) : gcd m n = gcd n m :=
|
||||
dvd.antisymm
|
||||
|
@ -143,11 +115,7 @@ theorem gcd_one_left (m : ℕ) : gcd 1 m = 1 :=
|
|||
|
||||
theorem gcd_mul_left (m n k : ℕ) : gcd (m * n) (m * k) = m * gcd n k :=
|
||||
gcd.induction n k
|
||||
(take n,
|
||||
calc
|
||||
gcd (m * n) (m * 0) = gcd (m * n) 0 : mul_zero
|
||||
... = m * n : gcd_zero_right
|
||||
... = m * gcd n 0 : gcd_zero_right)
|
||||
(take n, calc gcd (m * n) (m * 0) = gcd (m * n) 0 : mul_zero)
|
||||
(take n k,
|
||||
assume H : 0 < k,
|
||||
assume IH : gcd (m * k) (m * (n mod k)) = m * gcd k (n mod k),
|
||||
|
@ -181,18 +149,11 @@ eq_zero_of_gcd_eq_zero_left (!gcd.comm ▸ H)
|
|||
theorem gcd_div {m n k : ℕ} (H1 : k ∣ m) (H2 : k ∣ n) :
|
||||
gcd (m div k) (n div k) = gcd m n div k :=
|
||||
or.elim (eq_zero_or_pos k)
|
||||
(assume H3 : k = 0,
|
||||
calc
|
||||
gcd (m div k) (n div k) = gcd 0 0 : by subst k; rewrite *div_zero
|
||||
... = 0 : gcd_zero_left
|
||||
... = gcd m n div 0 : div_zero
|
||||
... = gcd m n div k : by subst k)
|
||||
(assume H3 : k > 0,
|
||||
eq.symm (div_eq_of_eq_mul_left H3
|
||||
(eq.symm (calc
|
||||
gcd (m div k) (n div k) * k = gcd (m div k * k) (n div k * k) : gcd_mul_right
|
||||
... = gcd m (n div k * k) : div_mul_cancel H1
|
||||
... = gcd m n : div_mul_cancel H2))))
|
||||
(assume H3 : k = 0, by subst k; rewrite *div_zero)
|
||||
(assume H3 : k > 0, (div_eq_of_eq_mul_left H3 (calc
|
||||
gcd m n = gcd m (n div k * k) : div_mul_cancel H2
|
||||
... = gcd (m div k * k) (n div k * k) : div_mul_cancel H1
|
||||
... = gcd (m div k) (n div k) * k : gcd_mul_right))⁻¹)
|
||||
|
||||
theorem gcd_dvd_gcd_mul_left (m n k : ℕ) : gcd m n ∣ gcd (k * m) n :=
|
||||
dvd_gcd (dvd.trans !gcd_dvd_left !dvd_mul_left) !gcd_dvd_right
|
||||
|
|
|
@ -13,69 +13,48 @@ namespace nat
|
|||
/- lt and le -/
|
||||
|
||||
theorem le_of_lt_or_eq {m n : ℕ} (H : m < n ∨ m = n) : m ≤ n :=
|
||||
or.elim H (take H1, le_of_lt H1) (take H1, H1 ▸ !le.refl)
|
||||
le_of_eq_or_lt (or.swap H)
|
||||
|
||||
theorem lt_or_eq_of_le {m n : ℕ} (H : m ≤ n) : m < n ∨ m = n :=
|
||||
lt.by_cases
|
||||
(suppose m < n, or.inl this)
|
||||
(suppose m = n, or.inr this)
|
||||
(suppose m > n, absurd (lt_of_le_of_lt H this) !lt.irrefl)
|
||||
or.swap (eq_or_lt_of_le H)
|
||||
|
||||
theorem le_iff_lt_or_eq (m n : ℕ) : m ≤ n ↔ m < n ∨ m = n :=
|
||||
iff.intro lt_or_eq_of_le le_of_lt_or_eq
|
||||
|
||||
theorem lt_of_le_and_ne {m n : ℕ} (H1 : m ≤ n) (H2 : m ≠ n) : m < n :=
|
||||
or.elim (lt_or_eq_of_le H1)
|
||||
(suppose m < n, this)
|
||||
(suppose m = n, by contradiction)
|
||||
theorem lt_of_le_and_ne {m n : ℕ} (H1 : m ≤ n) : m ≠ n → m < n :=
|
||||
or_resolve_right (eq_or_lt_of_le H1)
|
||||
|
||||
theorem lt_iff_le_and_ne (m n : ℕ) : m < n ↔ m ≤ n ∧ m ≠ n :=
|
||||
iff.intro
|
||||
(suppose m < n, and.intro (le_of_lt this) (take H1, lt.irrefl _ (H1 ▸ this)))
|
||||
(suppose m ≤ n ∧ m ≠ n, lt_of_le_and_ne (and.elim_left this) (and.elim_right this))
|
||||
(take H, and.intro (le_of_lt H) (take H1, !lt.irrefl (H1 ▸ H)))
|
||||
(and.rec lt_of_le_and_ne)
|
||||
|
||||
theorem le_add_right (n k : ℕ) : n ≤ n + k :=
|
||||
nat.induction_on k
|
||||
(calc n ≤ n : le.refl n
|
||||
... = n + zero : add_zero)
|
||||
(λ k (ih : n ≤ n + k), calc
|
||||
n ≤ succ (n + k) : le_succ_of_le ih
|
||||
... = n + succ k : add_succ)
|
||||
nat.rec !le.refl (λ k, le_succ_of_le) k
|
||||
|
||||
theorem le_add_left (n m : ℕ): n ≤ m + n :=
|
||||
!add.comm ▸ !le_add_right
|
||||
|
||||
theorem le.intro {n m k : ℕ} (h : n + k = m) : n ≤ m :=
|
||||
h ▸ le_add_right n k
|
||||
h ▸ !le_add_right
|
||||
|
||||
theorem le.elim {n m : ℕ} (h : n ≤ m) : ∃k, n + k = m :=
|
||||
by induction h with m h ih;existsi 0; reflexivity;
|
||||
cases ih with k H; existsi succ k; exact congr_arg succ H
|
||||
theorem le.elim {n m : ℕ} : n ≤ m → ∃k, n + k = m :=
|
||||
le.rec (exists.intro 0 rfl) (λm h, Exists.rec
|
||||
(λ k H, exists.intro (succ k) (H ▸ rfl)))
|
||||
|
||||
theorem le.total {m n : ℕ} : m ≤ n ∨ n ≤ m :=
|
||||
lt.by_cases
|
||||
(suppose m < n, or.inl (le_of_lt this))
|
||||
(suppose m = n, or.inl (by subst m))
|
||||
(suppose m > n, or.inr (le_of_lt this))
|
||||
or.imp_left le_of_lt !lt_or_ge
|
||||
|
||||
/- addition -/
|
||||
|
||||
theorem add_le_add_left {n m : ℕ} (H : n ≤ m) (k : ℕ) : k + n ≤ k + m :=
|
||||
obtain (l : ℕ) (Hl : n + l = m), from le.elim H,
|
||||
le.intro
|
||||
(calc
|
||||
k + n + l = k + (n + l) : add.assoc
|
||||
... = k + m : by subst m)
|
||||
obtain l Hl, from le.elim H, le.intro (Hl ▸ !add.assoc)
|
||||
|
||||
theorem add_le_add_right {n m : ℕ} (H : n ≤ m) (k : ℕ) : n + k ≤ m + k :=
|
||||
!add.comm ▸ !add.comm ▸ add_le_add_left H k
|
||||
|
||||
theorem le_of_add_le_add_left {k n m : ℕ} (H : k + n ≤ k + m) : n ≤ m :=
|
||||
obtain (l : ℕ) (Hl : k + n + l = k + m), from (le.elim H),
|
||||
le.intro (add.cancel_left
|
||||
(calc
|
||||
k + (n + l) = k + n + l : add.assoc
|
||||
... = k + m : Hl))
|
||||
obtain l Hl, from le.elim H, le.intro (add.cancel_left (!add.assoc⁻¹ ⬝ Hl))
|
||||
|
||||
theorem lt_of_add_lt_add_left {k n m : ℕ} (H : k + n < k + m) : n < m :=
|
||||
let H' := le_of_lt H in
|
||||
|
@ -121,27 +100,22 @@ theorem max_self [simp] (a : ℕ) : max a a = a :=
|
|||
eq.rec_on !if_t_t rfl
|
||||
|
||||
theorem max_le {n m k : ℕ} (H₁ : n ≤ k) (H₂ : m ≤ k) : max n m ≤ k :=
|
||||
decidable.by_cases
|
||||
(suppose n < m, by rewrite [↑max, if_pos this]; apply H₂)
|
||||
(suppose ¬ n < m, by rewrite [↑max, if_neg this]; apply H₁)
|
||||
if H : n < m then by rewrite [↑max, if_pos H]; apply H₂
|
||||
else by rewrite [↑max, if_neg H]; apply H₁
|
||||
|
||||
theorem min_le_left (n m : ℕ) : min n m ≤ n :=
|
||||
decidable.by_cases
|
||||
(suppose n < m, by rewrite [↑min, if_pos this])
|
||||
(suppose ¬ n < m,
|
||||
assert m ≤ n, from or_resolve_right !lt_or_ge this,
|
||||
by rewrite [↑min, if_neg `¬ n < m`]; apply this)
|
||||
if H : n < m then by rewrite [↑min, if_pos H]
|
||||
else assert H' : m ≤ n, from or_resolve_right !lt_or_ge H,
|
||||
by rewrite [↑min, if_neg H]; apply H'
|
||||
|
||||
theorem min_le_right (n m : ℕ) : min n m ≤ m :=
|
||||
decidable.by_cases
|
||||
(suppose n < m, by rewrite [↑min, if_pos this]; apply le_of_lt this)
|
||||
(suppose ¬ n < m,
|
||||
by rewrite [↑min, if_neg `¬ n < m`])
|
||||
if H : n < m then by rewrite [↑min, if_pos H]; apply le_of_lt H
|
||||
else assert H' : m ≤ n, from or_resolve_right !lt_or_ge H,
|
||||
by rewrite [↑min, if_neg H]
|
||||
|
||||
theorem le_min {n m k : ℕ} (H₁ : k ≤ n) (H₂ : k ≤ m) : k ≤ min n m :=
|
||||
decidable.by_cases
|
||||
(suppose n < m, by rewrite [↑min, if_pos this]; apply H₁)
|
||||
(suppose ¬ n < m, by rewrite [↑min, if_neg this]; apply H₂)
|
||||
if H : n < m then by rewrite [↑min, if_pos H]; apply H₁
|
||||
else by rewrite [↑min, if_neg H]; apply H₂
|
||||
|
||||
theorem eq_max_right {a b : ℕ} (H : a < b) : b = max a b :=
|
||||
(if_pos H)⁻¹
|
||||
|
@ -151,18 +125,14 @@ theorem eq_max_left {a b : ℕ} (H : ¬ a < b) : a = max a b :=
|
|||
|
||||
open decidable
|
||||
theorem le_max_right (a b : ℕ) : b ≤ max a b :=
|
||||
by_cases
|
||||
(suppose a < b, eq.rec_on (eq_max_right this) !le.refl)
|
||||
(suppose ¬ a < b, or.rec_on (eq_or_lt_of_not_lt this)
|
||||
(suppose a = b, eq.rec_on this (eq.rec_on (eq.symm (max_self a)) !le.refl))
|
||||
(suppose b < a,
|
||||
have h : a = max a b, from eq_max_left (lt.asymm this),
|
||||
eq.rec_on h (le_of_lt this)))
|
||||
lt.by_cases
|
||||
(suppose a < b, (eq_max_right this) ▸ !le.refl)
|
||||
(suppose a = b, this ▸ !max_self⁻¹ ▸ !le.refl)
|
||||
(suppose b < a, (eq_max_left (lt.asymm this)) ▸ (le_of_lt this))
|
||||
|
||||
theorem le_max_left (a b : ℕ) : a ≤ max a b :=
|
||||
by_cases
|
||||
(suppose a < b, le_of_lt (eq.rec_on (eq_max_right this) this))
|
||||
(suppose ¬ a < b, eq.rec_on (eq_max_left this) !le.refl)
|
||||
if h : a < b then le_of_lt (eq.rec_on (eq_max_right h) h)
|
||||
else (eq_max_left h) ▸ !le.refl
|
||||
|
||||
/- nat is an instance of a linearly ordered semiring and a lattice-/
|
||||
|
||||
|
@ -221,30 +191,29 @@ section migrate_algebra
|
|||
attribute le.trans ge.trans lt.trans gt.trans [trans]
|
||||
attribute lt_of_lt_of_le lt_of_le_of_lt gt_of_gt_of_ge gt_of_ge_of_gt [trans]
|
||||
|
||||
theorem add_pos_left : ∀{a : ℕ}, 0 < a → ∀b : ℕ, 0 < a + b :=
|
||||
take a H b, @algebra.add_pos_of_pos_of_nonneg _ _ a b H !zero_le
|
||||
theorem add_pos_right : ∀{a : ℕ}, 0 < a → ∀b : ℕ, 0 < b + a :=
|
||||
take a H b, !add.comm ▸ add_pos_left H b
|
||||
theorem add_eq_zero_iff_eq_zero_and_eq_zero : ∀{a b : ℕ},
|
||||
theorem add_pos_left {a : ℕ} (H : 0 < a) (b : ℕ) : 0 < a + b :=
|
||||
@algebra.add_pos_of_pos_of_nonneg _ _ a b H !zero_le
|
||||
theorem add_pos_right {a : ℕ} (H : 0 < a) (b : ℕ) : 0 < b + a :=
|
||||
!add.comm ▸ add_pos_left H b
|
||||
theorem add_eq_zero_iff_eq_zero_and_eq_zero {a b : ℕ} :
|
||||
a + b = 0 ↔ a = 0 ∧ b = 0 :=
|
||||
take a b : ℕ,
|
||||
@algebra.add_eq_zero_iff_eq_zero_and_eq_zero_of_nonneg_of_nonneg _ _ a b !zero_le !zero_le
|
||||
theorem le_add_of_le_left : ∀{a b c : ℕ}, b ≤ c → b ≤ a + c :=
|
||||
take a b c H, @algebra.le_add_of_nonneg_of_le _ _ a b c !zero_le H
|
||||
theorem le_add_of_le_right : ∀{a b c : ℕ}, b ≤ c → b ≤ c + a :=
|
||||
take a b c H, @algebra.le_add_of_le_of_nonneg _ _ a b c H !zero_le
|
||||
theorem lt_add_of_lt_left : ∀{b c : ℕ}, b < c → ∀a, b < a + c :=
|
||||
take b c H a, @algebra.lt_add_of_nonneg_of_lt _ _ a b c !zero_le H
|
||||
theorem lt_add_of_lt_right : ∀{b c : ℕ}, b < c → ∀a, b < c + a :=
|
||||
take b c H a, @algebra.lt_add_of_lt_of_nonneg _ _ a b c H !zero_le
|
||||
theorem lt_of_mul_lt_mul_left : ∀{a b c : ℕ}, c * a < c * b → a < b :=
|
||||
take a b c H, @algebra.lt_of_mul_lt_mul_left _ _ a b c H !zero_le
|
||||
theorem lt_of_mul_lt_mul_right : ∀{a b c : ℕ}, a * c < b * c → a < b :=
|
||||
take a b c H, @algebra.lt_of_mul_lt_mul_right _ _ a b c H !zero_le
|
||||
theorem pos_of_mul_pos_left : ∀{a b : ℕ}, 0 < a * b → 0 < b :=
|
||||
take a b H, @algebra.pos_of_mul_pos_left _ _ a b H !zero_le
|
||||
theorem pos_of_mul_pos_right : ∀{a b : ℕ}, 0 < a * b → 0 < a :=
|
||||
take a b H, @algebra.pos_of_mul_pos_right _ _ a b H !zero_le
|
||||
theorem le_add_of_le_left {a b c : ℕ} (H : b ≤ c) : b ≤ a + c :=
|
||||
@algebra.le_add_of_nonneg_of_le _ _ a b c !zero_le H
|
||||
theorem le_add_of_le_right {a b c : ℕ} (H : b ≤ c) : b ≤ c + a :=
|
||||
@algebra.le_add_of_le_of_nonneg _ _ a b c H !zero_le
|
||||
theorem lt_add_of_lt_left {b c : ℕ} (H : b < c) (a : ℕ) : b < a + c :=
|
||||
@algebra.lt_add_of_nonneg_of_lt _ _ a b c !zero_le H
|
||||
theorem lt_add_of_lt_right {b c : ℕ} (H : b < c) (a : ℕ) : b < c + a :=
|
||||
@algebra.lt_add_of_lt_of_nonneg _ _ a b c H !zero_le
|
||||
theorem lt_of_mul_lt_mul_left {a b c : ℕ} (H : c * a < c * b) : a < b :=
|
||||
@algebra.lt_of_mul_lt_mul_left _ _ a b c H !zero_le
|
||||
theorem lt_of_mul_lt_mul_right {a b c : ℕ} (H : a * c < b * c) : a < b :=
|
||||
@algebra.lt_of_mul_lt_mul_right _ _ a b c H !zero_le
|
||||
theorem pos_of_mul_pos_left {a b : ℕ} (H : 0 < a * b) : 0 < b :=
|
||||
@algebra.pos_of_mul_pos_left _ _ a b H !zero_le
|
||||
theorem pos_of_mul_pos_right {a b : ℕ} (H : 0 < a * b) : 0 < a :=
|
||||
@algebra.pos_of_mul_pos_right _ _ a b H !zero_le
|
||||
end migrate_algebra
|
||||
|
||||
theorem zero_le_one : 0 ≤ 1 := dec_trivial
|
||||
|
@ -266,8 +235,8 @@ eq_zero_of_add_eq_zero_right Hk
|
|||
|
||||
/- succ and pred -/
|
||||
|
||||
theorem le_of_lt_succ {m n : nat} (H : m < succ n) : m ≤ n :=
|
||||
le_of_succ_le_succ H
|
||||
theorem le_of_lt_succ {m n : nat} : m < succ n → m ≤ n :=
|
||||
le_of_succ_le_succ
|
||||
|
||||
theorem lt_iff_succ_le (m n : nat) : m < n ↔ succ m ≤ n :=
|
||||
iff.rfl
|
||||
|
@ -278,37 +247,20 @@ iff.intro le_of_lt_succ lt_succ_of_le
|
|||
theorem self_le_succ (n : ℕ) : n ≤ succ n :=
|
||||
le.intro !add_one
|
||||
|
||||
theorem succ_le_or_eq_of_le {n m : ℕ} (H : n ≤ m) : succ n ≤ m ∨ n = m :=
|
||||
or.elim (lt_or_eq_of_le H)
|
||||
(suppose n < m, or.inl (succ_le_of_lt this))
|
||||
(suppose n = m, or.inr this)
|
||||
theorem succ_le_or_eq_of_le {n m : ℕ} : n ≤ m → succ n ≤ m ∨ n = m :=
|
||||
lt_or_eq_of_le
|
||||
|
||||
theorem pred_le_of_le_succ {n m : ℕ} : n ≤ succ m → pred n ≤ m :=
|
||||
nat.cases_on n
|
||||
(assume H, !pred_zero⁻¹ ▸ zero_le m)
|
||||
(take n',
|
||||
suppose succ n' ≤ succ m,
|
||||
have n' ≤ m, from le_of_succ_le_succ this,
|
||||
!pred_succ⁻¹ ▸ this)
|
||||
pred_le_pred
|
||||
|
||||
theorem succ_le_of_le_pred {n m : ℕ} : succ n ≤ m → n ≤ pred m :=
|
||||
nat.cases_on m
|
||||
(assume H, absurd H !not_succ_le_zero)
|
||||
(take m',
|
||||
suppose succ n ≤ succ m',
|
||||
have n ≤ m', from le_of_succ_le_succ this,
|
||||
!pred_succ⁻¹ ▸ this)
|
||||
pred_le_pred
|
||||
|
||||
theorem pred_le_pred_of_le {n m : ℕ} : n ≤ m → pred n ≤ pred m :=
|
||||
nat.cases_on n
|
||||
(assume H, pred_zero⁻¹ ▸ zero_le (pred m))
|
||||
(take n',
|
||||
suppose succ n' ≤ m,
|
||||
!pred_succ⁻¹ ▸ succ_le_of_le_pred this)
|
||||
pred_le_pred
|
||||
|
||||
theorem pre_lt_of_lt : ∀ {n m : ℕ}, n < m → pred n < m
|
||||
| 0 m h := h
|
||||
| (succ n) m h := lt_of_succ_lt h
|
||||
theorem pre_lt_of_lt {n m : ℕ} : n < m → pred n < m :=
|
||||
lt_of_le_of_lt !pred_le
|
||||
|
||||
theorem lt_of_pred_lt_pred {n m : ℕ} (H : pred n < pred m) : n < m :=
|
||||
lt_of_not_ge
|
||||
|
@ -316,13 +268,10 @@ lt_of_not_ge
|
|||
not_lt_of_ge (pred_le_pred_of_le this) H)
|
||||
|
||||
theorem le_or_eq_succ_of_le_succ {n m : ℕ} (H : n ≤ succ m) : n ≤ m ∨ n = succ m :=
|
||||
or_of_or_of_imp_left (succ_le_or_eq_of_le H)
|
||||
(suppose succ n ≤ succ m, show n ≤ m, from le_of_succ_le_succ this)
|
||||
or.imp_left le_of_succ_le_succ (succ_le_or_eq_of_le H)
|
||||
|
||||
theorem le_pred_self (n : ℕ) : pred n ≤ n :=
|
||||
nat.cases_on n
|
||||
(pred_zero⁻¹ ▸ !le.refl)
|
||||
(take k : ℕ, (!pred_succ)⁻¹ ▸ !self_le_succ)
|
||||
!pred_le
|
||||
|
||||
theorem succ_pos (n : ℕ) : 0 < succ n :=
|
||||
!zero_lt_succ
|
||||
|
@ -330,11 +279,9 @@ theorem succ_pos (n : ℕ) : 0 < succ n :=
|
|||
theorem succ_pred_of_pos {n : ℕ} (H : n > 0) : succ (pred n) = n :=
|
||||
(or_resolve_right (eq_zero_or_eq_succ_pred n) (ne.symm (ne_of_lt H)))⁻¹
|
||||
|
||||
theorem exists_eq_succ_of_lt {n m : ℕ} (H : n < m) : exists k, m = succ k :=
|
||||
discriminate
|
||||
(suppose m = 0, absurd (this ▸ H) !not_lt_zero)
|
||||
(take l, suppose m = succ l,
|
||||
exists.intro l this)
|
||||
theorem exists_eq_succ_of_lt {n : ℕ} : Π {m : ℕ}, n < m → ∃k, m = succ k
|
||||
| 0 H := absurd H !not_lt_zero
|
||||
| (succ k) H := exists.intro k rfl
|
||||
|
||||
theorem lt_succ_self (n : ℕ) : n < succ n :=
|
||||
lt.base n
|
||||
|
@ -345,20 +292,10 @@ assume Plt, lt.trans Plt (self_lt_succ j)
|
|||
/- other forms of induction -/
|
||||
|
||||
protected definition strong_rec_on {P : nat → Type} (n : ℕ) (H : ∀n, (∀m, m < n → P m) → P n) : P n :=
|
||||
have ∀ {n m : nat}, m < n → P m, from
|
||||
take n,
|
||||
nat.rec_on n
|
||||
(show ∀m, m < 0 → P m, from take m H, absurd H !not_lt_zero)
|
||||
(take n',
|
||||
assume IH : ∀ {m : nat}, m < n' → P m,
|
||||
assert P n', from H n' @IH,
|
||||
show ∀m, m < succ n' → P m, from
|
||||
take m,
|
||||
suppose m < succ n',
|
||||
or.by_cases (lt_or_eq_of_le (le_of_lt_succ this))
|
||||
(suppose m < n', IH this)
|
||||
(suppose m = n', by subst m; assumption)),
|
||||
this !lt_succ_self
|
||||
nat.rec (λm, not.elim !not_lt_zero)
|
||||
(λn' (IH : ∀ {m : ℕ}, m < n' → P m) m l,
|
||||
or.by_cases (lt_or_eq_of_le (le_of_lt_succ l))
|
||||
IH (λ e, eq.rec (H n' @IH) e⁻¹)) (succ n) n !lt_succ_self
|
||||
|
||||
protected theorem strong_induction_on {P : nat → Prop} (n : ℕ) (H : ∀n, (∀m, m < n → P m) → P n) :
|
||||
P n :=
|
||||
|
|
|
@ -427,13 +427,8 @@ theorem dist_sub_eq_dist_add_right {k m : ℕ} (H : k ≥ m) (n : ℕ) :
|
|||
(dist_sub_eq_dist_add_left H n ▸ !dist.comm) ▸ !dist.comm
|
||||
|
||||
theorem dist.triangle_inequality (n m k : ℕ) : dist n k ≤ dist n m + dist m k :=
|
||||
assert (m - k) + ((k - m) + (m - n)) = (m - n) + ((m - k) + (k - m)),
|
||||
begin
|
||||
generalize m - k, generalize k - m, generalize m - n, intro x y z,
|
||||
rewrite [add.comm y x, add.left_comm]
|
||||
end,
|
||||
have (n - m) + (m - k) + ((k - m) + (m - n)) = (n - m) + (m - n) + ((m - k) + (k - m)),
|
||||
by rewrite [add.assoc, this, -add.assoc],
|
||||
from (!add.comm ▸ !add.left_comm ▸ !add.assoc) ⬝ !add.assoc⁻¹,
|
||||
this ▸ add_le_add !sub_lt_sub_add_sub !sub_lt_sub_add_sub
|
||||
|
||||
theorem dist_add_add_le_add_dist_dist (n m k l : ℕ) : dist (n + m) (k + l) ≤ dist n k + dist m l :=
|
||||
|
@ -446,7 +441,7 @@ assert ∀ n m, dist n m = n - m + (m - n), from take n m, rfl,
|
|||
by rewrite [this, this n m, mul.right_distrib, *mul_sub_right_distrib]
|
||||
|
||||
theorem dist_mul_left (k n m : ℕ) : dist (k * n) (k * m) = k * dist n m :=
|
||||
by rewrite [mul.comm k n, mul.comm k m, dist_mul_right, mul.comm]
|
||||
!mul.comm ▸ !mul.comm ▸ !dist_mul_right ⬝ !mul.comm
|
||||
|
||||
theorem dist_mul_dist (n m k l : ℕ) : dist n m * dist k l = dist (n * k + m * l) (n * l + m * k) :=
|
||||
have aux : ∀k l, k ≥ l → dist n m * dist k l = dist (n * k + m * l) (n * l + m * k), from
|
||||
|
|
|
@ -11,105 +11,89 @@ are those needed for that construction.
|
|||
-/
|
||||
|
||||
import data.rat.order data.nat
|
||||
open nat rat
|
||||
open nat rat subtype eq.ops
|
||||
|
||||
namespace pnat
|
||||
|
||||
inductive pnat : Type :=
|
||||
pos : Π n : nat, n > 0 → pnat
|
||||
definition pnat := { n : ℕ | n > 0 }
|
||||
|
||||
notation `ℕ+` := pnat
|
||||
|
||||
definition nat_of_pnat (p : pnat) : ℕ :=
|
||||
pnat.rec_on p (λ n H, n)
|
||||
theorem pos (n : ℕ) (H : n > 0) : ℕ+ := tag n H
|
||||
|
||||
definition nat_of_pnat (p : ℕ+) : ℕ := elt_of p
|
||||
reserve postfix `~`:std.prec.max_plus
|
||||
local postfix ~ := nat_of_pnat
|
||||
|
||||
theorem nat_of_pnat_pos (p : pnat) : p~ > 0 :=
|
||||
pnat.rec_on p (λ n H, H)
|
||||
theorem pnat_pos (p : ℕ+) : p~ > 0 := has_property p
|
||||
|
||||
definition add (p q : pnat) : pnat :=
|
||||
pnat.pos (p~ + q~) (nat.add_pos (nat_of_pnat_pos p) (nat_of_pnat_pos q))
|
||||
definition add (p q : ℕ+) : ℕ+ :=
|
||||
tag (p~ + q~) (nat.add_pos (pnat_pos p) (pnat_pos q))
|
||||
infix `+` := add
|
||||
|
||||
definition mul (p q : pnat) : pnat :=
|
||||
pnat.pos (p~ * q~) (nat.mul_pos (nat_of_pnat_pos p) (nat_of_pnat_pos q))
|
||||
definition mul (p q : ℕ+) : ℕ+ :=
|
||||
tag (p~ * q~) (nat.mul_pos (pnat_pos p) (pnat_pos q))
|
||||
infix `*` := mul
|
||||
|
||||
definition le (p q : pnat) := p~ ≤ q~
|
||||
definition le (p q : ℕ+) := p~ ≤ q~
|
||||
infix `≤` := le
|
||||
notation p `≥` q := q ≤ p
|
||||
|
||||
definition lt (p q : pnat) := p~ < q~
|
||||
definition lt (p q : ℕ+) := p~ < q~
|
||||
infix `<` := lt
|
||||
|
||||
protected theorem pnat.eq {p q : ℕ+} : p~ = q~ → p = q :=
|
||||
pnat.cases_on p (λ p' Hp, pnat.cases_on q (λ q' Hq,
|
||||
begin
|
||||
rewrite ↑nat_of_pnat,
|
||||
intro H,
|
||||
generalize Hp,
|
||||
generalize Hq,
|
||||
rewrite H,
|
||||
intro Hp Hq,
|
||||
apply rfl
|
||||
end))
|
||||
subtype.eq
|
||||
|
||||
definition pnat_le_decidable [instance] (p q : pnat) : decidable (p ≤ q) :=
|
||||
pnat.rec_on p (λ n H, pnat.rec_on q
|
||||
(λ m H2, if Hl : n ≤ m then decidable.inl Hl else decidable.inr Hl))
|
||||
definition pnat_le_decidable [instance] (p q : ℕ+) : decidable (p ≤ q) :=
|
||||
nat.decidable_le p~ q~
|
||||
|
||||
definition pnat_lt_decidable [instance] {p q : pnat} : decidable (p < q) :=
|
||||
pnat.rec_on p (λ n H, pnat.rec_on q
|
||||
(λ m H2, if Hl : n < m then decidable.inl Hl else decidable.inr Hl))
|
||||
definition pnat_lt_decidable [instance] {p q : ℕ+} : decidable (p < q) :=
|
||||
nat.decidable_lt p~ q~
|
||||
|
||||
theorem le.trans {p q r : pnat} (H1 : p ≤ q) (H2 : q ≤ r) : p ≤ r := nat.le.trans H1 H2
|
||||
theorem le.trans {p q r : ℕ+} (H1 : p ≤ q) (H2 : q ≤ r) : p ≤ r := nat.le.trans H1 H2
|
||||
|
||||
definition max (p q : pnat) :=
|
||||
pnat.pos (nat.max (p~) (q~)) (nat.lt_of_lt_of_le (!nat_of_pnat_pos) (!le_max_right))
|
||||
definition max (p q : ℕ+) :=
|
||||
tag (nat.max p~ q~) (nat.lt_of_lt_of_le (!pnat_pos) (!le_max_right))
|
||||
|
||||
theorem max_right (a b : ℕ+) : max a b ≥ b := !le_max_right
|
||||
|
||||
theorem max_left (a b : ℕ+) : max a b ≥ a := !le_max_left
|
||||
|
||||
theorem max_eq_right {a b : ℕ+} (H : a < b) : max a b = b :=
|
||||
have Hnat : nat.max a~ b~ = b~, from nat.max_eq_right' H,
|
||||
pnat.eq Hnat
|
||||
pnat.eq (nat.max_eq_right' H)
|
||||
|
||||
theorem max_eq_left {a b : ℕ+} (H : ¬ a < b) : max a b = a :=
|
||||
have Hnat : nat.max a~ b~ = a~, from nat.max_eq_left' H,
|
||||
pnat.eq Hnat
|
||||
pnat.eq (nat.max_eq_left' H)
|
||||
|
||||
theorem le_of_lt {a b : ℕ+} (H : a < b) : a ≤ b := nat.le_of_lt H
|
||||
theorem le_of_lt {a b : ℕ+} : a < b → a ≤ b := nat.le_of_lt
|
||||
|
||||
theorem not_lt_of_ge {a b : ℕ+} (H : a ≤ b) : ¬ (b < a) := nat.not_lt_of_ge H
|
||||
theorem not_lt_of_ge {a b : ℕ+} : a ≤ b → ¬ (b < a) := nat.not_lt_of_ge
|
||||
|
||||
theorem le_of_not_gt {a b : ℕ+} (H : ¬ a < b) : b ≤ a := nat.le_of_not_gt H
|
||||
theorem le_of_not_gt {a b : ℕ+} : ¬ a < b → b ≤ a := nat.le_of_not_gt
|
||||
|
||||
theorem eq_of_le_of_ge {a b : ℕ+} (H1 : a ≤ b) (H2 : b ≤ a) : a = b :=
|
||||
pnat.eq (nat.eq_of_le_of_ge H1 H2)
|
||||
|
||||
theorem le.refl (a : ℕ+) : a ≤ a := !nat.le.refl
|
||||
|
||||
notation 2 := pnat.pos 2 dec_trivial
|
||||
notation 3 := pnat.pos 3 dec_trivial
|
||||
definition pone : pnat := pnat.pos 1 dec_trivial
|
||||
notation 2 := (tag 2 dec_trivial : ℕ+)
|
||||
notation 3 := (tag 3 dec_trivial : ℕ+)
|
||||
definition pone : ℕ+ := tag 1 dec_trivial
|
||||
|
||||
definition rat_of_pnat [reducible] (n : ℕ+) : ℚ :=
|
||||
pnat.rec_on n (λ n H, of_nat n)
|
||||
definition rat_of_pnat [reducible] (n : ℕ+) : ℚ := n~
|
||||
|
||||
theorem pnat.to_rat_of_nat (n : ℕ+) : rat_of_pnat n = of_nat n~ :=
|
||||
pnat.rec_on n (λ n H, rfl)
|
||||
theorem pnat.to_rat_of_nat (n : ℕ+) : rat_of_pnat n = of_nat n~ := rfl
|
||||
|
||||
-- these will come in rat
|
||||
|
||||
theorem rat_of_nat_nonneg (n : ℕ) : 0 ≤ of_nat n := trivial
|
||||
|
||||
theorem rat_of_pnat_ge_one (n : ℕ+) : rat_of_pnat n ≥ 1 :=
|
||||
pnat.rec_on n (λ m h, (iff.mpr !of_nat_le_of_nat) (succ_le_of_lt h))
|
||||
(iff.mpr !of_nat_le_of_nat) (pnat_pos n)
|
||||
|
||||
theorem rat_of_pnat_is_pos (n : ℕ+) : rat_of_pnat n > 0 :=
|
||||
pnat.rec_on n (λ m h, (iff.mpr !of_nat_pos) h)
|
||||
(iff.mpr !of_nat_pos) (pnat_pos n)
|
||||
|
||||
theorem of_nat_le_of_nat_of_le {m n : ℕ} (H : m ≤ n) : of_nat m ≤ of_nat n :=
|
||||
(iff.mpr !of_nat_le_of_nat) H
|
||||
|
@ -118,22 +102,13 @@ theorem of_nat_lt_of_nat_of_lt {m n : ℕ} (H : m < n) : of_nat m < of_nat n :=
|
|||
(iff.mpr !of_nat_lt_of_nat) H
|
||||
|
||||
theorem rat_of_pnat_le_of_pnat_le {m n : ℕ+} (H : m ≤ n) : rat_of_pnat m ≤ rat_of_pnat n :=
|
||||
begin
|
||||
rewrite *pnat.to_rat_of_nat,
|
||||
apply of_nat_le_of_nat_of_le H
|
||||
end
|
||||
of_nat_le_of_nat_of_le H
|
||||
|
||||
theorem rat_of_pnat_lt_of_pnat_lt {m n : ℕ+} (H : m < n) : rat_of_pnat m < rat_of_pnat n :=
|
||||
begin
|
||||
rewrite *pnat.to_rat_of_nat,
|
||||
apply of_nat_lt_of_nat_of_lt H
|
||||
end
|
||||
of_nat_lt_of_nat_of_lt H
|
||||
|
||||
theorem pnat_le_of_rat_of_pnat_le {m n : ℕ+} (H : rat_of_pnat m ≤ rat_of_pnat n) : m ≤ n :=
|
||||
begin
|
||||
rewrite *pnat.to_rat_of_nat at H,
|
||||
apply (iff.mp !of_nat_le_of_nat) H
|
||||
end
|
||||
(iff.mp !of_nat_le_of_nat) H
|
||||
|
||||
definition inv (n : ℕ+) : ℚ := (1 : ℚ) / rat_of_pnat n
|
||||
postfix `⁻¹` := inv
|
||||
|
@ -173,13 +148,14 @@ theorem one_mul (n : ℕ+) : pone * n = n :=
|
|||
end
|
||||
|
||||
theorem pone_le (n : ℕ+) : pone ≤ n :=
|
||||
succ_le_of_lt (nat_of_pnat_pos n)
|
||||
succ_le_of_lt (pnat_pos n)
|
||||
|
||||
theorem pnat_to_rat_mul (a b : ℕ+) : rat_of_pnat (a * b) = rat_of_pnat a * rat_of_pnat b :=
|
||||
by rewrite *pnat.to_rat_of_nat
|
||||
theorem pnat_to_rat_mul (a b : ℕ+) : rat_of_pnat (a * b) = rat_of_pnat a * rat_of_pnat b := rfl
|
||||
|
||||
theorem mul_lt_mul_left (a b c : ℕ+) (H : a < b) : a * c < b * c :=
|
||||
nat.mul_lt_mul_of_pos_right H !nat_of_pnat_pos
|
||||
nat.mul_lt_mul_of_pos_right H !pnat_pos
|
||||
|
||||
theorem one_lt_two : pone < 2 := !nat.le.refl
|
||||
|
||||
theorem inv_two_mul_lt_inv (n : ℕ+) : (2 * n)⁻¹ < n⁻¹ :=
|
||||
begin
|
||||
|
@ -189,9 +165,8 @@ theorem inv_two_mul_lt_inv (n : ℕ+) : (2 * n)⁻¹ < n⁻¹ :=
|
|||
have H : n~ < (2 * n)~, begin
|
||||
rewrite -one_mul at {1},
|
||||
apply mul_lt_mul_left,
|
||||
apply dec_trivial
|
||||
apply one_lt_two
|
||||
end,
|
||||
rewrite *pnat.to_rat_of_nat,
|
||||
apply of_nat_lt_of_nat_of_lt,
|
||||
apply H
|
||||
end
|
||||
|
@ -238,7 +213,7 @@ theorem inv_mul_le_inv (p q : ℕ+) : (p * q)⁻¹ ≤ q⁻¹ :=
|
|||
end
|
||||
|
||||
theorem pnat_mul_le_mul_left' (a b c : ℕ+) (H : a ≤ b) : c * a ≤ c * b :=
|
||||
nat.mul_le_mul_of_nonneg_left H (nat.le_of_lt !nat_of_pnat_pos)
|
||||
nat.mul_le_mul_of_nonneg_left H (nat.le_of_lt !pnat_pos)
|
||||
|
||||
theorem mul.assoc (a b c : ℕ+) : a * b * c = a * (b * c) :=
|
||||
pnat.eq !nat.mul.assoc
|
||||
|
@ -259,8 +234,6 @@ theorem mul_le_mul_left (p q : ℕ+) : q ≤ p * q :=
|
|||
theorem mul_le_mul_right (p q : ℕ+) : p ≤ p * q :=
|
||||
by rewrite mul.comm; apply mul_le_mul_left
|
||||
|
||||
theorem one_lt_two : pone < 2 := dec_trivial
|
||||
|
||||
theorem pnat.lt_of_not_le {p q : ℕ+} (H : ¬ p ≤ q) : q < p :=
|
||||
nat.lt_of_not_ge H
|
||||
|
||||
|
@ -275,7 +248,7 @@ theorem lt_add_left (p q : ℕ+) : p < p + q :=
|
|||
have H : p~ < p~ + q~, begin
|
||||
rewrite -nat.add_zero at {1},
|
||||
apply nat.add_lt_add_left,
|
||||
apply nat_of_pnat_pos
|
||||
apply pnat_pos
|
||||
end,
|
||||
apply H
|
||||
end
|
||||
|
@ -296,30 +269,19 @@ theorem div_le_pnat (q : ℚ) (n : ℕ+) (H : q ≥ n⁻¹) : 1 / q ≤ rat_of_p
|
|||
end
|
||||
|
||||
theorem pnat_cancel' (n m : ℕ+) : (n * n * m)⁻¹ * (rat_of_pnat n * rat_of_pnat n) = m⁻¹ :=
|
||||
begin
|
||||
have hsimp : ∀ a b c : ℚ, (a * a * (b * b * c)) = (a * b) * (a * b) * c, from sorry, -- simp
|
||||
rewrite [rat.mul.comm, *inv_mul_eq_mul_inv, hsimp, *inv_cancel_left, *rat.one_mul]
|
||||
end
|
||||
assert hsimp : ∀ a b c : ℚ, (a * a * (b * b * c)) = (a * b) * (a * b) * c, from
|
||||
λa b c, by rewrite[-*rat.mul.assoc]; exact (!rat.mul.right_comm ▸ rfl),
|
||||
by rewrite [rat.mul.comm, *inv_mul_eq_mul_inv, hsimp, *inv_cancel_left, *rat.one_mul]
|
||||
|
||||
definition pceil (a : ℚ) : ℕ+ := pnat.pos (ubound a) !ubound_pos
|
||||
definition pceil (a : ℚ) : ℕ+ := tag (ubound a) !ubound_pos
|
||||
|
||||
theorem pceil_helper {a : ℚ} {n : ℕ+} (H : pceil a ≤ n) (Ha : a > 0) : n⁻¹ ≤ 1 / a :=
|
||||
begin
|
||||
apply rat.le.trans,
|
||||
apply inv_ge_of_le H,
|
||||
apply div_le_div_of_le,
|
||||
apply Ha,
|
||||
apply ubound_ge
|
||||
end
|
||||
rat.le.trans (inv_ge_of_le H) (div_le_div_of_le Ha (ubound_ge a))
|
||||
|
||||
theorem inv_pceil_div (a b : ℚ) (Ha : a > 0) (Hb : b > 0) : (pceil (a / b))⁻¹ ≤ b / a :=
|
||||
begin
|
||||
rewrite -(@div_div' (b / a)),
|
||||
apply div_le_div_of_le,
|
||||
apply div_pos_of_pos,
|
||||
apply pos_div_of_pos_of_pos Hb Ha,
|
||||
rewrite [(div_div_eq_mul_div (ne_of_gt Hb) (ne_of_gt Ha)), rat.one_mul],
|
||||
apply ubound_ge
|
||||
end
|
||||
div_div' ▸ div_le_div_of_le
|
||||
(div_pos_of_pos (pos_div_of_pos_of_pos Hb Ha))
|
||||
((div_div_eq_mul_div (ne_of_gt Hb) (ne_of_gt Ha))⁻¹ ▸
|
||||
!rat.one_mul⁻¹ ▸ !ubound_ge)
|
||||
|
||||
end pnat
|
||||
|
|
|
@ -20,8 +20,8 @@ namespace quotient
|
|||
theorem flip_pair (a : A) (b : B) : flip (pair a b) = pair b a := rfl
|
||||
theorem flip_pr1 (a : A × B) : pr1 (flip a) = pr2 a := rfl
|
||||
theorem flip_pr2 (a : A × B) : pr2 (flip a) = pr1 a := rfl
|
||||
theorem flip_flip (a : A × B) : flip (flip a) = a :=
|
||||
destruct a (take x y, rfl)
|
||||
theorem flip_flip : Π a : A × B, flip (flip a) = a
|
||||
| (pair x y) := rfl
|
||||
|
||||
theorem P_flip {P : A → B → Prop} (a : A × B) (H : P (pr1 a) (pr2 a))
|
||||
: P (pr2 (flip a)) (pr1 (flip a)) :=
|
||||
|
@ -59,14 +59,7 @@ namespace quotient
|
|||
map_pair2 f a b = pair (f (pr1 a) (pr1 b)) (f (pr2 a) (pr2 b)) := rfl
|
||||
|
||||
theorem map_pair2_pair {A B C : Type} (f : A → B → C) (a a' : A) (b b' : B) :
|
||||
map_pair2 f (pair a a') (pair b b') = pair (f a b) (f a' b') :=
|
||||
calc
|
||||
map_pair2 f (pair a a') (pair b b')
|
||||
= pair (f (pr1 (pair a a')) b) (f (pr2 (pair a a')) (pr2 (pair b b')))
|
||||
: {pr1.mk b b'}
|
||||
... = pair (f (pr1 (pair a a')) b) (f (pr2 (pair a a')) b') : {pr2.mk b b'}
|
||||
... = pair (f (pr1 (pair a a')) b) (f a' b') : {pr2.mk a a'}
|
||||
... = pair (f a b) (f a' b') : {pr1.mk a a'}
|
||||
map_pair2 f (pair a a') (pair b b') = pair (f a b) (f a' b') := by esimp
|
||||
|
||||
theorem map_pair2_pr1 {A B C : Type} (f : A → B → C) (a : A × A) (b : B × B) :
|
||||
pr1 (map_pair2 f a b) = f (pr1 a) (pr1 b) := by esimp
|
||||
|
@ -74,91 +67,34 @@ namespace quotient
|
|||
theorem map_pair2_pr2 {A B C : Type} (f : A → B → C) (a : A × A) (b : B × B) :
|
||||
pr2 (map_pair2 f a b) = f (pr2 a) (pr2 b) := by esimp
|
||||
|
||||
theorem map_pair2_flip {A B C : Type} (f : A → B → C) (a : A × A) (b : B × B) :
|
||||
flip (map_pair2 f a b) = map_pair2 f (flip a) (flip b) :=
|
||||
have Hx : pr1 (flip (map_pair2 f a b)) = pr1 (map_pair2 f (flip a) (flip b)), from
|
||||
calc
|
||||
pr1 (flip (map_pair2 f a b)) = pr2 (map_pair2 f a b) : flip_pr1 _
|
||||
... = f (pr2 a) (pr2 b) : map_pair2_pr2 f a b
|
||||
... = f (pr1 (flip a)) (pr2 b) : {(flip_pr1 a)⁻¹}
|
||||
... = f (pr1 (flip a)) (pr1 (flip b)) : {(flip_pr1 b)⁻¹}
|
||||
... = pr1 (map_pair2 f (flip a) (flip b)) : (map_pair2_pr1 f _ _)⁻¹,
|
||||
have Hy : pr2 (flip (map_pair2 f a b)) = pr2 (map_pair2 f (flip a) (flip b)), from
|
||||
calc
|
||||
pr2 (flip (map_pair2 f a b)) = pr1 (map_pair2 f a b) : flip_pr2 _
|
||||
... = f (pr1 a) (pr1 b) : map_pair2_pr1 f a b
|
||||
... = f (pr2 (flip a)) (pr1 b) : {flip_pr2 a}
|
||||
... = f (pr2 (flip a)) (pr2 (flip b)) : {flip_pr2 b}
|
||||
... = pr2 (map_pair2 f (flip a) (flip b)) : (map_pair2_pr2 f _ _)⁻¹,
|
||||
pair_eq Hx Hy
|
||||
theorem map_pair2_flip {A B C : Type} (f : A → B → C) : Π (a : A × A) (b : B × B),
|
||||
flip (map_pair2 f a b) = map_pair2 f (flip a) (flip b)
|
||||
| (pair a₁ a₂) (pair b₁ b₂) := rfl
|
||||
|
||||
-- add_rewrite flip_pr1 flip_pr2 flip_pair
|
||||
-- add_rewrite map_pair_pr1 map_pair_pr2 map_pair_pair
|
||||
-- add_rewrite map_pair2_pr1 map_pair2_pr2 map_pair2_pair
|
||||
|
||||
theorem map_pair2_comm {A B : Type} {f : A → A → B} (Hcomm : ∀a b : A, f a b = f b a)
|
||||
(v w : A × A) : map_pair2 f v w = map_pair2 f w v :=
|
||||
have Hx : pr1 (map_pair2 f v w) = pr1 (map_pair2 f w v), from
|
||||
calc
|
||||
pr1 (map_pair2 f v w) = f (pr1 v) (pr1 w) : map_pair2_pr1 f v w
|
||||
... = f (pr1 w) (pr1 v) : Hcomm _ _
|
||||
... = pr1 (map_pair2 f w v) : (map_pair2_pr1 f w v)⁻¹,
|
||||
have Hy : pr2 (map_pair2 f v w) = pr2 (map_pair2 f w v), from
|
||||
calc
|
||||
pr2 (map_pair2 f v w) = f (pr2 v) (pr2 w) : map_pair2_pr2 f v w
|
||||
... = f (pr2 w) (pr2 v) : Hcomm _ _
|
||||
... = pr2 (map_pair2 f w v) : (map_pair2_pr2 f w v)⁻¹,
|
||||
pair_eq Hx Hy
|
||||
: Π (v w : A × A), map_pair2 f v w = map_pair2 f w v
|
||||
| (pair v₁ v₂) (pair w₁ w₂) :=
|
||||
!map_pair2_pair ⬝ by rewrite [Hcomm v₁ w₁, Hcomm v₂ w₂] ⬝ !map_pair2_pair⁻¹
|
||||
|
||||
theorem map_pair2_assoc {A : Type} {f : A → A → A}
|
||||
(Hassoc : ∀a b c : A, f (f a b) c = f a (f b c)) (u v w : A × A) :
|
||||
map_pair2 f (map_pair2 f u v) w = map_pair2 f u (map_pair2 f v w) :=
|
||||
have Hx : pr1 (map_pair2 f (map_pair2 f u v) w) =
|
||||
pr1 (map_pair2 f u (map_pair2 f v w)), from
|
||||
calc
|
||||
pr1 (map_pair2 f (map_pair2 f u v) w)
|
||||
= f (pr1 (map_pair2 f u v)) (pr1 w) : map_pair2_pr1 f _ _
|
||||
... = f (f (pr1 u) (pr1 v)) (pr1 w) : {map_pair2_pr1 f _ _}
|
||||
... = f (pr1 u) (f (pr1 v) (pr1 w)) : Hassoc (pr1 u) (pr1 v) (pr1 w)
|
||||
... = f (pr1 u) (pr1 (map_pair2 f v w)) : by rewrite [map_pair2_pr1 f]
|
||||
... = pr1 (map_pair2 f u (map_pair2 f v w)) : (map_pair2_pr1 f _ _)⁻¹,
|
||||
have Hy : pr2 (map_pair2 f (map_pair2 f u v) w) =
|
||||
pr2 (map_pair2 f u (map_pair2 f v w)), from
|
||||
calc
|
||||
pr2 (map_pair2 f (map_pair2 f u v) w)
|
||||
= f (pr2 (map_pair2 f u v)) (pr2 w) : map_pair2_pr2 f _ _
|
||||
... = f (f (pr2 u) (pr2 v)) (pr2 w) : {map_pair2_pr2 f _ _}
|
||||
... = f (pr2 u) (f (pr2 v) (pr2 w)) : Hassoc (pr2 u) (pr2 v) (pr2 w)
|
||||
... = f (pr2 u) (pr2 (map_pair2 f v w)) : {map_pair2_pr2 f _ _}
|
||||
... = pr2 (map_pair2 f u (map_pair2 f v w)) : (map_pair2_pr2 f _ _)⁻¹,
|
||||
pair_eq Hx Hy
|
||||
show pair (f (f (pr1 u) (pr1 v)) (pr1 w)) (f (f (pr2 u) (pr2 v)) (pr2 w)) =
|
||||
pair (f (pr1 u) (f (pr1 v) (pr1 w))) (f (pr2 u) (f (pr2 v) (pr2 w))),
|
||||
by rewrite [Hassoc (pr1 u) (pr1 v) (pr1 w), Hassoc (pr2 u) (pr2 v) (pr2 w)]
|
||||
|
||||
theorem map_pair2_id_right {A B : Type} {f : A → B → A} {e : B} (Hid : ∀a : A, f a e = a)
|
||||
(v : A × A) : map_pair2 f v (pair e e) = v :=
|
||||
have Hx : pr1 (map_pair2 f v (pair e e)) = pr1 v, from
|
||||
(calc
|
||||
pr1 (map_pair2 f v (pair e e)) = f (pr1 v) (pr1 (pair e e)) : by esimp
|
||||
... = f (pr1 v) e : by esimp
|
||||
... = pr1 v : Hid (pr1 v)),
|
||||
have Hy : pr2 (map_pair2 f v (pair e e)) = pr2 v, from
|
||||
(calc
|
||||
pr2 (map_pair2 f v (pair e e)) = f (pr2 v) (pr2 (pair e e)) : by esimp
|
||||
... = f (pr2 v) e : by esimp
|
||||
... = pr2 v : Hid (pr2 v)),
|
||||
prod.eq Hx Hy
|
||||
: Π (v : A × A), map_pair2 f v (pair e e) = v
|
||||
| (pair v₁ v₂) :=
|
||||
!map_pair2_pair ⬝ by rewrite [Hid v₁, Hid v₂]
|
||||
|
||||
theorem map_pair2_id_left {A B : Type} {f : B → A → A} {e : B} (Hid : ∀a : A, f e a = a)
|
||||
(v : A × A) : map_pair2 f (pair e e) v = v :=
|
||||
have Hx : pr1 (map_pair2 f (pair e e) v) = pr1 v, from
|
||||
calc
|
||||
pr1 (map_pair2 f (pair e e) v) = f (pr1 (pair e e)) (pr1 v) : by esimp
|
||||
... = f e (pr1 v) : by esimp
|
||||
... = pr1 v : Hid (pr1 v),
|
||||
have Hy : pr2 (map_pair2 f (pair e e) v) = pr2 v, from
|
||||
calc
|
||||
pr2 (map_pair2 f (pair e e) v) = f (pr2 (pair e e)) (pr2 v) : by esimp
|
||||
... = f e (pr2 v) : by esimp
|
||||
... = pr2 v : Hid (pr2 v),
|
||||
prod.eq Hx Hy
|
||||
: Π (v : A × A), map_pair2 f (pair e e) v = v
|
||||
| (pair v₁ v₂) :=
|
||||
!map_pair2_pair ⬝ by rewrite [Hid v₁, Hid v₂]
|
||||
|
||||
end quotient
|
||||
|
|
|
@ -92,6 +92,9 @@ prerat.mk (num a * num b) (denom a * denom b) (mul_denom_pos a b)
|
|||
definition neg (a : prerat) : prerat :=
|
||||
prerat.mk (- num a) (denom a) (denom_pos a)
|
||||
|
||||
definition smul (a : ℤ) (b : prerat) (H : a > 0) : prerat :=
|
||||
prerat.mk (a * num b) (a * denom b) (mul_pos H (denom_pos b))
|
||||
|
||||
theorem of_int_add (a b : ℤ) : of_int (#int a + b) ≡ add (of_int a) (of_int b) :=
|
||||
by esimp [equiv, num, denom, one, add, of_int]; rewrite [*int.mul_one]
|
||||
|
||||
|
@ -199,6 +202,9 @@ theorem inv_equiv_inv : ∀{a b : prerat}, a ≡ b → inv a ≡ inv b
|
|||
by rewrite [↑equiv at *, ▸*, mul.comm ad, mul.comm bd, H]
|
||||
... ≡ inv (mk bn bd bdp) : (inv_of_pos bn_pos bdp)⁻¹)
|
||||
|
||||
theorem smul_equiv {a : ℤ} {b : prerat} (H : a > 0) : smul a b H ≡ b :=
|
||||
by esimp[equiv, smul]; rewrite[mul.assoc, mul.left_comm]
|
||||
|
||||
/- properties -/
|
||||
|
||||
theorem add.comm (a b : prerat) : add a b ≡ add b a :=
|
||||
|
@ -223,12 +229,18 @@ by rewrite [↑mul, ↑equiv, *mul.assoc]
|
|||
theorem mul_one (a : prerat) : mul a one ≡ a :=
|
||||
by rewrite [↑mul, ↑one, ↑of_int, ↑equiv, ▸*, *mul_one]
|
||||
|
||||
-- with the simplifier this will be easy
|
||||
theorem mul.left_distrib (a b c : prerat) : mul a (add b c) ≡ add (mul a b) (mul a c) :=
|
||||
begin
|
||||
rewrite [↑mul, ↑add, ↑equiv, ▸*, *mul.left_distrib, *mul.right_distrib, -*int.mul.assoc],
|
||||
apply sorry
|
||||
end
|
||||
have H : smul (denom a) (mul a (add b c)) (denom_pos a) =
|
||||
add (mul a b) (mul a c), from begin
|
||||
rewrite[↑smul, ↑mul, ↑add],
|
||||
congruence,
|
||||
rewrite[*mul.left_distrib, *mul.right_distrib, -*int.mul.assoc],
|
||||
have T : ∀ {x y z w : ℤ}, x*y*z*w=y*z*x*w, from
|
||||
λx y z w, (!int.mul.assoc ⬝ !int.mul.comm) ▸ rfl,
|
||||
exact !congr_arg2 T T,
|
||||
exact !mul.left_comm ▸ !int.mul.assoc⁻¹
|
||||
end,
|
||||
equiv.symm (H ▸ smul_equiv (denom_pos a))
|
||||
|
||||
theorem mul_inv_cancel : ∀{a : prerat}, ¬ a ≡ zero → mul a (inv a) ≡ one
|
||||
| (mk an ad adp) :=
|
||||
|
|
|
@ -27,13 +27,18 @@ theorem find_midpoint {a b : ℚ} (H : a > b) : ∃ c : ℚ, a > b + c ∧ c > 0
|
|||
(and.intro (have H2 [visible] : a + a > (b + b) + (a - b), from calc
|
||||
a + a > b + a : rat.add_lt_add_right H
|
||||
... = b + a + b - b : rat.add_sub_cancel
|
||||
... = (b + b) + (a - b) : sorry, -- simp
|
||||
... = b + b + a - b : rat.add.right_comm
|
||||
... = (b + b) + (a - b) : add_sub,
|
||||
have H3 [visible] : (a + a) / (1 + 1) > ((b + b) + (a - b)) / (1 + 1),
|
||||
from div_lt_div_of_lt_of_pos H2 dec_trivial,
|
||||
by rewrite [div_two at H3, -div_add_div_same at H3, div_two at H3]; exact H3)
|
||||
(pos_div_of_pos_of_pos (iff.mpr !sub_pos_iff_lt H) dec_trivial))
|
||||
|
||||
theorem add_sub_comm (a b c d : ℚ) : a + b - (c + d) = (a - c) + (b - d) := sorry
|
||||
theorem add_sub_comm (a b c d : ℚ) : a + b - (c + d) = (a - c) + (b - d) :=
|
||||
calc
|
||||
a + b - (c + d) = a + b - c - d : sub_add_eq_sub_sub
|
||||
... = a - c + b - d : sub_add_eq_add_sub
|
||||
... = a - c + (b - d) : add_sub
|
||||
|
||||
theorem s_mul_assoc_lemma_4 {n : ℕ+} {ε q : ℚ} (Hε : ε > 0) (Hq : q > 0) (H : n ≥ pceil (q / ε)) :
|
||||
q * n⁻¹ ≤ ε :=
|
||||
|
@ -52,7 +57,19 @@ theorem s_mul_assoc_lemma_3 (a b n : ℕ+) (p : ℚ) :
|
|||
p * ((a * n)⁻¹ + (b * n)⁻¹) = p * (a⁻¹ + b⁻¹) * n⁻¹ :=
|
||||
by rewrite [rat.mul.assoc, rat.right_distrib, *inv_mul_eq_mul_inv]
|
||||
|
||||
theorem find_thirds (a b : ℚ) : ∃ n : ℕ+, a + n⁻¹ + n⁻¹ + n⁻¹ < a + b := sorry
|
||||
theorem find_thirds (a b : ℚ) (H : b > 0) : ∃ n : ℕ+, a + n⁻¹ + n⁻¹ + n⁻¹ < a + b :=
|
||||
let n := pceil (of_nat 4 / b) in
|
||||
have of_nat 3 * n⁻¹ < b, from calc
|
||||
of_nat 3 * n⁻¹ < of_nat 4 * n⁻¹
|
||||
: rat.mul_lt_mul_of_pos_right dec_trivial !inv_pos
|
||||
... ≤ of_nat 4 * (b / of_nat 4)
|
||||
: rat.mul_le_mul_of_nonneg_left (!inv_pceil_div dec_trivial H) !of_nat_nonneg
|
||||
... = b / of_nat 4 * of_nat 4 : rat.mul.comm
|
||||
... = b : rat.div_mul_cancel dec_trivial,
|
||||
exists.intro n (calc
|
||||
a + n⁻¹ + n⁻¹ + n⁻¹ = a + (1 + 1 + 1) * n⁻¹ : by rewrite[*rat.right_distrib,*rat.one_mul,-*rat.add.assoc]
|
||||
... = a + of_nat 3 * n⁻¹ : {show 1+1+1=of_nat 3, from dec_trivial}
|
||||
... < a + b : rat.add_lt_add_left this a)
|
||||
|
||||
theorem squeeze {a b : ℚ} (H : ∀ j : ℕ+, a ≤ b + j⁻¹ + j⁻¹ + j⁻¹) : a ≤ b :=
|
||||
begin
|
||||
|
@ -60,7 +77,7 @@ theorem squeeze {a b : ℚ} (H : ∀ j : ℕ+, a ≤ b + j⁻¹ + j⁻¹ + j⁻
|
|||
intro Hb,
|
||||
apply (exists.elim (find_midpoint Hb)),
|
||||
intro c Hc,
|
||||
apply (exists.elim (find_thirds b c)),
|
||||
apply (exists.elim (find_thirds b c (and.right Hc))),
|
||||
intro j Hbj,
|
||||
have Ha : a > b + j⁻¹ + j⁻¹ + j⁻¹, from lt.trans Hbj (and.left Hc),
|
||||
exact absurd !H (not_le_of_gt Ha)
|
||||
|
@ -77,26 +94,52 @@ theorem squeeze_2 {a b : ℚ} (H : ∀ ε : ℚ, ε > 0 → a ≥ b - ε) : a
|
|||
end
|
||||
|
||||
theorem rewrite_helper (a b c d : ℚ) : a * b - c * d = a * (b - d) + (a - c) * d :=
|
||||
sorry
|
||||
by rewrite[rat.mul_sub_left_distrib, rat.mul_sub_right_distrib, add_sub, rat.sub_add_cancel]
|
||||
|
||||
theorem rewrite_helper3 (a b c d e f g: ℚ) : a * (b + c) - (d * e + f * g) =
|
||||
(a * b - d * e) + (a * c - f * g) := sorry
|
||||
(a * b - d * e) + (a * c - f * g) :=
|
||||
by rewrite[rat.mul.left_distrib, add_sub_comm]
|
||||
|
||||
theorem rewrite_helper4 (a b c d : ℚ) : a * b - c * d = (a * b - a * d) + (a * d - c * d) := sorry
|
||||
theorem rewrite_helper4 (a b c d : ℚ) : a * b - c * d = (a * b - a * d) + (a * d - c * d) :=
|
||||
by rewrite[add_sub, rat.sub_add_cancel]
|
||||
|
||||
theorem rewrite_helper5 (a b x y : ℚ) : a - b = (a - x) + (x - y) + (y - b) := sorry
|
||||
theorem rewrite_helper5 (a b x y : ℚ) : a - b = (a - x) + (x - y) + (y - b) :=
|
||||
by rewrite[*add_sub, *rat.sub_add_cancel]
|
||||
|
||||
theorem rewrite_helper7 (a b c d x : ℚ) :
|
||||
a * b * c - d = (b * c) * (a - x) + (x * b * c - d) := sorry
|
||||
a * b * c - d = (b * c) * (a - x) + (x * b * c - d) :=
|
||||
by rewrite[rat.mul_sub_left_distrib, add_sub]; exact (calc
|
||||
a * b * c - d = a * b * c - x * b * c + x * b * c - d : rat.sub_add_cancel
|
||||
... = b * c * a - b * c * x + x * b * c - d :
|
||||
have ∀ {a b c : ℚ}, a * b * c = b * c * a, from
|
||||
λa b c, !rat.mul.comm ▸ !rat.mul.right_comm,
|
||||
this ▸ this ▸ rfl)
|
||||
|
||||
theorem ineq_helper (a b : ℚ) (k m n : ℕ+) (H : a ≤ (k * 2 * m)⁻¹ + (k * 2 * n)⁻¹)
|
||||
(H2 : b ≤ (k * 2 * m)⁻¹ + (k * 2 * n)⁻¹) :
|
||||
(rat_of_pnat k) * a + b * (rat_of_pnat k) ≤ m⁻¹ + n⁻¹ := sorry
|
||||
(rat_of_pnat k) * a + b * (rat_of_pnat k) ≤ m⁻¹ + n⁻¹ :=
|
||||
have (k * 2 * m)⁻¹ + (k * 2 * n)⁻¹ = (2 * k)⁻¹ * (m⁻¹ + n⁻¹),
|
||||
by rewrite[rat.mul.left_distrib,*inv_mul_eq_mul_inv]; exact !rat.mul.comm ▸ rfl,
|
||||
have a + b ≤ k⁻¹ * (m⁻¹ + n⁻¹), from calc
|
||||
a + b ≤ (2 * k)⁻¹ * (m⁻¹ + n⁻¹) + (2 * k)⁻¹ * (m⁻¹ + n⁻¹) : rat.add_le_add (this ▸ H) (this ▸ H2)
|
||||
... = ((2 * k)⁻¹ + (2 * k)⁻¹) * (m⁻¹ + n⁻¹) : rat.mul.right_distrib
|
||||
... = k⁻¹ * (m⁻¹ + n⁻¹) : (pnat.add_halves k) ▸ rfl,
|
||||
calc (rat_of_pnat k) * a + b * (rat_of_pnat k)
|
||||
= (rat_of_pnat k) * a + (rat_of_pnat k) * b : rat.mul.comm
|
||||
... = (rat_of_pnat k) * (a + b) : rat.left_distrib
|
||||
... ≤ (rat_of_pnat k) * (k⁻¹ * (m⁻¹ + n⁻¹)) :
|
||||
iff.mp (!rat.le_iff_mul_le_mul_left !rat_of_pnat_is_pos) this
|
||||
... = m⁻¹ + n⁻¹ : by rewrite[-rat.mul.assoc, inv_cancel_left, rat.one_mul]
|
||||
|
||||
theorem factor_lemma (a b c d e : ℚ) : abs (a + b + c - (d + (b + e))) = abs ((a - d) + (c - e)) :=
|
||||
sorry
|
||||
!congr_arg (calc
|
||||
a + b + c - (d + (b + e)) = a + b + c - (d + b + e) : rat.add.assoc
|
||||
... = a + b - (d + b) + (c - e) : add_sub_comm
|
||||
... = a + b - b - d + (c - e) : sub_add_eq_sub_sub_swap
|
||||
... = a - d + (c - e) : rat.add_sub_cancel)
|
||||
|
||||
theorem factor_lemma_2 (a b c d : ℚ) : (a + b) + (c + d) = (a + c) + (d + b) := sorry
|
||||
theorem factor_lemma_2 (a b c d : ℚ) : (a + b) + (c + d) = (a + c) + (d + b) :=
|
||||
!rat.add.comm ▸ (binary.comm4 rat.add.comm rat.add.assoc a b c d)
|
||||
|
||||
-------------------------------------
|
||||
-- The only sorry's after this point are for the simplifier.
|
||||
|
@ -164,8 +207,12 @@ theorem eq_of_bdd {s t : seq} (Hs : regular s) (Ht : regular t)
|
|||
apply rat.add_le_add,
|
||||
apply HNj (max j Nj) (max_right j Nj),
|
||||
apply Ht,
|
||||
have hsimp : ∀ m : ℕ+, n⁻¹ + m⁻¹ + (j⁻¹ + (m⁻¹ + n⁻¹)) = (n⁻¹ + n⁻¹ + j⁻¹) + (m⁻¹ + m⁻¹),
|
||||
from sorry, -- simplifier
|
||||
have hsimp : ∀ m : ℕ+, n⁻¹ + m⁻¹ + (j⁻¹ + (m⁻¹ + n⁻¹)) = n⁻¹ + n⁻¹ + j⁻¹ + (m⁻¹ + m⁻¹),
|
||||
from λm, calc
|
||||
n⁻¹ + m⁻¹ + (j⁻¹ + (m⁻¹ + n⁻¹)) = n⁻¹ + (j⁻¹ + (m⁻¹ + n⁻¹)) + m⁻¹ : rat.add.right_comm
|
||||
... = n⁻¹ + (j⁻¹ + m⁻¹ + n⁻¹) + m⁻¹ : rat.add.assoc
|
||||
... = n⁻¹ + (n⁻¹ + (j⁻¹ + m⁻¹)) + m⁻¹ : rat.add.comm
|
||||
... = n⁻¹ + n⁻¹ + j⁻¹ + (m⁻¹ + m⁻¹) : by rewrite[-*rat.add.assoc],
|
||||
rewrite hsimp,
|
||||
have Hms : (max j Nj)⁻¹ + (max j Nj)⁻¹ ≤ j⁻¹ + j⁻¹, begin
|
||||
apply rat.add_le_add,
|
||||
|
@ -247,8 +294,8 @@ theorem canon_bound {s : seq} (Hs : regular s) (n : ℕ+) : abs (s n) ≤ rat_of
|
|||
... = abs (s pone) + (1 + 1) :
|
||||
by rewrite [add.comm 1 (abs (s pone)), rat.add.comm 1, rat.add.assoc]
|
||||
... ≤ of_nat (ubound (abs (s pone))) + (1 + 1) : rat.add_le_add_right (!ubound_ge)
|
||||
... = of_nat (ubound (abs (s pone)) + (1 + 1)) : by rewrite of_nat_add
|
||||
... = of_nat (ubound (abs (s pone)) + 1 + 1) : by rewrite nat.add.assoc
|
||||
... = of_nat (ubound (abs (s pone)) + (1 + 1)) : of_nat_add
|
||||
... = of_nat (ubound (abs (s pone)) + 1 + 1) : nat.add.assoc
|
||||
|
||||
definition K₂ (s t : seq) := max (K s) (K t)
|
||||
|
||||
|
@ -546,7 +593,7 @@ theorem s_add_zero (s : seq) (H : regular s) : sadd s zero ≡ s :=
|
|||
apply rat.le.refl
|
||||
end
|
||||
|
||||
theorem s_neg_cancel (s : seq) (H : regular s) : sadd (sneg s) s ≡ zero :=
|
||||
theorem s_neg_cancel (s : seq) (H : regular s) : sadd (sneg s) s ≡ zero :=
|
||||
begin
|
||||
rewrite [↑sadd, ↑sneg, ↑regular at H, ↑zero, ↑equiv],
|
||||
intros,
|
||||
|
@ -583,6 +630,7 @@ theorem add_well_defined {s t u v : seq} (Hs : regular s) (Ht : regular t) (Hu :
|
|||
apply Etv
|
||||
end
|
||||
|
||||
set_option tactic.goal_names false
|
||||
theorem mul_bound_helper {s t : seq} (Hs : regular s) (Ht : regular t) (a b c : ℕ+) (j : ℕ+) :
|
||||
∃ N : ℕ+, ∀ n : ℕ+, n ≥ N → abs (s (a * n) * t (b * n) - s (c * n) * t (c * n)) ≤ j⁻¹ :=
|
||||
begin
|
||||
|
@ -600,7 +648,8 @@ theorem mul_bound_helper {s t : seq} (Hs : regular s) (Ht : regular t) (a b c :
|
|||
apply rat.le.trans,
|
||||
apply rat.mul_le_mul_of_nonneg_right,
|
||||
apply pceil_helper Hn,
|
||||
repeat (apply rat.mul_pos | apply rat.add_pos | apply inv_pos | apply rat_of_pnat_is_pos),
|
||||
repeat (apply rat.mul_pos | apply rat.add_pos | apply rat_of_pnat_is_pos | apply inv_pos),
|
||||
--repeat (apply rat.mul_pos | apply rat.add_pos | apply inv_pos | apply rat_of_pnat_is_pos),
|
||||
apply rat.le_of_lt,
|
||||
apply rat.add_pos,
|
||||
apply rat.mul_pos,
|
||||
|
@ -609,11 +658,11 @@ theorem mul_bound_helper {s t : seq} (Hs : regular s) (Ht : regular t) (a b c :
|
|||
repeat apply inv_pos,
|
||||
apply rat.mul_pos,
|
||||
apply rat.add_pos,
|
||||
repeat apply inv_pos,
|
||||
apply inv_pos,apply inv_pos, -- repeat apply inv_pos,
|
||||
apply rat_of_pnat_is_pos,
|
||||
have H : (rat_of_pnat (K s) * (b⁻¹ + c⁻¹) + (a⁻¹ + c⁻¹) * rat_of_pnat (K t)) ≠ 0, begin
|
||||
apply rat.ne_of_gt,
|
||||
repeat (apply rat.mul_pos | apply rat.add_pos | apply inv_pos | apply rat_of_pnat_is_pos)
|
||||
repeat (apply rat.mul_pos | apply rat.add_pos | apply rat_of_pnat_is_pos | apply inv_pos),
|
||||
end,
|
||||
rewrite (rat.div_helper H),
|
||||
apply rat.le.refl
|
||||
|
@ -648,7 +697,7 @@ theorem mul_bound_helper {s t : seq} (Hs : regular s) (Ht : regular t) (a b c :
|
|||
apply rat.le_of_lt,
|
||||
apply rat.mul_pos,
|
||||
apply rat.add_pos,
|
||||
repeat apply inv_pos,
|
||||
apply inv_pos,apply inv_pos, -- repeat apply inv_pos,
|
||||
apply rat_of_pnat_is_pos,
|
||||
apply rat.le_of_lt,
|
||||
apply inv_pos
|
||||
|
@ -733,7 +782,11 @@ theorem mul_neg_equiv_neg_mul {s t : seq} : smul s (sneg t) ≡ sneg (smul s t)
|
|||
theorem equiv_of_diff_equiv_zero {s t : seq} (Hs : regular s) (Ht : regular t)
|
||||
(H : sadd s (sneg t) ≡ zero) : s ≡ t :=
|
||||
begin
|
||||
have hsimp : ∀ a b c d e : ℚ, a + b + c + (d + e) = (b + d) + a + e + c, from sorry,
|
||||
have hsimp : ∀ a b c d e : ℚ, a + b + c + (d + e) = b + d + a + e + c, from
|
||||
λ a b c d e, calc
|
||||
a + b + c + (d + e) = a + b + (d + e) + c : rat.add.right_comm
|
||||
... = a + (b + d) + e + c : by rewrite[-*rat.add.assoc]
|
||||
... = b + d + a + e + c : rat.add.comm,
|
||||
apply eq_of_bdd Hs Ht,
|
||||
intros,
|
||||
let He := bdd_of_eq H,
|
||||
|
|
|
@ -22,8 +22,8 @@ open eq.ops
|
|||
open pnat
|
||||
|
||||
|
||||
local notation 2 := pnat.pos (nat.of_num 2) dec_trivial
|
||||
local notation 3 := pnat.pos (nat.of_num 3) dec_trivial
|
||||
local notation 2 := subtype.tag (nat.of_num 2) dec_trivial
|
||||
local notation 3 := subtype.tag (nat.of_num 3) dec_trivial
|
||||
|
||||
namespace s
|
||||
|
||||
|
@ -206,11 +206,15 @@ theorem sub_consts (a b : ℚ) : const a + -const b = const (a - b) := !add_cons
|
|||
theorem add_half_const (n : ℕ+) : const (2 * n)⁻¹ + const (2 * n)⁻¹ = const (n⁻¹) :=
|
||||
by rewrite [add_consts, pnat.add_halves]-/
|
||||
|
||||
theorem p_add_fractions (n : ℕ+) : (2 * n)⁻¹ + (2 * 3 * n)⁻¹ + (3 * n)⁻¹ = n⁻¹ := sorry
|
||||
theorem p_add_fractions (n : ℕ+) : (2 * n)⁻¹ + (2 * 3 * n)⁻¹ + (3 * n)⁻¹ = n⁻¹ :=
|
||||
assert T : 2⁻¹ + 2⁻¹ * 3⁻¹ + 3⁻¹ = 1, from dec_trivial,
|
||||
by rewrite[*inv_mul_eq_mul_inv,-*rat.right_distrib,T,rat.one_mul]
|
||||
|
||||
theorem rewrite_helper9 (a b c : ℝ) : b - c = (b - a) - (c - a) := sorry
|
||||
theorem rewrite_helper9 (a b c : ℝ) : b - c = (b - a) - (c - a) :=
|
||||
by rewrite[-sub_add_eq_sub_sub_swap,sub_add_cancel]
|
||||
|
||||
theorem rewrite_helper10 (a b c d : ℝ) : c - d = (c - a) + (a - b) + (b - d) := sorry
|
||||
theorem rewrite_helper10 (a b c d : ℝ) : c - d = (c - a) + (a - b) + (b - d) :=
|
||||
by rewrite[*add_sub,*sub_add_cancel]
|
||||
|
||||
definition rep (x : ℝ) : s.reg_seq := some (quot.exists_rep x)
|
||||
|
||||
|
|
|
@ -16,14 +16,15 @@ open eq.ops pnat
|
|||
|
||||
local notation 0 := rat.of_num 0
|
||||
local notation 1 := rat.of_num 1
|
||||
local notation 2 := pnat.pos (nat.of_num 2) dec_trivial
|
||||
local notation 2 := subtype.tag (nat.of_num 2) dec_trivial
|
||||
|
||||
namespace s
|
||||
|
||||
-----------------------------
|
||||
-- helper lemmas
|
||||
|
||||
theorem neg_add_rewrite {a b : ℚ} : a + -b = -(b + -a) := sorry
|
||||
theorem neg_add_rewrite {a b : ℚ} : a + -b = -(b + -a) :=
|
||||
by rewrite[neg_add_rev,neg_neg]
|
||||
|
||||
theorem abs_abs_sub_abs_le_abs_sub (a b : ℚ) : abs (abs a - abs b) ≤ abs (a - b) :=
|
||||
begin
|
||||
|
@ -38,10 +39,6 @@ theorem abs_abs_sub_abs_le_abs_sub (a b : ℚ) : abs (abs a - abs b) ≤ abs (a
|
|||
apply trivial
|
||||
end
|
||||
|
||||
-- does this not exist already??
|
||||
theorem forall_of_not_exists {A : Type} {P : A → Prop} (H : ¬ ∃ a : A, P a) : ∀ a : A, ¬ P a :=
|
||||
take a, assume Ha, H (exists.intro a Ha)
|
||||
|
||||
theorem and_of_not_or {a b : Prop} (H : ¬ (a ∨ b)) : ¬ a ∧ ¬ b :=
|
||||
and.intro (assume H', H (or.inl H')) (assume H', H (or.inr H'))
|
||||
|
||||
|
@ -517,7 +514,7 @@ theorem s_le_total {s t : seq} (Hs : regular s) (Ht : regular t) : s_le s t ∨
|
|||
theorem s_le_of_not_lt {s t : seq} (Hle : ¬ s_lt s t) : s_le t s :=
|
||||
begin
|
||||
rewrite [↑s_le, ↑nonneg, ↑s_lt at Hle, ↑pos at Hle],
|
||||
let Hle' := forall_of_not_exists Hle,
|
||||
let Hle' := iff.mp forall_iff_not_exists Hle,
|
||||
intro n,
|
||||
let Hn := neg_le_neg (rat.le_of_not_gt (Hle' n)),
|
||||
rewrite [↑sadd, ↑sneg, neg_add_rewrite],
|
||||
|
|
|
@ -17,7 +17,7 @@ open -[coercions] nat
|
|||
open eq eq.ops pnat
|
||||
local notation 0 := rat.of_num 0
|
||||
local notation 1 := rat.of_num 1
|
||||
notation 2 := pnat.pos (of_num 2) dec_trivial
|
||||
notation 2 := subtype.tag (of_num 2) dec_trivial
|
||||
|
||||
----------------------------------------------------------------------------------------------------
|
||||
|
||||
|
@ -43,11 +43,21 @@ theorem sep_by_inv {a b : ℚ} (H : a > b) : ∃ N : ℕ+, a > (b + N⁻¹ + N
|
|||
apply and.right Hc)
|
||||
end
|
||||
|
||||
theorem helper_1 {a : ℚ} (H : a > 0) : -a + -a ≤ -a := sorry
|
||||
theorem helper_1 {a : ℚ} (H : a > 0) : -a + -a ≤ -a :=
|
||||
!neg_add ▸ neg_le_neg (le_add_of_nonneg_left (le_of_lt H))
|
||||
|
||||
theorem rewrite_helper8 (a b c : ℚ) : a - b = c - b + (a - c) := sorry -- simp
|
||||
theorem rewrite_helper8 (a b c : ℚ) : a - b = c - b + (a - c) :=
|
||||
by rewrite[add_sub,rat.sub_add_cancel] ⬝ !rat.add.comm
|
||||
|
||||
theorem nonneg_of_ge_neg_invs (a : ℚ) (H : ∀ n : ℕ+, -n⁻¹ ≤ a) : 0 ≤ a := sorry
|
||||
theorem nonneg_of_ge_neg_invs (a : ℚ) (H : ∀ n : ℕ+, -n⁻¹ ≤ a) : 0 ≤ a :=
|
||||
rat.le_of_not_gt (suppose a < 0,
|
||||
have H2 : 0 < -a, from neg_pos_of_neg this,
|
||||
(rat.not_lt_of_ge !H) (iff.mp !lt_neg_iff_lt_neg (calc
|
||||
(pceil (of_num 2 / -a))⁻¹ ≤ -a / of_num 2
|
||||
: !inv_pceil_div dec_trivial H2
|
||||
... < -a / 1
|
||||
: div_lt_div_of_pos_of_lt_of_pos dec_trivial dec_trivial H2
|
||||
... = -a : div_one)))
|
||||
|
||||
---------
|
||||
namespace s
|
||||
|
|
|
@ -22,18 +22,16 @@ namespace subtype
|
|||
rfl
|
||||
|
||||
theorem tag_eq {a1 a2 : A} {H1 : P a1} {H2 : P a2} (H3 : a1 = a2) : tag a1 H1 = tag a2 H2 :=
|
||||
eq.subst H3 (take H2, tag_irrelevant H1 H2) H2
|
||||
eq.subst H3 (tag_irrelevant H1) H2
|
||||
|
||||
protected theorem eq {a1 a2 : {x | P x}} : ∀(H : elt_of a1 = elt_of a2), a1 = a2 :=
|
||||
destruct a1 (take x1 H1, destruct a2 (take x2 H2 H, tag_eq H))
|
||||
protected theorem eq : ∀ {a1 a2 : {x | P x}} (H : elt_of a1 = elt_of a2), a1 = a2
|
||||
| (tag x1 H1) (tag x2 H2) := tag_eq
|
||||
|
||||
protected definition is_inhabited [instance] {a : A} (H : P a) : inhabited {x | P x} :=
|
||||
inhabited.mk (tag a H)
|
||||
|
||||
protected definition has_decidable_eq [instance] [H : decidable_eq A] : ∀ s₁ s₂ : {x | P x}, decidable (s₁ = s₂)
|
||||
| (tag v₁ p₁) (tag v₂ p₂) :=
|
||||
match H v₁ v₂ with
|
||||
| inl veq := begin left, substvars end
|
||||
| inr vne := begin right, intro h, injection h, contradiction end
|
||||
end
|
||||
decidable_of_decidable_of_iff (H v₁ v₂)
|
||||
(iff.intro tag_eq (λh, subtype.no_confusion h (λa b, a)))
|
||||
end subtype
|
||||
|
|
|
@ -57,8 +57,11 @@ namespace eq
|
|||
theorem trans (H₁ : a = b) (H₂ : b = c) : a = c :=
|
||||
subst H₂ H₁
|
||||
|
||||
theorem symm (H : a = b) : b = a :=
|
||||
eq.rec (refl a) H
|
||||
theorem symm : a = b → b = a :=
|
||||
eq.rec (refl a)
|
||||
|
||||
theorem substr {P : A → Prop} (H₁ : b = a) : P a → P b :=
|
||||
subst (symm H₁)
|
||||
|
||||
namespace ops
|
||||
notation H `⁻¹` := symm H --input with \sy or \-1 or \inv
|
||||
|
@ -74,8 +77,8 @@ eq.subst H₁ (eq.subst H₂ rfl)
|
|||
theorem congr_fun {A : Type} {B : A → Type} {f g : Π x, B x} (H : f = g) (a : A) : f a = g a :=
|
||||
eq.subst H (eq.refl (f a))
|
||||
|
||||
theorem congr_arg {A B : Type} {a₁ a₂ : A} (f : A → B) (H : a₁ = a₂) : f a₁ = f a₂ :=
|
||||
congr rfl H
|
||||
theorem congr_arg {A B : Type} {a₁ a₂ : A} (f : A → B) : a₁ = a₂ → f a₁ = f a₂ :=
|
||||
congr rfl
|
||||
|
||||
section
|
||||
variables {A : Type} {a b c: A}
|
||||
|
@ -114,25 +117,17 @@ namespace ne
|
|||
variable {A : Type}
|
||||
variables {a b : A}
|
||||
|
||||
theorem intro : (a = b → false) → a ≠ b :=
|
||||
assume H, H
|
||||
theorem intro (H : a = b → false) : a ≠ b := H
|
||||
|
||||
theorem elim : a ≠ b → a = b → false :=
|
||||
assume H₁ H₂, H₁ H₂
|
||||
theorem elim (H : a ≠ b) : a = b → false := H
|
||||
|
||||
theorem irrefl : a ≠ a → false :=
|
||||
assume H, H rfl
|
||||
theorem irrefl (H : a ≠ a) : false := H rfl
|
||||
|
||||
theorem symm : a ≠ b → b ≠ a :=
|
||||
assume (H : a ≠ b) (H₁ : b = a), H (H₁⁻¹)
|
||||
theorem symm (H : a ≠ b) : b ≠ a :=
|
||||
assume (H₁ : b = a), H (H₁⁻¹)
|
||||
end ne
|
||||
|
||||
section
|
||||
variables {A : Type} {a : A}
|
||||
|
||||
theorem false.of_ne : a ≠ a → false :=
|
||||
assume H, H rfl
|
||||
end
|
||||
theorem false.of_ne {A : Type} {a : A} : a ≠ a → false := ne.irrefl
|
||||
|
||||
infixl `==`:50 := heq
|
||||
|
||||
|
@ -141,15 +136,15 @@ namespace heq
|
|||
variables {A B C : Type.{u}} {a a' : A} {b b' : B} {c : C}
|
||||
|
||||
theorem to_eq (H : a == a') : a = a' :=
|
||||
have H₁ : ∀ (Ht : A = A), eq.rec_on Ht a = a, from
|
||||
λ Ht, eq.refl (eq.rec_on Ht a),
|
||||
heq.rec_on H H₁ (eq.refl A)
|
||||
have H₁ : ∀ (Ht : A = A), eq.rec a Ht = a, from
|
||||
λ Ht, eq.refl a,
|
||||
heq.rec H₁ H (eq.refl A)
|
||||
|
||||
theorem elim {A : Type} {a : A} {P : A → Type} {b : A} (H₁ : a == b) (H₂ : P a) : P b :=
|
||||
eq.rec_on (to_eq H₁) H₂
|
||||
theorem elim {A : Type} {a : A} {P : A → Type} {b : A} (H₁ : a == b)
|
||||
: P a → P b := eq.rec_on (to_eq H₁)
|
||||
|
||||
theorem subst {P : ∀T : Type, T → Prop} (H₁ : a == b) (H₂ : P A a) : P B b :=
|
||||
heq.rec_on H₁ H₂
|
||||
theorem subst {P : ∀T : Type, T → Prop} : a == b → P A a → P B b :=
|
||||
heq.rec_on
|
||||
|
||||
theorem symm (H : a == b) : b == a :=
|
||||
heq.rec_on H (refl a)
|
||||
|
@ -235,19 +230,15 @@ notation a <-> b := iff a b
|
|||
notation a ↔ b := iff a b
|
||||
|
||||
namespace iff
|
||||
theorem intro (H₁ : a → b) (H₂ : b → a) : a ↔ b :=
|
||||
and.intro H₁ H₂
|
||||
theorem intro : (a → b) → (b → a) → (a ↔ b) := and.intro
|
||||
|
||||
theorem elim (H₁ : (a → b) → (b → a) → c) (H₂ : a ↔ b) : c :=
|
||||
and.rec H₁ H₂
|
||||
theorem elim : ((a → b) → (b → a) → c) → (a ↔ b) → c := and.rec
|
||||
|
||||
theorem elim_left (H : a ↔ b) : a → b :=
|
||||
elim (assume H₁ H₂, H₁) H
|
||||
theorem elim_left : (a ↔ b) → a → b := and.left
|
||||
|
||||
definition mp := @elim_left
|
||||
|
||||
theorem elim_right (H : a ↔ b) : b → a :=
|
||||
elim (assume H₁ H₂, H₂) H
|
||||
theorem elim_right : (a ↔ b) → b → a := and.right
|
||||
|
||||
definition mpr := @elim_right
|
||||
|
||||
|
@ -259,29 +250,29 @@ namespace iff
|
|||
|
||||
theorem trans (H₁ : a ↔ b) (H₂ : b ↔ c) : a ↔ c :=
|
||||
intro
|
||||
(assume Ha, elim_left H₂ (elim_left H₁ Ha))
|
||||
(assume Hc, elim_right H₁ (elim_right H₂ Hc))
|
||||
(assume Ha, mp H₂ (mp H₁ Ha))
|
||||
(assume Hc, mpr H₁ (mpr H₂ Hc))
|
||||
|
||||
theorem symm (H : a ↔ b) : b ↔ a :=
|
||||
intro
|
||||
(assume Hb, elim_right H Hb)
|
||||
(assume Ha, elim_left H Ha)
|
||||
intro (elim_right H) (elim_left H)
|
||||
|
||||
theorem comm : (a ↔ b) ↔ (b ↔ a) :=
|
||||
intro symm symm
|
||||
|
||||
open eq.ops
|
||||
theorem of_eq {a b : Prop} (H : a = b) : a ↔ b :=
|
||||
iff.intro (λ Ha, H ▸ Ha) (λ Hb, H⁻¹ ▸ Hb)
|
||||
H ▸ rfl
|
||||
end iff
|
||||
|
||||
theorem not_iff_not_of_iff (H₁ : a ↔ b) : ¬a ↔ ¬b :=
|
||||
iff.intro
|
||||
(assume (Hna : ¬ a) (Hb : b), absurd (iff.elim_right H₁ Hb) Hna)
|
||||
(assume (Hnb : ¬ b) (Ha : a), absurd (iff.elim_left H₁ Ha) Hnb)
|
||||
(assume (Hna : ¬ a) (Hb : b), Hna (iff.elim_right H₁ Hb))
|
||||
(assume (Hnb : ¬ b) (Ha : a), Hnb (iff.elim_left H₁ Ha))
|
||||
|
||||
theorem of_iff_true (H : a ↔ true) : a :=
|
||||
iff.mp (iff.symm H) trivial
|
||||
|
||||
theorem not_of_iff_false (H : a ↔ false) : ¬a :=
|
||||
assume Ha : a, iff.mp H Ha
|
||||
theorem not_of_iff_false : (a ↔ false) → ¬a := iff.mp
|
||||
|
||||
theorem iff_true_intro (H : a) : a ↔ true :=
|
||||
iff.intro
|
||||
|
@ -289,16 +280,12 @@ iff.intro
|
|||
(λ Hr, H)
|
||||
|
||||
theorem iff_false_intro (H : ¬a) : a ↔ false :=
|
||||
iff.intro
|
||||
(λ Hl, absurd Hl H)
|
||||
(λ Hr, false.rec _ Hr)
|
||||
iff.intro H !false.rec
|
||||
|
||||
theorem not_non_contradictory_iff_absurd (a : Prop) : ¬¬¬a ↔ ¬a :=
|
||||
iff.intro
|
||||
(assume Hl : ¬¬¬a,
|
||||
assume Ha : a, absurd (non_contradictory_intro Ha) Hl)
|
||||
(assume Hr : ¬a,
|
||||
assume Hnna : ¬¬a, absurd Hr Hnna)
|
||||
(λ (Hl : ¬¬¬a) (Ha : a), Hl (non_contradictory_intro Ha))
|
||||
absurd
|
||||
|
||||
attribute iff.refl [refl]
|
||||
attribute iff.symm [symm]
|
||||
|
@ -312,7 +299,8 @@ definition exists.intro := @Exists.intro
|
|||
notation `exists` binders `,` r:(scoped P, Exists P) := r
|
||||
notation `∃` binders `,` r:(scoped P, Exists P) := r
|
||||
|
||||
theorem exists.elim {A : Type} {p : A → Prop} {B : Prop} (H1 : ∃x, p x) (H2 : ∀ (a : A) (H : p a), B) : B :=
|
||||
theorem exists.elim {A : Type} {p : A → Prop} {B : Prop}
|
||||
(H1 : ∃x, p x) (H2 : ∀ (a : A), p a → B) : B :=
|
||||
Exists.rec H2 H1
|
||||
|
||||
/- decidable -/
|
||||
|
@ -327,6 +315,16 @@ decidable.inl trivial
|
|||
definition decidable_false [instance] : decidable false :=
|
||||
decidable.inr not_false
|
||||
|
||||
-- We use "dependent" if-then-else to be able to communicate the if-then-else condition
|
||||
-- to the branches
|
||||
definition dite (c : Prop) [H : decidable c] {A : Type} : (c → A) → (¬ c → A) → A :=
|
||||
decidable.rec_on H
|
||||
|
||||
/- if-then-else -/
|
||||
|
||||
definition ite (c : Prop) [H : decidable c] {A : Type} (t e : A) : A :=
|
||||
decidable.rec_on H (λ Hc, t) (λ Hnc, e)
|
||||
|
||||
namespace decidable
|
||||
variables {p q : Prop}
|
||||
|
||||
|
@ -338,37 +336,29 @@ namespace decidable
|
|||
: decidable.rec_on H H1 H2 :=
|
||||
decidable.rec_on H (λh, false.rec _ (H3 h)) (λh, H4)
|
||||
|
||||
definition by_cases {q : Type} [C : decidable p] (Hpq : p → q) (Hnpq : ¬p → q) : q :=
|
||||
decidable.rec_on C (assume Hp, Hpq Hp) (assume Hnp, Hnpq Hnp)
|
||||
definition by_cases {q : Type} [C : decidable p] : (p → q) → (¬p → q) → q := !dite
|
||||
|
||||
theorem em (p : Prop) [H : decidable p] : p ∨ ¬p :=
|
||||
by_cases (λ Hp, or.inl Hp) (λ Hnp, or.inr Hnp)
|
||||
theorem em (p : Prop) [H : decidable p] : p ∨ ¬p := by_cases or.inl or.inr
|
||||
|
||||
theorem by_contradiction [Hp : decidable p] (H : ¬p → false) : p :=
|
||||
by_cases
|
||||
(assume H1 : p, H1)
|
||||
(assume H1 : ¬p, false.rec _ (H H1))
|
||||
if H1 : p then H1 else false.rec _ (H H1)
|
||||
end decidable
|
||||
|
||||
section
|
||||
variables {p q : Prop}
|
||||
open decidable
|
||||
definition decidable_of_decidable_of_iff (Hp : decidable p) (H : p ↔ q) : decidable q :=
|
||||
decidable.rec_on Hp
|
||||
(assume Hp : p, inl (iff.elim_left H Hp))
|
||||
(assume Hnp : ¬p, inr (iff.elim_left (not_iff_not_of_iff H) Hnp))
|
||||
if Hp : p then inl (iff.mp H Hp)
|
||||
else inr (iff.mp (not_iff_not_of_iff H) Hp)
|
||||
|
||||
definition decidable_of_decidable_of_eq (Hp : decidable p) (H : p = q) : decidable q :=
|
||||
decidable_of_decidable_of_iff Hp (iff.of_eq H)
|
||||
|
||||
protected definition or.by_cases [Hp : decidable p] [Hq : decidable q] {A : Type}
|
||||
: p ∨ q → (p → A) → (q → A) → A :=
|
||||
assume h h₁ h₂, by_cases
|
||||
(λ hp : p, h₁ hp)
|
||||
(λ hnp : ¬p,
|
||||
by_cases
|
||||
(λ hq : q, h₂ hq)
|
||||
(λ hnq : ¬q, absurd h (λ n, or.elim h hnp hnq)))
|
||||
(h : p ∨ q) (h₁ : p → A) (h₂ : q → A) : A :=
|
||||
if hp : p then h₁ hp else
|
||||
if hq : q then h₂ hq else
|
||||
false.rec _ (or.elim h hp hq)
|
||||
end
|
||||
|
||||
section
|
||||
|
@ -376,41 +366,35 @@ section
|
|||
open decidable (rec_on inl inr)
|
||||
|
||||
definition decidable_and [instance] [Hp : decidable p] [Hq : decidable q] : decidable (p ∧ q) :=
|
||||
rec_on Hp
|
||||
(assume Hp : p, rec_on Hq
|
||||
(assume Hq : q, inl (and.intro Hp Hq))
|
||||
(assume Hnq : ¬q, inr (assume H : p ∧ q, and.rec_on H (assume Hp Hq, absurd Hq Hnq))))
|
||||
(assume Hnp : ¬p, inr (assume H : p ∧ q, and.rec_on H (assume Hp Hq, absurd Hp Hnp)))
|
||||
if hp : p then
|
||||
if hq : q then inl (and.intro hp hq)
|
||||
else inr (assume H : p ∧ q, hq (and.right H))
|
||||
else inr (assume H : p ∧ q, hp (and.left H))
|
||||
|
||||
definition decidable_or [instance] [Hp : decidable p] [Hq : decidable q] : decidable (p ∨ q) :=
|
||||
rec_on Hp
|
||||
(assume Hp : p, inl (or.inl Hp))
|
||||
(assume Hnp : ¬p, rec_on Hq
|
||||
(assume Hq : q, inl (or.inr Hq))
|
||||
(assume Hnq : ¬q, inr (assume H : p ∨ q, or.elim H (assume Hp, absurd Hp Hnp) (assume Hq, absurd Hq Hnq))))
|
||||
if hp : p then inl (or.inl hp) else
|
||||
if hq : q then inl (or.inr hq) else
|
||||
inr (or.rec hp hq)
|
||||
|
||||
definition decidable_not [instance] [Hp : decidable p] : decidable (¬p) :=
|
||||
rec_on Hp
|
||||
(assume Hp, inr (λ Hnp, absurd Hp Hnp))
|
||||
(assume Hnp, inl Hnp)
|
||||
if hp : p then inr (absurd hp) else inl hp
|
||||
|
||||
definition decidable_implies [instance] [Hp : decidable p] [Hq : decidable q] : decidable (p → q) :=
|
||||
rec_on Hp
|
||||
(assume Hp : p, rec_on Hq
|
||||
(assume Hq : q, inl (assume H, Hq))
|
||||
(assume Hnq : ¬q, inr (assume H : p → q, absurd (H Hp) Hnq)))
|
||||
(assume Hnp : ¬p, inl (assume Hp, absurd Hp Hnp))
|
||||
if hp : p then
|
||||
if hq : q then inl (assume H, hq)
|
||||
else inr (assume H : p → q, absurd (H hp) hq)
|
||||
else inl (assume Hp, absurd Hp hp)
|
||||
|
||||
definition decidable_iff [instance] [Hp : decidable p] [Hq : decidable q] : decidable (p ↔ q) :=
|
||||
show decidable ((p → q) ∧ (q → p)), from _
|
||||
decidable_and
|
||||
|
||||
end
|
||||
|
||||
definition decidable_pred [reducible] {A : Type} (R : A → Prop) := Π (a : A), decidable (R a)
|
||||
definition decidable_rel [reducible] {A : Type} (R : A → A → Prop) := Π (a b : A), decidable (R a b)
|
||||
definition decidable_eq [reducible] (A : Type) := decidable_rel (@eq A)
|
||||
definition decidable_ne [instance] {A : Type} [H : decidable_eq A] : Π (a b : A), decidable (a ≠ b) :=
|
||||
show Π x y : A, decidable (x = y → false), from _
|
||||
definition decidable_ne [instance] {A : Type} [H : decidable_eq A] (a b : A) : decidable (a ≠ b) :=
|
||||
decidable_implies
|
||||
|
||||
namespace bool
|
||||
theorem ff_ne_tt : ff = tt → false
|
||||
|
@ -429,9 +413,8 @@ protected definition bool.has_decidable_eq [instance] : ∀a b : bool, decidable
|
|||
| tt tt := inl rfl
|
||||
|
||||
definition decidable_eq_of_bool_pred {A : Type} {p : A → A → bool} (H₁ : is_dec_eq p) (H₂ : is_dec_refl p) : decidable_eq A :=
|
||||
take x y : A, by_cases
|
||||
(assume Hp : p x y = tt, inl (H₁ Hp))
|
||||
(assume Hn : ¬ p x y = tt, inr (assume Hxy : x = y, absurd (H₂ y) (eq.rec_on Hxy Hn)))
|
||||
take x y : A, if Hp : p x y = tt then inl (H₁ Hp)
|
||||
else inr (assume Hxy : x = y, (eq.subst Hxy Hp) (H₂ y))
|
||||
|
||||
theorem decidable_eq_inl_refl {A : Type} [H : decidable_eq A] (a : A) : H a a = inl (eq.refl a) :=
|
||||
match H a a with
|
||||
|
@ -452,17 +435,17 @@ end
|
|||
inductive inhabited [class] (A : Type) : Type :=
|
||||
mk : A → inhabited A
|
||||
|
||||
protected definition inhabited.value {A : Type} (h : inhabited A) : A :=
|
||||
inhabited.rec (λa, a) h
|
||||
protected definition inhabited.value {A : Type} : inhabited A → A :=
|
||||
inhabited.rec (λa, a)
|
||||
|
||||
protected definition inhabited.destruct {A : Type} {B : Type} (H1 : inhabited A) (H2 : A → B) : B :=
|
||||
inhabited.rec H2 H1
|
||||
|
||||
definition default (A : Type) [H : inhabited A] : A :=
|
||||
inhabited.rec (λa, a) H
|
||||
inhabited.value H
|
||||
|
||||
definition arbitrary [irreducible] (A : Type) [H : inhabited A] : A :=
|
||||
inhabited.rec (λa, a) H
|
||||
inhabited.value H
|
||||
|
||||
definition Prop.is_inhabited [instance] : inhabited Prop :=
|
||||
inhabited.mk true
|
||||
|
@ -472,7 +455,7 @@ inhabited.rec_on H (λb, inhabited.mk (λa, b))
|
|||
|
||||
definition inhabited_Pi [instance] (A : Type) {B : A → Type} [H : Πx, inhabited (B x)] :
|
||||
inhabited (Πx, B x) :=
|
||||
inhabited.mk (λa, inhabited.rec_on (H a) (λb, b))
|
||||
inhabited.mk (λa, !default)
|
||||
|
||||
protected definition bool.is_inhabited [instance] : inhabited bool :=
|
||||
inhabited.mk ff
|
||||
|
@ -484,7 +467,7 @@ protected definition nonempty.elim {A : Type} {B : Prop} (H1 : nonempty A) (H2 :
|
|||
nonempty.rec H2 H1
|
||||
|
||||
theorem nonempty_of_inhabited [instance] {A : Type} [H : inhabited A] : nonempty A :=
|
||||
nonempty.intro (default A)
|
||||
nonempty.intro !default
|
||||
|
||||
/- subsingleton -/
|
||||
|
||||
|
@ -492,7 +475,7 @@ inductive subsingleton [class] (A : Type) : Prop :=
|
|||
intro : (∀ a b : A, a = b) → subsingleton A
|
||||
|
||||
protected definition subsingleton.elim {A : Type} [H : subsingleton A] : ∀(a b : A), a = b :=
|
||||
subsingleton.rec (fun p, p) H
|
||||
subsingleton.rec (λp, p) H
|
||||
|
||||
definition subsingleton_prop [instance] (p : Prop) : subsingleton p :=
|
||||
subsingleton.intro (λa b, !proof_irrel)
|
||||
|
@ -518,104 +501,90 @@ protected theorem rec_subsingleton {p : Prop} [H : decidable p]
|
|||
: subsingleton (decidable.rec_on H H1 H2) :=
|
||||
decidable.rec_on H (λh, H3 h) (λh, H4 h) --this can be proven using dependent version of "by_cases"
|
||||
|
||||
/- if-then-else -/
|
||||
|
||||
definition ite (c : Prop) [H : decidable c] {A : Type} (t e : A) : A :=
|
||||
decidable.rec_on H (λ Hc, t) (λ Hnc, e)
|
||||
|
||||
theorem if_pos {c : Prop} [H : decidable c] (Hc : c) {A : Type} {t e : A} : (if c then t else e) = t :=
|
||||
theorem if_pos {c : Prop} [H : decidable c] (Hc : c) {A : Type} {t e : A} : (ite c t e) = t :=
|
||||
decidable.rec
|
||||
(λ Hc : c, eq.refl (@ite c (decidable.inl Hc) A t e))
|
||||
(λ Hnc : ¬c, absurd Hc Hnc)
|
||||
H
|
||||
|
||||
theorem if_neg {c : Prop} [H : decidable c] (Hnc : ¬c) {A : Type} {t e : A} : (if c then t else e) = e :=
|
||||
theorem if_neg {c : Prop} [H : decidable c] (Hnc : ¬c) {A : Type} {t e : A} : (ite c t e) = e :=
|
||||
decidable.rec
|
||||
(λ Hc : c, absurd Hc Hnc)
|
||||
(λ Hnc : ¬c, eq.refl (@ite c (decidable.inr Hnc) A t e))
|
||||
H
|
||||
|
||||
theorem if_t_t [simp] (c : Prop) [H : decidable c] {A : Type} (t : A) : (if c then t else t) = t :=
|
||||
theorem if_t_t [simp] (c : Prop) [H : decidable c] {A : Type} (t : A) : (ite c t t) = t :=
|
||||
decidable.rec
|
||||
(λ Hc : c, eq.refl (@ite c (decidable.inl Hc) A t t))
|
||||
(λ Hnc : ¬c, eq.refl (@ite c (decidable.inr Hnc) A t t))
|
||||
H
|
||||
|
||||
theorem implies_of_if_pos {c t e : Prop} [H : decidable c] (h : if c then t else e) : c → t :=
|
||||
theorem implies_of_if_pos {c t e : Prop} [H : decidable c] (h : ite c t e) : c → t :=
|
||||
assume Hc, eq.rec_on (if_pos Hc) h
|
||||
|
||||
theorem implies_of_if_neg {c t e : Prop} [H : decidable c] (h : if c then t else e) : ¬c → e :=
|
||||
theorem implies_of_if_neg {c t e : Prop} [H : decidable c] (h : ite c t e) : ¬c → e :=
|
||||
assume Hnc, eq.rec_on (if_neg Hnc) h
|
||||
|
||||
theorem if_ctx_congr {A : Type} {b c : Prop} [dec_b : decidable b] [dec_c : decidable c]
|
||||
{x y u v : A}
|
||||
(h_c : b ↔ c) (h_t : c → x = u) (h_e : ¬c → y = v) :
|
||||
(if b then x else y) = (if c then u else v) :=
|
||||
ite b x y = ite c u v :=
|
||||
decidable.rec_on dec_b
|
||||
(λ hp : b, calc
|
||||
(if b then x else y)
|
||||
= x : if_pos hp
|
||||
ite b x y = x : if_pos hp
|
||||
... = u : h_t (iff.mp h_c hp)
|
||||
... = (if c then u else v) : if_pos (iff.mp h_c hp))
|
||||
... = ite c u v : if_pos (iff.mp h_c hp))
|
||||
(λ hn : ¬b, calc
|
||||
(if b then x else y)
|
||||
= y : if_neg hn
|
||||
ite b x y = y : if_neg hn
|
||||
... = v : h_e (iff.mp (not_iff_not_of_iff h_c) hn)
|
||||
... = (if c then u else v) : if_neg (iff.mp (not_iff_not_of_iff h_c) hn))
|
||||
... = ite c u v : if_neg (iff.mp (not_iff_not_of_iff h_c) hn))
|
||||
|
||||
theorem if_congr {A : Type} {b c : Prop} [dec_b : decidable b] [dec_c : decidable c]
|
||||
{x y u v : A}
|
||||
(h_c : b ↔ c) (h_t : x = u) (h_e : y = v) :
|
||||
(if b then x else y) = (if c then u else v) :=
|
||||
ite b x y = ite c u v :=
|
||||
@if_ctx_congr A b c dec_b dec_c x y u v h_c (λ h, h_t) (λ h, h_e)
|
||||
|
||||
theorem if_ctx_simp_congr {A : Type} {b c : Prop} [dec_b : decidable b] {x y u v : A}
|
||||
(h_c : b ↔ c) (h_t : c → x = u) (h_e : ¬c → y = v) :
|
||||
(if b then x else y) = (@ite c (decidable_of_decidable_of_iff dec_b h_c) A u v) :=
|
||||
ite b x y = (@ite c (decidable_of_decidable_of_iff dec_b h_c) A u v) :=
|
||||
@if_ctx_congr A b c dec_b (decidable_of_decidable_of_iff dec_b h_c) x y u v h_c h_t h_e
|
||||
|
||||
theorem if_simp_congr [congr] {A : Type} {b c : Prop} [dec_b : decidable b] {x y u v : A}
|
||||
(h_c : b ↔ c) (h_t : x = u) (h_e : y = v) :
|
||||
(if b then x else y) = (@ite c (decidable_of_decidable_of_iff dec_b h_c) A u v) :=
|
||||
ite b x y = (@ite c (decidable_of_decidable_of_iff dec_b h_c) A u v) :=
|
||||
@if_ctx_simp_congr A b c dec_b x y u v h_c (λ h, h_t) (λ h, h_e)
|
||||
|
||||
theorem if_congr_prop {b c x y u v : Prop} [dec_b : decidable b] [dec_c : decidable c]
|
||||
(h_c : b ↔ c) (h_t : c → (x ↔ u)) (h_e : ¬c → (y ↔ v)) :
|
||||
if b then x else y ↔ if c then u else v :=
|
||||
ite b x y ↔ ite c u v :=
|
||||
decidable.rec_on dec_b
|
||||
(λ hp : b, calc
|
||||
(if b then x else y)
|
||||
↔ x : iff.of_eq (if_pos hp)
|
||||
ite b x y ↔ x : iff.of_eq (if_pos hp)
|
||||
... ↔ u : h_t (iff.mp h_c hp)
|
||||
... ↔ (if c then u else v) : iff.of_eq (if_pos (iff.mp h_c hp)))
|
||||
... ↔ ite c u v : iff.of_eq (if_pos (iff.mp h_c hp)))
|
||||
(λ hn : ¬b, calc
|
||||
(if b then x else y)
|
||||
↔ y : iff.of_eq (if_neg hn)
|
||||
ite b x y ↔ y : iff.of_eq (if_neg hn)
|
||||
... ↔ v : h_e (iff.mp (not_iff_not_of_iff h_c) hn)
|
||||
... ↔ (if c then u else v) : iff.of_eq (if_neg (iff.mp (not_iff_not_of_iff h_c) hn)))
|
||||
... ↔ ite c u v : iff.of_eq (if_neg (iff.mp (not_iff_not_of_iff h_c) hn)))
|
||||
|
||||
theorem if_ctx_simp_congr_prop {b c x y u v : Prop} [dec_b : decidable b]
|
||||
(h_c : b ↔ c) (h_t : c → (x ↔ u)) (h_e : ¬c → (y ↔ v)) :
|
||||
if b then x else y ↔ (@ite c (decidable_of_decidable_of_iff dec_b h_c) Prop u v) :=
|
||||
ite b x y ↔ (@ite c (decidable_of_decidable_of_iff dec_b h_c) Prop u v) :=
|
||||
@if_congr_prop b c x y u v dec_b (decidable_of_decidable_of_iff dec_b h_c) h_c h_t h_e
|
||||
|
||||
theorem if_simp_congr_prop [congr] {b c x y u v : Prop} [dec_b : decidable b]
|
||||
(h_c : b ↔ c) (h_t : x ↔ u) (h_e : y ↔ v) :
|
||||
if b then x else y ↔ (@ite c (decidable_of_decidable_of_iff dec_b h_c) Prop u v) :=
|
||||
ite b x y ↔ (@ite c (decidable_of_decidable_of_iff dec_b h_c) Prop u v) :=
|
||||
@if_ctx_simp_congr_prop b c x y u v dec_b h_c (λ h, h_t) (λ h, h_e)
|
||||
|
||||
-- We use "dependent" if-then-else to be able to communicate the if-then-else condition
|
||||
-- to the branches
|
||||
definition dite (c : Prop) [H : decidable c] {A : Type} (t : c → A) (e : ¬ c → A) : A :=
|
||||
decidable.rec_on H (λ Hc, t Hc) (λ Hnc, e Hnc)
|
||||
|
||||
theorem dif_pos {c : Prop} [H : decidable c] (Hc : c) {A : Type} {t : c → A} {e : ¬ c → A} : (if H : c then t H else e H) = t Hc :=
|
||||
theorem dif_pos {c : Prop} [H : decidable c] (Hc : c) {A : Type} {t : c → A} {e : ¬ c → A} : dite c t e = t Hc :=
|
||||
decidable.rec
|
||||
(λ Hc : c, eq.refl (@dite c (decidable.inl Hc) A t e))
|
||||
(λ Hnc : ¬c, absurd Hc Hnc)
|
||||
H
|
||||
|
||||
theorem dif_neg {c : Prop} [H : decidable c] (Hnc : ¬c) {A : Type} {t : c → A} {e : ¬ c → A} : (if H : c then t H else e H) = e Hnc :=
|
||||
theorem dif_neg {c : Prop} [H : decidable c] (Hnc : ¬c) {A : Type} {t : c → A} {e : ¬ c → A} : dite c t e = e Hnc :=
|
||||
decidable.rec
|
||||
(λ Hc : c, absurd Hc Hnc)
|
||||
(λ Hnc : ¬c, eq.refl (@dite c (decidable.inr Hnc) A t e))
|
||||
|
@ -629,19 +598,15 @@ theorem dif_ctx_congr {A : Type} {b c : Prop} [dec_b : decidable b] [dec_c : dec
|
|||
(@dite b dec_b A x y) = (@dite c dec_c A u v) :=
|
||||
decidable.rec_on dec_b
|
||||
(λ hp : b, calc
|
||||
(if h : b then x h else y h)
|
||||
= x hp : dif_pos hp
|
||||
dite b x y = x hp : dif_pos hp
|
||||
... = x (iff.mpr h_c (iff.mp h_c hp)) : proof_irrel
|
||||
... = u (iff.mp h_c hp) : h_t
|
||||
... = (if h : c then u h else v h) : dif_pos (iff.mp h_c hp))
|
||||
(λ hn : ¬b,
|
||||
let h_nc : ¬b ↔ ¬c := not_iff_not_of_iff h_c in
|
||||
calc
|
||||
(if h : b then x h else y h)
|
||||
= y hn : dif_neg hn
|
||||
... = dite c u v : dif_pos (iff.mp h_c hp))
|
||||
(λ hn : ¬b, let h_nc : ¬b ↔ ¬c := not_iff_not_of_iff h_c in calc
|
||||
dite b x y = y hn : dif_neg hn
|
||||
... = y (iff.mpr h_nc (iff.mp h_nc hn)) : proof_irrel
|
||||
... = v (iff.mp h_nc hn) : h_e
|
||||
... = (if h : c then u h else v h) : dif_neg (iff.mp h_nc hn))
|
||||
... = dite c u v : dif_neg (iff.mp h_nc hn))
|
||||
|
||||
theorem dif_ctx_simp_congr {A : Type} {b c : Prop} [dec_b : decidable b]
|
||||
{x : b → A} {u : c → A} {y : ¬b → A} {v : ¬c → A}
|
||||
|
@ -667,13 +632,13 @@ decidable.rec_on H₁ (λ Hc, Hc) (λ Hnc, !false.rec (if_neg Hnc ▸ H₂))
|
|||
notation `dec_trivial` := of_is_true trivial
|
||||
|
||||
theorem not_of_not_is_true {c : Prop} [H₁ : decidable c] (H₂ : ¬ is_true c) : ¬ c :=
|
||||
decidable.rec_on H₁ (λ Hc, absurd true.intro (if_pos Hc ▸ H₂)) (λ Hnc, Hnc)
|
||||
if Hc : c then absurd trivial (if_pos Hc ▸ H₂) else Hc
|
||||
|
||||
theorem not_of_is_false {c : Prop} [H₁ : decidable c] (H₂ : is_false c) : ¬ c :=
|
||||
decidable.rec_on H₁ (λ Hc, !false.rec (if_pos Hc ▸ H₂)) (λ Hnc, Hnc)
|
||||
if Hc : c then !false.rec (if_pos Hc ▸ H₂) else Hc
|
||||
|
||||
theorem of_not_is_false {c : Prop} [H₁ : decidable c] (H₂ : ¬ is_false c) : c :=
|
||||
decidable.rec_on H₁ (λ Hc, Hc) (λ Hnc, absurd true.intro (if_neg Hnc ▸ H₂))
|
||||
if Hc : c then Hc else absurd trivial (if_neg Hc ▸ H₂)
|
||||
|
||||
-- namespace used to collect congruence rules for "contextual simplification"
|
||||
namespace contextual
|
||||
|
|
|
@ -12,14 +12,14 @@ open nat
|
|||
inductive measurable [class] (A : Type) :=
|
||||
mk : (A → nat) → measurable A
|
||||
|
||||
definition size_of {A : Type} [s : measurable A] (a : A) : nat :=
|
||||
measurable.rec_on s (λ f, f) a
|
||||
definition size_of {A : Type} [s : measurable A] : A → nat :=
|
||||
measurable.rec_on s (λ f, f)
|
||||
|
||||
definition nat.measurable [instance] : measurable nat :=
|
||||
measurable.mk (λ a, a)
|
||||
|
||||
definition option.measurable [instance] (A : Type) [s : measurable A] : measurable (option A) :=
|
||||
measurable.mk (λ a, option.cases_on a zero (λ a, size_of a))
|
||||
measurable.mk (λ a, option.cases_on a zero size_of)
|
||||
|
||||
definition prod.measurable [instance] (A B : Type) [sa : measurable A] [sb : measurable B] : measurable (prod A B) :=
|
||||
measurable.mk (λ p, prod.cases_on p (λ a b, size_of a + size_of b))
|
||||
|
|
|
@ -31,7 +31,7 @@ namespace nat
|
|||
-- add is defined in init.num
|
||||
|
||||
definition sub (a b : nat) : nat :=
|
||||
nat.rec_on b a (λ b₁ r, pred r)
|
||||
nat.rec_on b a (λ b₁, pred)
|
||||
|
||||
definition mul (a b : nat) : nat :=
|
||||
nat.rec_on b zero (λ b₁ r, r + a)
|
||||
|
@ -56,11 +56,11 @@ namespace nat
|
|||
|
||||
/- properties of inequality -/
|
||||
|
||||
theorem le_of_eq {n m : ℕ} (p : n = m) : n ≤ m := p ▸ le.refl n
|
||||
theorem le_of_eq {n m : ℕ} (p : n = m) : n ≤ m := p ▸ !le.refl
|
||||
|
||||
theorem le_succ (n : ℕ) : n ≤ succ n := by repeat constructor
|
||||
theorem le_succ (n : ℕ) : n ≤ succ n := le.step !le.refl
|
||||
|
||||
theorem pred_le (n : ℕ) : pred n ≤ n := by cases n;all_goals (repeat constructor)
|
||||
theorem pred_le (n : ℕ) : pred n ≤ n := by cases n;repeat constructor
|
||||
|
||||
theorem le_succ_iff_true [simp] (n : ℕ) : n ≤ succ n ↔ true :=
|
||||
iff_true_intro (le_succ n)
|
||||
|
@ -68,8 +68,8 @@ namespace nat
|
|||
theorem pred_le_iff_true [simp] (n : ℕ) : pred n ≤ n ↔ true :=
|
||||
iff_true_intro (pred_le n)
|
||||
|
||||
theorem le.trans [trans] {n m k : ℕ} (H1 : n ≤ m) (H2 : m ≤ k) : n ≤ k :=
|
||||
by induction H2 with n H2 IH;exact H1;exact le.step IH
|
||||
theorem le.trans [trans] {n m k : ℕ} (H1 : n ≤ m) : m ≤ k → n ≤ k :=
|
||||
le.rec H1 (λp H2, le.step)
|
||||
|
||||
theorem le_succ_of_le {n m : ℕ} (H : n ≤ m) : n ≤ succ m := le.trans H !le_succ
|
||||
|
||||
|
@ -77,62 +77,51 @@ namespace nat
|
|||
|
||||
theorem le_of_lt {n m : ℕ} (H : n < m) : n ≤ m := le_of_succ_le H
|
||||
|
||||
theorem succ_le_succ {n m : ℕ} (H : n ≤ m) : succ n ≤ succ m :=
|
||||
by induction H;reflexivity;exact le.step v_0
|
||||
theorem succ_le_succ {n m : ℕ} : n ≤ m → succ n ≤ succ m :=
|
||||
le.rec !le.refl (λa b, le.step)
|
||||
|
||||
theorem pred_le_pred {n m : ℕ} (H : n ≤ m) : pred n ≤ pred m :=
|
||||
by induction H;reflexivity;cases b;exact v_0;exact le.step v_0
|
||||
theorem pred_le_pred {n m : ℕ} : n ≤ m → pred n ≤ pred m :=
|
||||
le.rec !le.refl (nat.rec (λa b, b) (λa b c, le.step))
|
||||
|
||||
theorem le_of_succ_le_succ {n m : ℕ} (H : succ n ≤ succ m) : n ≤ m :=
|
||||
pred_le_pred H
|
||||
theorem le_of_succ_le_succ {n m : ℕ} : succ n ≤ succ m → n ≤ m :=
|
||||
pred_le_pred
|
||||
|
||||
theorem le_succ_of_pred_le {n m : ℕ} (H : pred n ≤ m) : n ≤ succ m :=
|
||||
by cases n;exact le.step H;exact succ_le_succ H
|
||||
|
||||
theorem not_succ_le_self {n : ℕ} : ¬succ n ≤ n :=
|
||||
by induction n with n IH;all_goals intros;cases a;apply IH;exact le_of_succ_le_succ a
|
||||
|
||||
theorem succ_le_self_iff_false [simp] (n : ℕ) : succ n ≤ n ↔ false :=
|
||||
iff_false_intro not_succ_le_self
|
||||
|
||||
theorem zero_le (n : ℕ) : 0 ≤ n :=
|
||||
by induction n with n IH;apply le.refl;exact le.step IH
|
||||
|
||||
theorem zero_le_iff_true [simp] (n : ℕ) : 0 ≤ n ↔ true :=
|
||||
iff_true_intro (zero_le n)
|
||||
|
||||
theorem lt.step {n m : ℕ} (H : n < m) : n < succ m :=
|
||||
le.step H
|
||||
|
||||
theorem zero_lt_succ (n : ℕ) : 0 < succ n :=
|
||||
by induction n with n IH;apply le.refl;exact le.step IH
|
||||
|
||||
theorem zero_lt_succ_iff_true [simp] (n : ℕ) : 0 < succ n ↔ true :=
|
||||
iff_true_intro (zero_lt_succ n)
|
||||
|
||||
theorem lt.trans [trans] {n m k : ℕ} (H1 : n < m) (H2 : m < k) : n < k :=
|
||||
le.trans (le.step H1) H2
|
||||
|
||||
theorem lt_of_le_of_lt [trans] {n m k : ℕ} (H1 : n ≤ m) (H2 : m < k) : n < k :=
|
||||
le.trans (succ_le_succ H1) H2
|
||||
|
||||
theorem lt_of_lt_of_le [trans] {n m k : ℕ} (H1 : n < m) (H2 : m ≤ k) : n < k :=
|
||||
le.trans H1 H2
|
||||
|
||||
theorem le.antisymm {n m : ℕ} (H1 : n ≤ m) (H2 : m ≤ n) : n = m :=
|
||||
begin
|
||||
cases H1 with m' H1',
|
||||
{ reflexivity},
|
||||
{ cases H2 with n' H2',
|
||||
{ reflexivity},
|
||||
{ exfalso, apply not_succ_le_self, exact lt.trans H1' H2'}},
|
||||
end
|
||||
theorem le_succ_of_pred_le {n m : ℕ} : pred n ≤ m → n ≤ succ m :=
|
||||
nat.cases_on n le.step (λa, succ_le_succ)
|
||||
|
||||
theorem not_succ_le_zero (n : ℕ) : ¬succ n ≤ zero :=
|
||||
by intro H; cases H
|
||||
|
||||
theorem succ_le_zero_iff_false (n : ℕ) : succ n ≤ zero ↔ false :=
|
||||
iff_false_intro (not_succ_le_zero n)
|
||||
iff_false_intro !not_succ_le_zero
|
||||
|
||||
theorem not_succ_le_self : Π {n : ℕ}, ¬succ n ≤ n :=
|
||||
nat.rec !not_succ_le_zero (λa b c, b (le_of_succ_le_succ c))
|
||||
|
||||
theorem succ_le_self_iff_false [simp] (n : ℕ) : succ n ≤ n ↔ false :=
|
||||
iff_false_intro not_succ_le_self
|
||||
|
||||
theorem zero_le : ∀ (n : ℕ), 0 ≤ n :=
|
||||
nat.rec !le.refl (λa, le.step)
|
||||
|
||||
theorem zero_le_iff_true [simp] (n : ℕ) : 0 ≤ n ↔ true :=
|
||||
iff_true_intro !zero_le
|
||||
|
||||
theorem lt.step {n m : ℕ} : n < m → n < succ m := le.step
|
||||
|
||||
theorem zero_lt_succ (n : ℕ) : 0 < succ n :=
|
||||
succ_le_succ !zero_le
|
||||
|
||||
theorem zero_lt_succ_iff_true [simp] (n : ℕ) : 0 < succ n ↔ true :=
|
||||
iff_true_intro (zero_lt_succ n)
|
||||
|
||||
theorem lt.trans [trans] {n m k : ℕ} (H1 : n < m) : m < k → n < k :=
|
||||
le.trans (le.step H1)
|
||||
|
||||
theorem lt_of_le_of_lt [trans] {n m k : ℕ} (H1 : n ≤ m) : m < k → n < k :=
|
||||
le.trans (succ_le_succ H1)
|
||||
|
||||
theorem lt_of_lt_of_le [trans] {n m k : ℕ} : n < m → m ≤ k → n < k := le.trans
|
||||
|
||||
theorem lt.irrefl (n : ℕ) : ¬n < n := not_succ_le_self
|
||||
|
||||
|
@ -149,143 +138,112 @@ namespace nat
|
|||
theorem le_lt_antisymm {n m : ℕ} (H1 : n ≤ m) (H2 : m < n) : false :=
|
||||
!lt.irrefl (lt_of_le_of_lt H1 H2)
|
||||
|
||||
theorem le.antisymm {n m : ℕ} (H1 : n ≤ m) : m ≤ n → n = m :=
|
||||
le.cases_on H1 (λa, rfl) (λa b c, absurd (lt_of_le_of_lt b c) !lt.irrefl)
|
||||
|
||||
theorem lt_le_antisymm {n m : ℕ} (H1 : n < m) (H2 : m ≤ n) : false :=
|
||||
le_lt_antisymm H2 H1
|
||||
|
||||
theorem lt.asymm {n m : ℕ} (H1 : n < m) (H2 : m < n) : false :=
|
||||
le_lt_antisymm (le_of_lt H1) H2
|
||||
theorem lt.asymm {n m : ℕ} (H1 : n < m) : ¬ m < n :=
|
||||
le_lt_antisymm (le_of_lt H1)
|
||||
|
||||
definition lt.by_cases {a b : ℕ} {P : Type} (H1 : a < b → P) (H2 : a = b → P) (H3 : b < a → P) : P :=
|
||||
begin
|
||||
revert b H1 H2 H3, induction a with a IH,
|
||||
{ intros, cases b,
|
||||
exact H2 rfl,
|
||||
exact H1 !zero_lt_succ},
|
||||
{ intros, cases b with b,
|
||||
exact H3 !zero_lt_succ,
|
||||
{ apply IH,
|
||||
intro H, exact H1 (succ_le_succ H),
|
||||
intro H, exact H2 (congr rfl H),
|
||||
intro H, exact H3 (succ_le_succ H)}}
|
||||
end
|
||||
|
||||
theorem lt.trichotomy (a b : ℕ) : a < b ∨ a = b ∨ b < a :=
|
||||
lt.by_cases (λH, inl H) (λH, inr (inl H)) (λH, inr (inr H))
|
||||
|
||||
theorem lt_ge_by_cases {a b : ℕ} {P : Type} (H1 : a < b → P) (H2 : a ≥ b → P) : P :=
|
||||
lt.by_cases H1 (λH, H2 (le_of_eq H⁻¹)) (λH, H2 (le_of_lt H))
|
||||
|
||||
theorem lt_or_ge (a b : ℕ) : (a < b) ∨ (a ≥ b) :=
|
||||
lt_ge_by_cases inl inr
|
||||
|
||||
theorem not_lt_zero (a : ℕ) : ¬ a < zero :=
|
||||
by intro H; cases H
|
||||
theorem not_lt_zero (a : ℕ) : ¬ a < zero := !not_succ_le_zero
|
||||
|
||||
theorem lt_zero_iff_false [simp] (a : ℕ) : a < zero ↔ false :=
|
||||
iff_false_intro (not_lt_zero a)
|
||||
|
||||
theorem eq_or_lt_of_le {a b : ℕ} (H : a ≤ b) : a = b ∨ a < b :=
|
||||
le.cases_on H (inl rfl) (λn h, inr (succ_le_succ h))
|
||||
|
||||
theorem le_of_eq_or_lt {a b : ℕ} (H : a = b ∨ a < b) : a ≤ b :=
|
||||
or.elim H !le_of_eq !le_of_lt
|
||||
|
||||
-- less-than is well-founded
|
||||
definition lt.wf [instance] : well_founded lt :=
|
||||
begin
|
||||
constructor, intro n, induction n with n IH,
|
||||
{ constructor, intros n H, exfalso, exact !not_lt_zero H},
|
||||
{ constructor, intros m H,
|
||||
assert aux : ∀ {n₁} (hlt : m < n₁), succ n = n₁ → acc lt m,
|
||||
{ intros n₁ hlt, induction hlt,
|
||||
{ intro p, injection p with q, exact q ▸ IH},
|
||||
{ intro p, injection p with q, exact (acc.inv (q ▸ IH) a)}},
|
||||
apply aux H rfl},
|
||||
end
|
||||
well_founded.intro (nat.rec
|
||||
(!acc.intro (λn H, absurd H (not_lt_zero n)))
|
||||
(λn IH, !acc.intro (λm H,
|
||||
elim (eq_or_lt_of_le (le_of_succ_le_succ H))
|
||||
(λe, eq.substr e IH) (acc.inv IH))))
|
||||
|
||||
definition measure {A : Type} (f : A → ℕ) : A → A → Prop :=
|
||||
inv_image lt f
|
||||
definition measure {A : Type} : (A → ℕ) → A → A → Prop :=
|
||||
inv_image lt
|
||||
|
||||
definition measure.wf {A : Type} (f : A → ℕ) : well_founded (measure f) :=
|
||||
inv_image.wf f lt.wf
|
||||
|
||||
theorem succ_lt_succ {a b : ℕ} (H : a < b) : succ a < succ b :=
|
||||
succ_le_succ H
|
||||
theorem succ_lt_succ {a b : ℕ} : a < b → succ a < succ b :=
|
||||
succ_le_succ
|
||||
|
||||
theorem lt_of_succ_lt {a b : ℕ} (H : succ a < b) : a < b :=
|
||||
le_of_succ_le H
|
||||
theorem lt_of_succ_lt {a b : ℕ} : succ a < b → a < b :=
|
||||
le_of_succ_le
|
||||
|
||||
theorem lt_of_succ_lt_succ {a b : ℕ} (H : succ a < succ b) : a < b :=
|
||||
le_of_succ_le_succ H
|
||||
theorem lt_of_succ_lt_succ {a b : ℕ} : succ a < succ b → a < b :=
|
||||
le_of_succ_le_succ
|
||||
|
||||
definition decidable_le [instance] : decidable_rel le :=
|
||||
begin
|
||||
intros n, induction n with n IH,
|
||||
{ intro m, left, apply zero_le},
|
||||
{ intro m, cases m with m,
|
||||
{ right, apply not_succ_le_zero},
|
||||
{ let H := IH m, clear IH,
|
||||
cases H with H H,
|
||||
left, exact succ_le_succ H,
|
||||
right, intro H2, exact H (le_of_succ_le_succ H2)}}
|
||||
end
|
||||
nat.rec (λm, (decidable.inl !zero_le))
|
||||
(λn IH m, !nat.cases_on (decidable.inr (not_succ_le_zero n))
|
||||
(λm, decidable.rec (λH, inl (succ_le_succ H))
|
||||
(λH, inr (λa, H (le_of_succ_le_succ a))) (IH m)))
|
||||
|
||||
definition decidable_lt [instance] : decidable_rel lt := _
|
||||
definition decidable_gt [instance] : decidable_rel gt := _
|
||||
definition decidable_ge [instance] : decidable_rel ge := _
|
||||
|
||||
theorem eq_or_lt_of_le {a b : ℕ} (H : a ≤ b) : a = b ∨ a < b :=
|
||||
by cases H with b' H; exact inl rfl; exact inr (succ_le_succ H)
|
||||
theorem lt_or_ge (a b : ℕ) : a < b ∨ a ≥ b :=
|
||||
nat.rec (inr !zero_le) (λn, or.rec
|
||||
(λh, inl (le_succ_of_le h))
|
||||
(λh, elim (eq_or_lt_of_le h) (λe, inl (eq.subst e !le.refl)) inr)) b
|
||||
|
||||
theorem le_of_eq_or_lt {a b : ℕ} (H : a = b ∨ a < b) : a ≤ b :=
|
||||
by cases H with H H; exact le_of_eq H; exact le_of_lt H
|
||||
theorem lt_ge_by_cases {a b : ℕ} {P : Type} (H1 : a < b → P) (H2 : a ≥ b → P) : P :=
|
||||
by_cases H1 (λh, H2 (elim !lt_or_ge (λa, absurd a h) (λa, a)))
|
||||
|
||||
definition lt.by_cases {a b : ℕ} {P : Type} (H1 : a < b → P) (H2 : a = b → P) (H3 : b < a → P) : P :=
|
||||
lt_ge_by_cases H1 (λh₁,
|
||||
lt_ge_by_cases H3 (λh₂, H2 (le.antisymm h₂ h₁)))
|
||||
|
||||
theorem lt.trichotomy (a b : ℕ) : a < b ∨ a = b ∨ b < a :=
|
||||
lt.by_cases (λH, inl H) (λH, inr (inl H)) (λH, inr (inr H))
|
||||
|
||||
theorem eq_or_lt_of_not_lt {a b : ℕ} (hnlt : ¬ a < b) : a = b ∨ b < a :=
|
||||
or.rec_on (lt.trichotomy a b)
|
||||
(λ hlt, absurd hlt hnlt)
|
||||
(λ h, h)
|
||||
|
||||
theorem lt_succ_of_le {a b : ℕ} (h : a ≤ b) : a < succ b :=
|
||||
succ_le_succ h
|
||||
theorem lt_succ_of_le {a b : ℕ} : a ≤ b → a < succ b :=
|
||||
succ_le_succ
|
||||
|
||||
theorem lt_of_succ_le {a b : ℕ} (h : succ a ≤ b) : a < b := h
|
||||
|
||||
theorem succ_le_of_lt {a b : ℕ} (h : a < b) : succ a ≤ b := h
|
||||
|
||||
theorem succ_sub_succ_eq_sub [simp] (a b : ℕ) : succ a - succ b = a - b :=
|
||||
by induction b with b IH;reflexivity; apply congr (eq.refl pred) IH
|
||||
nat.rec rfl (λ b, congr_arg pred) b
|
||||
|
||||
theorem sub_eq_succ_sub_succ (a b : ℕ) : a - b = succ a - succ b :=
|
||||
eq.rec_on (succ_sub_succ_eq_sub a b) rfl
|
||||
eq.symm !succ_sub_succ_eq_sub
|
||||
|
||||
theorem zero_sub_eq_zero [simp] (a : ℕ) : zero - a = zero :=
|
||||
nat.rec_on a
|
||||
rfl
|
||||
(λ a₁ (ih : zero - a₁ = zero), congr (eq.refl pred) ih)
|
||||
nat.rec rfl (λ a, congr_arg pred) a
|
||||
|
||||
theorem zero_eq_zero_sub (a : ℕ) : zero = zero - a :=
|
||||
eq.rec_on (zero_sub_eq_zero a) rfl
|
||||
|
||||
theorem sub_lt {a b : ℕ} : zero < a → zero < b → a - b < a :=
|
||||
have aux : Π {a}, zero < a → Π {b}, zero < b → a - b < a, from
|
||||
λa h₁, le.rec_on h₁
|
||||
(λb h₂, le.cases_on h₂
|
||||
(lt.base zero)
|
||||
(λ b₁ bpos,
|
||||
eq.rec_on (sub_eq_succ_sub_succ zero b₁)
|
||||
(eq.rec_on (zero_eq_zero_sub b₁) (lt.base zero))))
|
||||
(λa₁ apos ih b h₂, le.cases_on h₂
|
||||
(lt.base a₁)
|
||||
(λ b₁ bpos,
|
||||
eq.rec_on (sub_eq_succ_sub_succ a₁ b₁)
|
||||
(lt.trans (@ih b₁ bpos) (lt.base a₁)))),
|
||||
λ h₁ h₂, aux h₁ h₂
|
||||
eq.symm !zero_sub_eq_zero
|
||||
|
||||
theorem sub_le (a b : ℕ) : a - b ≤ a :=
|
||||
nat.rec_on b
|
||||
(le.refl a)
|
||||
(λ b₁ ih, le.trans !pred_le ih)
|
||||
nat.rec_on b !le.refl (λ b₁, le.trans !pred_le)
|
||||
|
||||
theorem sub_le_iff_true [simp] (a b : ℕ) : a - b ≤ a ↔ true :=
|
||||
iff_true_intro (sub_le a b)
|
||||
|
||||
theorem sub_lt {a b : ℕ} (H1 : zero < a) (H2 : zero < b) : a - b < a :=
|
||||
!nat.cases_on (λh, absurd h !lt.irrefl)
|
||||
(λa h, succ_le_succ (!nat.cases_on (λh, absurd h !lt.irrefl)
|
||||
(λb c, eq.substr !succ_sub_succ_eq_sub !sub_le) H2)) H1
|
||||
|
||||
theorem sub_lt_succ (a b : ℕ) : a - b < succ a :=
|
||||
lt_succ_of_le (sub_le a b)
|
||||
lt_succ_of_le !sub_le
|
||||
|
||||
theorem sub_lt_succ_iff_true [simp] (a b : ℕ) : a - b < succ a ↔ true :=
|
||||
iff_true_intro (sub_lt_succ a b)
|
||||
iff_true_intro !sub_lt_succ
|
||||
end nat
|
||||
|
|
|
@ -21,80 +21,99 @@ definition imp (a b : Prop) : Prop := a → b
|
|||
theorem mt (H1 : a → b) (H2 : ¬b) : ¬a :=
|
||||
assume Ha : a, absurd (H1 Ha) H2
|
||||
|
||||
theorem imp.id (H : a) : a := H
|
||||
|
||||
theorem imp.intro (H : a) (H₂ : b) : a := H
|
||||
|
||||
theorem imp.mp (H : a) (H₂ : a → b) : b :=
|
||||
H₂ H
|
||||
|
||||
theorem imp.syl (H : a → b) (H₂ : c → a) (Hc : c) : b :=
|
||||
H (H₂ Hc)
|
||||
|
||||
theorem imp.left (H : a → b) (H₂ : b → c) (Ha : a) : c :=
|
||||
H₂ (H Ha)
|
||||
|
||||
theorem imp_true (a : Prop) : (a → true) ↔ true :=
|
||||
iff.intro (assume H, trivial) (assume H H1, trivial)
|
||||
iff_true_intro (imp.intro trivial)
|
||||
|
||||
theorem true_imp (a : Prop) : (true → a) ↔ a :=
|
||||
iff.intro (assume H, H trivial) (assume H H1, H)
|
||||
iff.intro (assume H, H trivial) imp.intro
|
||||
|
||||
theorem imp_false (a : Prop) : (a → false) ↔ ¬ a := iff.rfl
|
||||
|
||||
theorem false_imp (a : Prop) : (false → a) ↔ true :=
|
||||
iff.intro (assume H, trivial) (assume H H1, false.elim H1)
|
||||
iff_true_intro false.elim
|
||||
|
||||
theorem imp_iff_imp (H1 : a ↔ c) (H2 : b ↔ d) : (a → b) ↔ (c → d) :=
|
||||
iff.intro
|
||||
(λHab Hc, iff.elim_left H2 (Hab (iff.elim_right H1 Hc)))
|
||||
(λHcd Ha, iff.elim_right H2 (Hcd (iff.elim_left H1 Ha)))
|
||||
(λHab Hc, iff.mp H2 (Hab (iff.mpr H1 Hc)))
|
||||
(λHcd Ha, iff.mpr H2 (Hcd (iff.mp H1 Ha)))
|
||||
|
||||
/- not -/
|
||||
|
||||
theorem not.elim (H1 : ¬a) (H2 : a) : false := H1 H2
|
||||
theorem not.elim {A : Type} (H1 : ¬a) (H2 : a) : A := absurd H2 H1
|
||||
|
||||
theorem not.intro (H : a → false) : ¬a := H
|
||||
|
||||
theorem not_not_intro (Ha : a) : ¬¬a :=
|
||||
assume Hna : ¬a, absurd Ha Hna
|
||||
assume Hna : ¬a, Hna Ha
|
||||
|
||||
theorem not_imp_not_of_imp {a b : Prop} : (a → b) → ¬b → ¬a :=
|
||||
assume Pimp Pnb Pa, absurd (Pimp Pa) Pnb
|
||||
theorem not.mto {a b : Prop} : (a → b) → ¬b → ¬a := imp.left
|
||||
|
||||
theorem not_not_of_not_implies (H : ¬(a → b)) : ¬¬a :=
|
||||
assume Hna : ¬a, absurd (assume Ha : a, absurd Ha Hna) H
|
||||
theorem not_imp_not_of_imp {a b : Prop} : (a → b) → ¬b → ¬a := not.mto
|
||||
|
||||
theorem not_of_not_implies (H : ¬(a → b)) : ¬b :=
|
||||
assume Hb : b, absurd (assume Ha : a, Hb) H
|
||||
theorem not_not_of_not_implies : ¬(a → b) → ¬¬a :=
|
||||
not.mto not.elim
|
||||
|
||||
theorem not_of_not_implies : ¬(a → b) → ¬b :=
|
||||
not.mto imp.intro
|
||||
|
||||
theorem not_not_em : ¬¬(a ∨ ¬a) :=
|
||||
assume not_em : ¬(a ∨ ¬a),
|
||||
have Hnp : ¬a, from
|
||||
assume Hp : a, absurd (or.inl Hp) not_em,
|
||||
absurd (or.inr Hnp) not_em
|
||||
not_em (or.inr (not.mto or.inl not_em))
|
||||
|
||||
theorem not_true [simp] : ¬ true ↔ false :=
|
||||
iff.intro (assume H, H trivial) (assume H, false.elim H)
|
||||
iff_false_intro (not_not_intro trivial)
|
||||
|
||||
theorem not_false_iff [simp] : ¬ false ↔ true :=
|
||||
iff.intro (assume H, trivial) (assume H H1, H1)
|
||||
iff_true_intro not_false
|
||||
|
||||
theorem not_iff_not (H : a ↔ b) : ¬a ↔ ¬b :=
|
||||
iff.intro
|
||||
(λHna Hb, Hna (iff.elim_right H Hb))
|
||||
(λHnb Ha, Hnb (iff.elim_left H Ha))
|
||||
iff.intro (not.mto (iff.mpr H)) (not.mto (iff.mp H))
|
||||
|
||||
|
||||
/- and -/
|
||||
|
||||
definition not_and_of_not_left (b : Prop) (Hna : ¬a) : ¬(a ∧ b) :=
|
||||
assume H : a ∧ b, absurd (and.elim_left H) Hna
|
||||
definition not_and_of_not_left (b : Prop) : ¬a → ¬(a ∧ b) :=
|
||||
not.mto and.left
|
||||
|
||||
definition not_and_of_not_right (a : Prop) {b : Prop} (Hnb : ¬b) : ¬(a ∧ b) :=
|
||||
assume H : a ∧ b, absurd (and.elim_right H) Hnb
|
||||
definition not_and_of_not_right (a : Prop) {b : Prop} : ¬b → ¬(a ∧ b) :=
|
||||
not.mto and.right
|
||||
|
||||
theorem and.swap (H : a ∧ b) : b ∧ a :=
|
||||
and.intro (and.elim_right H) (and.elim_left H)
|
||||
theorem and.swap : a ∧ b → b ∧ a :=
|
||||
and.rec (λHa Hb, and.intro Hb Ha)
|
||||
|
||||
theorem and.imp (H₂ : a → c) (H₃ : b → d) : a ∧ b → c ∧ d :=
|
||||
and.rec (λHa Hb, and.intro (H₂ Ha) (H₃ Hb))
|
||||
|
||||
theorem and.imp_left (H : a → b) : a ∧ c → b ∧ c :=
|
||||
and.imp H imp.id
|
||||
|
||||
theorem and.imp_right (H : a → b) : c ∧ a → c ∧ b :=
|
||||
and.imp imp.id H
|
||||
|
||||
theorem and_of_and_of_imp_of_imp (H₁ : a ∧ b) (H₂ : a → c) (H₃ : b → d) : c ∧ d :=
|
||||
and.elim H₁ (assume Ha : a, assume Hb : b, and.intro (H₂ Ha) (H₃ Hb))
|
||||
and.imp H₂ H₃ H₁
|
||||
|
||||
theorem and_of_and_of_imp_left (H₁ : a ∧ c) (H : a → b) : b ∧ c :=
|
||||
and.elim H₁ (assume Ha : a, assume Hc : c, and.intro (H Ha) Hc)
|
||||
and.imp_left H H₁
|
||||
|
||||
theorem and_of_and_of_imp_right (H₁ : c ∧ a) (H : a → b) : c ∧ b :=
|
||||
and.elim H₁ (assume Hc : c, assume Ha : a, and.intro Hc (H Ha))
|
||||
and.imp_right H H₁
|
||||
|
||||
theorem and.comm [simp] : a ∧ b ↔ b ∧ a :=
|
||||
iff.intro (λH, and.swap H) (λH, and.swap H)
|
||||
iff.intro and.swap and.swap
|
||||
|
||||
theorem and.assoc [simp] : (a ∧ b) ∧ c ↔ a ∧ (b ∧ c) :=
|
||||
iff.intro
|
||||
|
@ -105,181 +124,158 @@ iff.intro
|
|||
obtain Ha Hb Hc, from H,
|
||||
and.intro (and.intro Ha Hb) Hc)
|
||||
|
||||
theorem and_true [simp] (a : Prop) : a ∧ true ↔ a :=
|
||||
iff.intro (assume H, and.left H) (assume H, and.intro H trivial)
|
||||
|
||||
theorem true_and [simp] (a : Prop) : true ∧ a ↔ a :=
|
||||
iff.intro (assume H, and.right H) (assume H, and.intro trivial H)
|
||||
|
||||
theorem and_false [simp] (a : Prop) : a ∧ false ↔ false :=
|
||||
iff.intro (assume H, and.right H) (assume H, false.elim H)
|
||||
|
||||
theorem false_and [simp] (a : Prop) : false ∧ a ↔ false :=
|
||||
iff.intro (assume H, and.left H) (assume H, false.elim H)
|
||||
|
||||
theorem and_self [simp] (a : Prop) : a ∧ a ↔ a :=
|
||||
iff.intro (assume H, and.left H) (assume H, and.intro H H)
|
||||
|
||||
theorem and_imp_eq (a b c : Prop) : (a ∧ b → c) = (a → b → c) :=
|
||||
propext
|
||||
(iff.intro (λ Pl a b, Pl (and.intro a b))
|
||||
(λ Pr Pand, Pr (and.left Pand) (and.right Pand)))
|
||||
|
||||
theorem and_iff_right {a b : Prop} (Ha : a) : (a ∧ b) ↔ b :=
|
||||
iff.intro
|
||||
(assume Hab, and.elim_right Hab)
|
||||
(assume Hb, and.intro Ha Hb)
|
||||
iff.intro and.right (and.intro Ha)
|
||||
|
||||
theorem and_iff_left {a b : Prop} (Hb : b) : (a ∧ b) ↔ a :=
|
||||
iff.intro
|
||||
(assume Hab, and.elim_left Hab)
|
||||
(assume Ha, and.intro Ha Hb)
|
||||
iff.intro and.left (λHa, and.intro Ha Hb)
|
||||
|
||||
theorem and_true [simp] (a : Prop) : a ∧ true ↔ a :=
|
||||
and_iff_left trivial
|
||||
|
||||
theorem true_and [simp] (a : Prop) : true ∧ a ↔ a :=
|
||||
and_iff_right trivial
|
||||
|
||||
theorem and_false [simp] (a : Prop) : a ∧ false ↔ false :=
|
||||
iff_false_intro and.right
|
||||
|
||||
theorem false_and [simp] (a : Prop) : false ∧ a ↔ false :=
|
||||
iff_false_intro and.left
|
||||
|
||||
theorem and_self [simp] (a : Prop) : a ∧ a ↔ a :=
|
||||
iff.intro and.left (assume H, and.intro H H)
|
||||
|
||||
theorem and_imp_iff (a b c : Prop) : (a ∧ b → c) ↔ (a → b → c) :=
|
||||
iff.intro (λH a b, H (and.intro a b)) and.rec
|
||||
|
||||
theorem and_imp_eq (a b c : Prop) : (a ∧ b → c) = (a → b → c) :=
|
||||
propext !and_imp_iff
|
||||
|
||||
theorem and_iff_and (H1 : a ↔ c) (H2 : b ↔ d) : (a ∧ b) ↔ (c ∧ d) :=
|
||||
iff.intro
|
||||
(assume Hab, and.intro (iff.elim_left H1 (and.left Hab)) (iff.elim_left H2 (and.right Hab)))
|
||||
(assume Hcd, and.intro (iff.elim_right H1 (and.left Hcd)) (iff.elim_right H2 (and.right Hcd)))
|
||||
iff.intro (and.imp (iff.mp H1) (iff.mp H2)) (and.imp (iff.mpr H1) (iff.mpr H2))
|
||||
|
||||
/- or -/
|
||||
|
||||
definition not_or (Hna : ¬a) (Hnb : ¬b) : ¬(a ∨ b) :=
|
||||
assume H : a ∨ b, or.rec_on H
|
||||
(assume Ha, absurd Ha Hna)
|
||||
(assume Hb, absurd Hb Hnb)
|
||||
definition not_or : ¬a → ¬b → ¬(a ∨ b) := or.rec
|
||||
|
||||
theorem or.imp (H₂ : a → c) (H₃ : b → d) : a ∨ b → c ∨ d :=
|
||||
or.rec (imp.syl or.inl H₂) (imp.syl or.inr H₃)
|
||||
|
||||
theorem or.imp_left (H : a → b) : a ∨ c → b ∨ c :=
|
||||
or.imp H imp.id
|
||||
|
||||
theorem or.imp_right (H : a → b) : c ∨ a → c ∨ b :=
|
||||
or.imp imp.id H
|
||||
|
||||
theorem or_of_or_of_imp_of_imp (H₁ : a ∨ b) (H₂ : a → c) (H₃ : b → d) : c ∨ d :=
|
||||
or.elim H₁
|
||||
(assume Ha : a, or.inl (H₂ Ha))
|
||||
(assume Hb : b, or.inr (H₃ Hb))
|
||||
or.imp H₂ H₃ H₁
|
||||
|
||||
theorem or_of_or_of_imp_left (H₁ : a ∨ c) (H : a → b) : b ∨ c :=
|
||||
or.elim H₁
|
||||
(assume H₂ : a, or.inl (H H₂))
|
||||
(assume H₂ : c, or.inr H₂)
|
||||
or.imp_left H H₁
|
||||
|
||||
theorem or_of_or_of_imp_right (H₁ : c ∨ a) (H : a → b) : c ∨ b :=
|
||||
or.elim H₁
|
||||
(assume H₂ : c, or.inl H₂)
|
||||
(assume H₂ : a, or.inr (H H₂))
|
||||
or.imp_right H H₁
|
||||
|
||||
theorem or.elim3 (H : a ∨ b ∨ c) (Ha : a → d) (Hb : b → d) (Hc : c → d) : d :=
|
||||
or.elim H Ha (assume H₂, or.elim H₂ Hb Hc)
|
||||
|
||||
theorem or.swap : a ∨ b → b ∨ a := or.rec or.inr or.inl
|
||||
|
||||
theorem or_resolve_right (H₁ : a ∨ b) (H₂ : ¬a) : b :=
|
||||
or.elim H₁ (assume Ha, absurd Ha H₂) (assume Hb, Hb)
|
||||
or.elim H₁ (not.elim H₂) imp.id
|
||||
|
||||
theorem or_resolve_left (H₁ : a ∨ b) (H₂ : ¬b) : a :=
|
||||
or.elim H₁ (assume Ha, Ha) (assume Hb, absurd Hb H₂)
|
||||
theorem or_resolve_left (H₁ : a ∨ b) : ¬b → a :=
|
||||
or_resolve_right (or.swap H₁)
|
||||
|
||||
theorem or.swap (H : a ∨ b) : b ∨ a :=
|
||||
or.elim H (assume Ha, or.inr Ha) (assume Hb, or.inl Hb)
|
||||
|
||||
theorem or.comm [simp] : a ∨ b ↔ b ∨ a :=
|
||||
iff.intro (λH, or.swap H) (λH, or.swap H)
|
||||
theorem or.comm [simp] : a ∨ b ↔ b ∨ a := iff.intro or.swap or.swap
|
||||
|
||||
theorem or.assoc [simp] : (a ∨ b) ∨ c ↔ a ∨ (b ∨ c) :=
|
||||
iff.intro
|
||||
(assume H, or.elim H
|
||||
(assume H₁, or.elim H₁
|
||||
(assume Ha, or.inl Ha)
|
||||
(assume Hb, or.inr (or.inl Hb)))
|
||||
(assume Hc, or.inr (or.inr Hc)))
|
||||
(assume H, or.elim H
|
||||
(assume Ha, (or.inl (or.inl Ha)))
|
||||
(assume H₁, or.elim H₁
|
||||
(assume Hb, or.inl (or.inr Hb))
|
||||
(assume Hc, or.inr Hc)))
|
||||
(or.rec (or.imp_right or.inl) (imp.syl or.inr or.inr))
|
||||
(or.rec (imp.syl or.inl or.inl) (or.imp_left or.inr))
|
||||
|
||||
theorem or.imp_distrib : ((a ∨ b) → c) ↔ ((a → c) ∧ (b → c)) :=
|
||||
iff.intro
|
||||
(λH, and.intro (imp.syl H or.inl) (imp.syl H or.inr))
|
||||
(and.rec or.rec)
|
||||
|
||||
theorem or_iff_right_of_imp {a b : Prop} (Ha : a → b) : (a ∨ b) ↔ b :=
|
||||
iff.intro (or.rec Ha imp.id) or.inr
|
||||
|
||||
theorem or_iff_left_of_imp {a b : Prop} (Hb : b → a) : (a ∨ b) ↔ a :=
|
||||
iff.intro (or.rec imp.id Hb) or.inl
|
||||
|
||||
theorem or_true [simp] (a : Prop) : a ∨ true ↔ true :=
|
||||
iff.intro (assume H, trivial) (assume H, or.inr H)
|
||||
iff_true_intro (or.inr trivial)
|
||||
|
||||
theorem true_or [simp] (a : Prop) : true ∨ a ↔ true :=
|
||||
iff.intro (assume H, trivial) (assume H, or.inl H)
|
||||
iff_true_intro (or.inl trivial)
|
||||
|
||||
theorem or_false [simp] (a : Prop) : a ∨ false ↔ a :=
|
||||
iff.intro
|
||||
(assume H, or.elim H (assume H1 : a, H1) (assume H1 : false, false.elim H1))
|
||||
(assume H, or.inl H)
|
||||
iff.intro (or.rec imp.id false.elim) or.inl
|
||||
|
||||
theorem false_or [simp] (a : Prop) : false ∨ a ↔ a :=
|
||||
iff.intro
|
||||
(assume H, or.elim H (assume H1 : false, false.elim H1) (assume H1 : a, H1))
|
||||
(assume H, or.inr H)
|
||||
iff.trans or.comm !or_false
|
||||
|
||||
theorem or_self (a : Prop) : a ∨ a ↔ a :=
|
||||
iff.intro
|
||||
(assume H, or.elim H (assume H1, H1) (assume H1, H1))
|
||||
(assume H, or.inl H)
|
||||
iff.intro (or.rec imp.id imp.id) or.inl
|
||||
|
||||
theorem or_iff_or (H1 : a ↔ c) (H2 : b ↔ d) : (a ∨ b) ↔ (c ∨ d) :=
|
||||
iff.intro
|
||||
(λHab, or.elim Hab (λHa, or.inl (iff.elim_left H1 Ha)) (λHb, or.inr (iff.elim_left H2 Hb)))
|
||||
(λHcd, or.elim Hcd (λHc, or.inl (iff.elim_right H1 Hc)) (λHd, or.inr (iff.elim_right H2 Hd)))
|
||||
iff.intro (or.imp (iff.mp H1) (iff.mp H2)) (or.imp (iff.mpr H1) (iff.mpr H2))
|
||||
|
||||
/- distributivity -/
|
||||
|
||||
theorem and.distrib_left (a b c : Prop) : a ∧ (b ∨ c) ↔ (a ∧ b) ∨ (a ∧ c) :=
|
||||
iff.intro
|
||||
(assume H, or.elim (and.right H)
|
||||
(assume Hb : b, or.inl (and.intro (and.left H) Hb))
|
||||
(assume Hc : c, or.inr (and.intro (and.left H) Hc)))
|
||||
(assume H, or.elim H
|
||||
(assume Hab, and.intro (and.left Hab) (or.inl (and.right Hab)))
|
||||
(assume Hac, and.intro (and.left Hac) (or.inr (and.right Hac))))
|
||||
(and.rec (λH, or.imp (and.intro H) (and.intro H)))
|
||||
(or.rec (and.imp_right or.inl) (and.imp_right or.inr))
|
||||
|
||||
theorem and.distrib_right (a b c : Prop) : (a ∨ b) ∧ c ↔ (a ∧ c) ∨ (b ∧ c) :=
|
||||
propext (!and.comm) ▸ propext (!and.comm) ▸ propext (!and.comm) ▸ !and.distrib_left
|
||||
iff.trans (iff.trans !and.comm !and.distrib_left) (or_iff_or !and.comm !and.comm)
|
||||
|
||||
theorem or.distrib_left (a b c : Prop) : a ∨ (b ∧ c) ↔ (a ∨ b) ∧ (a ∨ c) :=
|
||||
iff.intro
|
||||
(assume H, or.elim H
|
||||
(assume Ha, and.intro (or.inl Ha) (or.inl Ha))
|
||||
(assume Hbc, and.intro (or.inr (and.left Hbc)) (or.inr (and.right Hbc))))
|
||||
(assume H, or.elim (and.left H)
|
||||
(assume Ha, or.inl Ha)
|
||||
(assume Hb, or.elim (and.right H)
|
||||
(assume Ha, or.inl Ha)
|
||||
(assume Hc, or.inr (and.intro Hb Hc))))
|
||||
(or.rec (λH, and.intro (or.inl H) (or.inl H)) (and.imp or.inr or.inr))
|
||||
(and.rec (or.rec (imp.syl imp.intro or.inl) (imp.syl or.imp_right and.intro)))
|
||||
|
||||
theorem or.distrib_right (a b c : Prop) : (a ∧ b) ∨ c ↔ (a ∨ c) ∧ (b ∨ c) :=
|
||||
propext (!or.comm) ▸ propext (!or.comm) ▸ propext (!or.comm) ▸ !or.distrib_left
|
||||
iff.trans (iff.trans !or.comm !or.distrib_left) (and_iff_and !or.comm !or.comm)
|
||||
|
||||
/- iff -/
|
||||
|
||||
definition iff.def : (a ↔ b) = ((a → b) ∧ (b → a)) :=
|
||||
!eq.refl
|
||||
definition iff.def : (a ↔ b) = ((a → b) ∧ (b → a)) := rfl
|
||||
|
||||
theorem iff_true [simp] (a : Prop) : (a ↔ true) ↔ a :=
|
||||
iff.intro
|
||||
(assume H, iff.mpr H trivial)
|
||||
(assume H, iff.intro (assume H1, trivial) (assume H1, H))
|
||||
iff.intro (assume H, iff.mpr H trivial) iff_true_intro
|
||||
|
||||
theorem true_iff [simp] (a : Prop) : (true ↔ a) ↔ a :=
|
||||
iff.intro
|
||||
(assume H, iff.mp H trivial)
|
||||
(assume H, iff.intro (assume H1, H) (assume H1, trivial))
|
||||
iff.trans iff.comm !iff_true
|
||||
|
||||
theorem iff_false [simp] (a : Prop) : (a ↔ false) ↔ ¬ a :=
|
||||
iff.intro
|
||||
(assume H, and.left H)
|
||||
(assume H, and.intro H (assume H1, false.elim H1))
|
||||
iff.intro and.left iff_false_intro
|
||||
|
||||
theorem false_iff [simp] (a : Prop) : (false ↔ a) ↔ ¬ a :=
|
||||
iff.intro
|
||||
(assume H, and.right H)
|
||||
(assume H, and.intro (assume H1, false.elim H1) H)
|
||||
|
||||
theorem iff_true_of_self (Ha : a) : a ↔ true :=
|
||||
iff.intro (assume H, trivial) (assume H, Ha)
|
||||
iff.trans iff.comm !iff_false
|
||||
|
||||
theorem iff_self [simp] (a : Prop) : (a ↔ a) ↔ true :=
|
||||
iff_true_of_self !iff.refl
|
||||
iff_true_intro iff.rfl
|
||||
|
||||
theorem forall_imp_forall {A : Type} {P Q : A → Prop} (H : ∀a, (P a → Q a)) (p : ∀a, P a) (a : A) : Q a :=
|
||||
(H a) (p a)
|
||||
|
||||
theorem forall_iff_forall {A : Type} {P Q : A → Prop} (H : ∀a, (P a ↔ Q a)) : (∀a, P a) ↔ ∀a, Q a :=
|
||||
iff.intro (λp a, iff.elim_left (H a) (p a)) (λq a, iff.elim_right (H a) (q a))
|
||||
iff.intro (λp a, iff.mp (H a) (p a)) (λq a, iff.mpr (H a) (q a))
|
||||
|
||||
theorem exists_imp_exists {A : Type} {P Q : A → Prop} (H : ∀a, (P a → Q a)) (p : ∃a, P a) : ∃a, Q a :=
|
||||
exists.elim p (λa Hp, exists.intro a (H a Hp))
|
||||
|
||||
theorem exists_iff_exists {A : Type} {P Q : A → Prop} (H : ∀a, (P a ↔ Q a)) : (∃a, P a) ↔ ∃a, Q a :=
|
||||
iff.intro
|
||||
(exists_imp_exists (λa, iff.mp (H a)))
|
||||
(exists_imp_exists (λa, iff.mpr (H a)))
|
||||
|
||||
theorem imp_iff {P : Prop} (Q : Prop) (p : P) : (P → Q) ↔ Q :=
|
||||
iff.intro (λf, f p) (λq p, q)
|
||||
iff.intro (λf, f p) imp.intro
|
||||
|
||||
theorem iff_iff_iff (H1 : a ↔ c) (H2 : b ↔ d) : (a ↔ b) ↔ (c ↔ d) :=
|
||||
and_iff_and (imp_iff_imp H1 H2) (imp_iff_imp H2 H1)
|
||||
|
@ -300,10 +296,8 @@ end
|
|||
|
||||
/- congruences -/
|
||||
|
||||
theorem congr_not {a b : Prop} (H : a ↔ b) : ¬a ↔ ¬b :=
|
||||
iff.intro
|
||||
(assume H₁ : ¬a, assume H₂ : b, H₁ (iff.elim_right H H₂))
|
||||
(assume H₁ : ¬b, assume H₂ : a, H₁ (iff.elim_left H H₂))
|
||||
theorem congr_not [congr] {a b : Prop} (H : a ↔ b) : ¬a ↔ ¬b :=
|
||||
not_iff_not H
|
||||
|
||||
section
|
||||
variables {a₁ b₁ a₂ b₂ : Prop}
|
||||
|
|
|
@ -110,9 +110,8 @@ section
|
|||
assume (Hp : p) (Heq : p = false), Heq ▸ Hp
|
||||
|
||||
theorem p_ne_true : ¬p → p ≠ true :=
|
||||
assume (Hnp : ¬p) (Heq : p = true), absurd trivial (Heq ▸ Hnp)
|
||||
assume (Hnp : ¬p) (Heq : p = true), (Heq ▸ Hnp) trivial
|
||||
end
|
||||
|
||||
theorem true_ne_false : ¬true = false :=
|
||||
assume H : true = false,
|
||||
H ▸ trivial
|
||||
p_ne_false trivial
|
||||
|
|
|
@ -34,55 +34,26 @@ calc
|
|||
... ↔ b ∧ (a ∧ c) : and.assoc
|
||||
|
||||
theorem not_not_iff {a : Prop} [D : decidable a] : (¬¬a) ↔ a :=
|
||||
iff.intro
|
||||
(assume H : ¬¬a,
|
||||
by_cases (assume H' : a, H') (assume H' : ¬a, absurd H' H))
|
||||
(assume H : a, assume H', H' H)
|
||||
iff.intro by_contradiction not_not_intro
|
||||
|
||||
theorem not_not_elim {a : Prop} [D : decidable a] (H : ¬¬a) : a :=
|
||||
iff.mp not_not_iff H
|
||||
theorem not_not_elim {a : Prop} [D : decidable a] : ¬¬a → a :=
|
||||
by_contradiction
|
||||
|
||||
theorem not_true_iff_false [simp] : ¬true ↔ false :=
|
||||
iff.intro (assume H, H trivial) false.elim
|
||||
theorem not_or_iff_not_and_not {a b : Prop} : ¬(a ∨ b) ↔ ¬a ∧ ¬b :=
|
||||
or.imp_distrib
|
||||
|
||||
theorem not_false_iff_true [simp] : ¬false ↔ true :=
|
||||
iff.intro (assume H, trivial) (assume H H', H')
|
||||
|
||||
theorem not_or_iff_not_and_not {a b : Prop} [Da : decidable a] [Db : decidable b] :
|
||||
¬(a ∨ b) ↔ ¬a ∧ ¬b :=
|
||||
iff.intro
|
||||
(assume H, or.elim (em a)
|
||||
(assume Ha, absurd (or.inl Ha) H)
|
||||
(assume Hna, or.elim (em b)
|
||||
(assume Hb, absurd (or.inr Hb) H)
|
||||
(assume Hnb, and.intro Hna Hnb)))
|
||||
(assume (H : ¬a ∧ ¬b) (N : a ∨ b),
|
||||
or.elim N
|
||||
(assume Ha, absurd Ha (and.elim_left H))
|
||||
(assume Hb, absurd Hb (and.elim_right H)))
|
||||
|
||||
theorem not_and_iff_not_or_not {a b : Prop} [Da : decidable a] [Db : decidable b] :
|
||||
theorem not_and_iff_not_or_not {a b : Prop} [Da : decidable a] :
|
||||
¬(a ∧ b) ↔ ¬a ∨ ¬b :=
|
||||
iff.intro
|
||||
(assume H, or.elim (em a)
|
||||
(assume Ha, or.elim (em b)
|
||||
(assume Hb, absurd (and.intro Ha Hb) H)
|
||||
(assume Hnb, or.inr Hnb))
|
||||
(assume Hna, or.inl Hna))
|
||||
(assume (H : ¬a ∨ ¬b) (N : a ∧ b),
|
||||
or.elim H
|
||||
(assume Hna, absurd (and.elim_left N) Hna)
|
||||
(assume Hnb, absurd (and.elim_right N) Hnb))
|
||||
(λH, by_cases (λa, or.inr (not.mto (and.intro a) H)) or.inl)
|
||||
(or.rec (not.mto and.left) (not.mto and.right))
|
||||
|
||||
theorem imp_iff_not_or {a b : Prop} [Da : decidable a] : (a → b) ↔ ¬a ∨ b :=
|
||||
iff.intro
|
||||
(assume H : a → b, (or.elim (em a)
|
||||
(assume Ha : a, or.inr (H Ha))
|
||||
(assume Hna : ¬a, or.inl Hna)))
|
||||
(assume (H : ¬a ∨ b) (Ha : a),
|
||||
or_resolve_right H (not_not_iff⁻¹ ▸ Ha))
|
||||
(by_cases (λHa H, or.inr (H Ha)) (λHa H, or.inl Ha))
|
||||
(or.rec not.elim imp.intro)
|
||||
|
||||
theorem not_implies_iff_and_not {a b : Prop} [Da : decidable a] [Db : decidable b] :
|
||||
theorem not_implies_iff_and_not {a b : Prop} [Da : decidable a] :
|
||||
¬(a → b) ↔ a ∧ ¬b :=
|
||||
calc
|
||||
¬(a → b) ↔ ¬(¬a ∨ b) : {imp_iff_not_or}
|
||||
|
@ -90,39 +61,30 @@ calc
|
|||
... ↔ a ∧ ¬b : {not_not_iff}
|
||||
|
||||
theorem peirce {a b : Prop} [D : decidable a] : ((a → b) → a) → a :=
|
||||
assume H, by_contradiction (assume Hna : ¬a,
|
||||
have Hnna : ¬¬a, from not_not_of_not_implies (mt H Hna),
|
||||
absurd (not_not_elim Hnna) Hna)
|
||||
by_cases imp.intro (imp.syl imp.mp not.elim)
|
||||
|
||||
theorem forall_not_of_not_exists {A : Type} {p : A → Prop} [D : ∀x, decidable (p x)]
|
||||
(H : ¬∃x, p x) : ∀x, ¬p x :=
|
||||
take x, or.elim (em (p x))
|
||||
take x, by_cases
|
||||
(assume Hp : p x, absurd (exists.intro x Hp) H)
|
||||
(assume Hnp : ¬p x, Hnp)
|
||||
imp.id
|
||||
|
||||
theorem forall_of_not_exists_not {A : Type} {p : A → Prop} [D : decidable_pred p] :
|
||||
¬(∃ x, ¬p x) → ∀ x, p x :=
|
||||
assume Hne, take x, by_contradiction (assume Hnp : ¬ p x, Hne (exists.intro x Hnp))
|
||||
imp.syl (forall_imp_forall (λa, not_not_elim)) forall_not_of_not_exists
|
||||
|
||||
theorem exists_not_of_not_forall {A : Type} {p : A → Prop} [D : ∀x, decidable (p x)]
|
||||
[D' : decidable (∃x, ¬p x)] (H : ¬∀x, p x) :
|
||||
∃x, ¬p x :=
|
||||
by_contradiction
|
||||
(assume H1 : ¬∃x, ¬p x,
|
||||
have H2 : ∀x, ¬¬p x, from forall_not_of_not_exists H1,
|
||||
have H3 : ∀x, p x, from take x, not_not_elim (H2 x),
|
||||
absurd H3 H)
|
||||
by_contradiction (λH1, absurd (λx, not_not_elim (forall_not_of_not_exists H1 x)) H)
|
||||
|
||||
theorem exists_of_not_forall_not {A : Type} {p : A → Prop} [D : ∀x, decidable (p x)]
|
||||
[D' : decidable (∃x, ¬¬p x)] (H : ¬∀x, ¬ p x) :
|
||||
[D' : decidable (∃x, p x)] (H : ¬∀x, ¬ p x) :
|
||||
∃x, p x :=
|
||||
obtain x (H : ¬¬ p x), from exists_not_of_not_forall H,
|
||||
exists.intro x (not_not_elim H)
|
||||
by_contradiction (imp.syl H forall_not_of_not_exists)
|
||||
|
||||
theorem ne_self_iff_false {A : Type} (a : A) : (a ≠ a) ↔ false :=
|
||||
iff.intro
|
||||
(assume H, false.of_ne H)
|
||||
(assume H, false.elim H)
|
||||
iff.intro false.of_ne false.elim
|
||||
|
||||
theorem eq_self_iff_true [simp] {A : Type} (a : A) : (a = a) ↔ true :=
|
||||
iff_true_intro rfl
|
||||
|
@ -131,20 +93,12 @@ theorem heq_self_iff_true [simp] {A : Type} (a : A) : (a == a) ↔ true :=
|
|||
iff_true_intro (heq.refl a)
|
||||
|
||||
theorem iff_not_self [simp] (a : Prop) : (a ↔ ¬a) ↔ false :=
|
||||
iff.intro
|
||||
(assume H,
|
||||
have H' : ¬a, from assume Ha, (H ▸ Ha) Ha,
|
||||
H' (H⁻¹ ▸ H'))
|
||||
(assume H, false.elim H)
|
||||
iff_false_intro (λH,
|
||||
have H' : ¬a, from (λHa, (mp H Ha) Ha),
|
||||
H' (iff.mpr H H'))
|
||||
|
||||
theorem true_iff_false [simp] : (true ↔ false) ↔ false :=
|
||||
not_true_iff_false ▸ (iff_not_self true)
|
||||
not_true ▸ (iff_not_self true)
|
||||
|
||||
theorem false_iff_true [simp] : (false ↔ true) ↔ false :=
|
||||
not_false_iff_true ▸ (iff_not_self false)
|
||||
|
||||
theorem iff_true_iff [simp] (a : Prop) : (a ↔ true) ↔ a :=
|
||||
iff.intro (assume H, of_iff_true H) (assume H, iff_true_intro H)
|
||||
|
||||
theorem iff_false_iff_not [simp] (a : Prop) : (a ↔ false) ↔ ¬a :=
|
||||
iff.intro (assume H, not_of_iff_false H) (assume H, iff_false_intro H)
|
||||
not_false_iff ▸ (iff_not_self false)
|
||||
|
|
|
@ -21,43 +21,19 @@ relation.is_equivalence.mk @iff.refl @iff.symm @iff.trans
|
|||
/- congruences for logic operations -/
|
||||
|
||||
theorem is_congruence_not : is_congruence iff iff not :=
|
||||
is_congruence.mk
|
||||
(take a b,
|
||||
assume H : a ↔ b, iff.intro
|
||||
(assume H1 : ¬a, assume H2 : b, H1 (iff.elim_right H H2))
|
||||
(assume H1 : ¬b, assume H2 : a, H1 (iff.elim_left H H2)))
|
||||
is_congruence.mk @congr_not
|
||||
|
||||
theorem is_congruence_and : is_congruence2 iff iff iff and :=
|
||||
is_congruence2.mk
|
||||
(take a1 b1 a2 b2,
|
||||
assume H1 : a1 ↔ b1, assume H2 : a2 ↔ b2,
|
||||
iff.intro
|
||||
(assume H3 : a1 ∧ a2, and_of_and_of_imp_of_imp H3 (iff.elim_left H1) (iff.elim_left H2))
|
||||
(assume H3 : b1 ∧ b2, and_of_and_of_imp_of_imp H3 (iff.elim_right H1) (iff.elim_right H2)))
|
||||
is_congruence2.mk @congr_and
|
||||
|
||||
theorem is_congruence_or : is_congruence2 iff iff iff or :=
|
||||
is_congruence2.mk
|
||||
(take a1 b1 a2 b2,
|
||||
assume H1 : a1 ↔ b1, assume H2 : a2 ↔ b2,
|
||||
iff.intro
|
||||
(assume H3 : a1 ∨ a2, or_of_or_of_imp_of_imp H3 (iff.elim_left H1) (iff.elim_left H2))
|
||||
(assume H3 : b1 ∨ b2, or_of_or_of_imp_of_imp H3 (iff.elim_right H1) (iff.elim_right H2)))
|
||||
is_congruence2.mk @congr_or
|
||||
|
||||
theorem is_congruence_imp : is_congruence2 iff iff iff imp :=
|
||||
is_congruence2.mk
|
||||
(take a1 b1 a2 b2,
|
||||
assume H1 : a1 ↔ b1, assume H2 : a2 ↔ b2,
|
||||
iff.intro
|
||||
(assume H3 : a1 → a2, assume Hb1 : b1, iff.elim_left H2 (H3 ((iff.elim_right H1) Hb1)))
|
||||
(assume H3 : b1 → b2, assume Ha1 : a1, iff.elim_right H2 (H3 ((iff.elim_left H1) Ha1))))
|
||||
is_congruence2.mk @congr_imp
|
||||
|
||||
theorem is_congruence_iff : is_congruence2 iff iff iff iff :=
|
||||
is_congruence2.mk
|
||||
(take a1 b1 a2 b2,
|
||||
assume H1 : a1 ↔ b1, assume H2 : a2 ↔ b2,
|
||||
iff.intro
|
||||
(assume H3 : a1 ↔ a2, iff.trans (iff.symm H1) (iff.trans H3 H2))
|
||||
(assume H3 : b1 ↔ b2, iff.trans H1 (iff.trans H3 (iff.symm H2))))
|
||||
is_congruence2.mk @congr_iff
|
||||
|
||||
definition is_congruence_not_compose [instance] := is_congruence.compose is_congruence_not
|
||||
definition is_congruence_and_compose [instance] := is_congruence.compose21 is_congruence_and
|
||||
|
@ -75,7 +51,7 @@ end general_subst
|
|||
/- iff can be coerced to implication -/
|
||||
|
||||
definition mp_like_iff [instance] : relation.mp_like iff :=
|
||||
relation.mp_like.mk (λa b (H : a ↔ b), iff.elim_left H)
|
||||
relation.mp_like.mk @iff.mp
|
||||
|
||||
/- support for calculations with iff -/
|
||||
|
||||
|
|
|
@ -8,6 +8,12 @@ Universal and existential quantifiers. See also init.logic.
|
|||
import .connectives
|
||||
open inhabited nonempty
|
||||
|
||||
theorem exists_imp_distrib {A : Type} {B : Prop} {P : A → Prop} : ((∃ a : A, P a) → B) ↔ (∀ a : A, P a → B) :=
|
||||
iff.intro (λ e x H, e (exists.intro x H)) Exists.rec
|
||||
|
||||
theorem forall_iff_not_exists {A : Type} {P : A → Prop} : (¬ ∃ a : A, P a) ↔ ∀ a : A, ¬ P a :=
|
||||
exists_imp_distrib
|
||||
|
||||
theorem not_forall_not_of_exists {A : Type} {p : A → Prop} (H : ∃x, p x) : ¬∀x, ¬p x :=
|
||||
assume H1 : ∀x, ¬p x,
|
||||
obtain (w : A) (Hw : p w), from H,
|
||||
|
@ -18,50 +24,36 @@ assume H1 : ∃x, ¬p x,
|
|||
obtain (w : A) (Hw : ¬p w), from H1,
|
||||
absurd (H2 w) Hw
|
||||
|
||||
theorem forall_congr {A : Type} {φ ψ : A → Prop} (H : ∀x, φ x ↔ ψ x) : (∀x, φ x) ↔ (∀x, ψ x) :=
|
||||
iff.intro
|
||||
(assume Hl, take x, iff.elim_left (H x) (Hl x))
|
||||
(assume Hr, take x, iff.elim_right (H x) (Hr x))
|
||||
theorem forall_congr {A : Type} {φ ψ : A → Prop} : (∀x, φ x ↔ ψ x) → ((∀x, φ x) ↔ (∀x, ψ x)) :=
|
||||
forall_iff_forall
|
||||
|
||||
theorem exists_congr {A : Type} {φ ψ : A → Prop} (H : ∀x, φ x ↔ ψ x) : (∃x, φ x) ↔ (∃x, ψ x) :=
|
||||
iff.intro
|
||||
(assume Hex, obtain w Pw, from Hex,
|
||||
exists.intro w (iff.elim_left (H w) Pw))
|
||||
(assume Hex, obtain w Qw, from Hex,
|
||||
exists.intro w (iff.elim_right (H w) Qw))
|
||||
theorem exists_congr {A : Type} {φ ψ : A → Prop} : (∀x, φ x ↔ ψ x) → ((∃x, φ x) ↔ (∃x, ψ x)) :=
|
||||
exists_iff_exists
|
||||
|
||||
theorem forall_true_iff_true (A : Type) : (∀x : A, true) ↔ true :=
|
||||
iff.intro (assume H, trivial) (assume H, take x, trivial)
|
||||
iff_true_intro (λH, trivial)
|
||||
|
||||
theorem forall_p_iff_p (A : Type) [H : inhabited A] (p : Prop) : (∀x : A, p) ↔ p :=
|
||||
iff.intro (assume Hl, inhabited.destruct H (take x, Hl x)) (assume Hr, take x, Hr)
|
||||
iff.intro (inhabited.destruct H) (λHr x, Hr)
|
||||
|
||||
theorem exists_p_iff_p (A : Type) [H : inhabited A] (p : Prop) : (∃x : A, p) ↔ p :=
|
||||
iff.intro
|
||||
(assume Hl, obtain a Hp, from Hl, Hp)
|
||||
(assume Hr, inhabited.destruct H (take a, exists.intro a Hr))
|
||||
iff.intro (Exists.rec (λx Hp, Hp)) (inhabited.destruct H exists.intro)
|
||||
|
||||
theorem forall_and_distribute {A : Type} (φ ψ : A → Prop) :
|
||||
(∀x, φ x ∧ ψ x) ↔ (∀x, φ x) ∧ (∀x, ψ x) :=
|
||||
iff.intro
|
||||
(assume H, and.intro (take x, and.elim_left (H x)) (take x, and.elim_right (H x)))
|
||||
(assume H, take x, and.intro (and.elim_left H x) (and.elim_right H x))
|
||||
(assume H, and.intro (take x, and.left (H x)) (take x, and.right (H x)))
|
||||
(assume H x, and.intro (and.left H x) (and.right H x))
|
||||
|
||||
theorem exists_or_distribute {A : Type} (φ ψ : A → Prop) :
|
||||
(∃x, φ x ∨ ψ x) ↔ (∃x, φ x) ∨ (∃x, ψ x) :=
|
||||
iff.intro
|
||||
(assume H, obtain (w : A) (Hw : φ w ∨ ψ w), from H,
|
||||
or.elim Hw
|
||||
(assume Hw1 : φ w, or.inl (exists.intro w Hw1))
|
||||
(assume Hw2 : ψ w, or.inr (exists.intro w Hw2)))
|
||||
(assume H, or.elim H
|
||||
(assume H1, obtain (w : A) (Hw : φ w), from H1,
|
||||
exists.intro w (or.inl Hw))
|
||||
(assume H2, obtain (w : A) (Hw : ψ w), from H2,
|
||||
exists.intro w (or.inr Hw)))
|
||||
(Exists.rec (λx, or.imp !exists.intro !exists.intro))
|
||||
(or.rec (exists_imp_exists (λx, or.inl))
|
||||
(exists_imp_exists (λx, or.inr)))
|
||||
|
||||
theorem nonempty_of_exists {A : Type} {P : A → Prop} (H : ∃x, P x) : nonempty A :=
|
||||
obtain w Hw, from H, nonempty.intro w
|
||||
theorem nonempty_of_exists {A : Type} {P : A → Prop} : (∃x, P x) → nonempty A :=
|
||||
Exists.rec (λw H, intro w)
|
||||
|
||||
section
|
||||
open decidable eq.ops
|
||||
|
@ -70,16 +62,12 @@ section
|
|||
include H
|
||||
|
||||
definition decidable_forall_eq [instance] : decidable (∀ x, x = a → P x) :=
|
||||
decidable.rec_on H
|
||||
(λ pa, inl (λ x heq, eq.rec_on (eq.rec_on heq rfl) pa))
|
||||
(λ npa, inr (λ h, absurd (h a rfl) npa))
|
||||
if pa : P a then inl (λ x heq, eq.substr heq pa)
|
||||
else inr (not.mto (λH, H a rfl) pa)
|
||||
|
||||
definition decidable_exists_eq [instance] : decidable (∃ x, x = a ∧ P x) :=
|
||||
decidable.rec_on H
|
||||
(λ pa, inl (exists.intro a (and.intro rfl pa)))
|
||||
(λ npa, inr (λ h,
|
||||
obtain (w : A) (Hw : w = a ∧ P w), from h,
|
||||
absurd (and.rec_on Hw (λ h₁ h₂, h₁ ▸ h₂)) npa))
|
||||
if pa : P a then inl (exists.intro a (and.intro rfl pa))
|
||||
else inr (Exists.rec (λh, and.rec (λheq, eq.substr heq pa)))
|
||||
end
|
||||
|
||||
/- exists_unique -/
|
||||
|
@ -96,7 +84,7 @@ exists.intro w (and.intro H1 H2)
|
|||
theorem exists_unique.elim {A : Type} {p : A → Prop} {b : Prop}
|
||||
(H2 : ∃!x, p x) (H1 : ∀x, p x → (∀y, p y → y = x) → b) : b :=
|
||||
obtain w Hw, from H2,
|
||||
H1 w (and.elim_left Hw) (and.elim_right Hw)
|
||||
H1 w (and.left Hw) (and.right Hw)
|
||||
|
||||
/- congruences -/
|
||||
|
||||
|
@ -104,23 +92,13 @@ section
|
|||
variables {A : Type} {p₁ p₂ : A → Prop} (H : ∀x, p₁ x ↔ p₂ x)
|
||||
|
||||
theorem congr_forall : (∀x, p₁ x) ↔ (∀x, p₂ x) :=
|
||||
iff.intro
|
||||
(assume H', take x, iff.mp (H x) (H' x))
|
||||
(assume H', take x, iff.mpr (H x) (H' x))
|
||||
forall_congr H
|
||||
|
||||
theorem congr_exists : (∃x, p₁ x) ↔ (∃x, p₂ x) :=
|
||||
iff.intro
|
||||
(assume H', exists.elim H' (λ x H₁, exists.intro x (iff.mp (H x) H₁)))
|
||||
(assume H', exists.elim H' (λ x H₁, exists.intro x (iff.mpr (H x) H₁)))
|
||||
exists_congr H
|
||||
|
||||
include H
|
||||
theorem congr_exists_unique : (∃!x, p₁ x) ↔ (∃!x, p₂ x) :=
|
||||
begin
|
||||
apply congr_exists,
|
||||
intro x,
|
||||
apply congr_and (H x),
|
||||
apply congr_forall,
|
||||
intro y,
|
||||
apply congr_imp (H y) !iff.rfl
|
||||
end
|
||||
congr_exists (λx, congr_and (H x) (congr_forall
|
||||
(λy, congr_imp (H y) iff.rfl)))
|
||||
end
|
||||
|
|
Loading…
Reference in a new issue