feat(library/real): fix real.complete

This commit is contained in:
Rob Lewis 2015-10-13 15:59:57 -04:00 committed by Leonardo de Moura
parent 0d0df0417d
commit 06c1a97259

View file

@ -16,15 +16,12 @@ are independent of each other.
-/ -/
import data.real.basic data.real.order data.real.division data.rat data.nat data.pnat import data.real.basic data.real.order data.real.division data.rat data.nat data.pnat
open -[coercions] rat open rat algebra -- nat
local notation 0 := rat.of_num 0 local notation 0 := rat.of_num 0
local notation 1 := rat.of_num 1 local notation 1 := rat.of_num 1
open -[coercions] nat local postfix ⁻¹ := pnat.inv
open eq.ops pnat classical open eq.ops pnat classical
local notation 2 := subtype.tag (nat.of_num 2) dec_trivial
local notation 3 := subtype.tag (nat.of_num 3) dec_trivial
namespace rat_seq namespace rat_seq
theorem rat_approx {s : seq} (H : regular s) : theorem rat_approx {s : seq} (H : regular s) :
@ -37,7 +34,7 @@ theorem rat_approx {s : seq} (H : regular s) :
apply rat.le.trans, apply rat.le.trans,
apply H, apply H,
rewrite -(add_halves n), rewrite -(add_halves n),
apply rat.add_le_add_right, apply algebra.add_le_add_right,
apply inv_ge_of_le Hm apply inv_ge_of_le Hm
end end
@ -58,13 +55,14 @@ theorem rat_approx_seq {s : seq} (H : regular s) :
rewrite ↑[sadd, sneg, s_abs, const], rewrite ↑[sadd, sneg, s_abs, const],
apply rat.le.trans, apply rat.le.trans,
rotate 1, rotate 1,
apply rat.sub_le_sub_left, rewrite -sub_eq_add_neg,
apply algebra.sub_le_sub_left,
apply HN, apply HN,
apply pnat.le.trans, apply pnat.le.trans,
apply Hp, apply Hp,
rewrite -*pnat.mul.assoc, rewrite -*pnat.mul.assoc,
apply pnat.mul_le_mul_left, apply pnat.mul_le_mul_left,
rewrite [sub_self, -neg_zero], rewrite [algebra.sub_self, -neg_zero],
apply neg_le_neg, apply neg_le_neg,
apply rat.le_of_lt, apply rat.le_of_lt,
apply inv_pos apply inv_pos
@ -79,10 +77,11 @@ theorem const_bound {s : seq} (Hs : regular s) (n : +) :
begin begin
rewrite ↑[s_le, nonneg, s_abs, sadd, sneg, const], rewrite ↑[s_le, nonneg, s_abs, sadd, sneg, const],
intro m, intro m,
apply iff.mp !rat.le_add_iff_neg_le_sub_left, rewrite -sub_eq_add_neg,
apply iff.mp !le_add_iff_neg_le_sub_left,
apply rat.le.trans, apply rat.le.trans,
apply Hs, apply Hs,
apply rat.add_le_add_right, apply algebra.add_le_add_right,
rewrite -*pnat.mul.assoc, rewrite -*pnat.mul.assoc,
apply inv_ge_of_le, apply inv_ge_of_le,
apply pnat.mul_le_mul_left apply pnat.mul_le_mul_left
@ -104,18 +103,18 @@ theorem equiv_abs_of_ge_zero {s : seq} (Hs : regular s) (Hz : s_le zero s) : s_a
existsi 2 * j, existsi 2 * j,
intro n Hn, intro n Hn,
cases em (s n ≥ 0) with [Hpos, Hneg], cases em (s n ≥ 0) with [Hpos, Hneg],
rewrite [rat.abs_of_nonneg Hpos, sub_self, abs_zero], rewrite [abs_of_nonneg Hpos, algebra.sub_self, abs_zero],
apply rat.le_of_lt, apply rat.le_of_lt,
apply inv_pos, apply inv_pos,
let Hneg' := lt_of_not_ge Hneg, let Hneg' := lt_of_not_ge Hneg,
have Hsn : -s n - s n > 0, from add_pos (neg_pos_of_neg Hneg') (neg_pos_of_neg Hneg'), have Hsn : -s n - s n > 0, from add_pos (neg_pos_of_neg Hneg') (neg_pos_of_neg Hneg'),
rewrite [rat.abs_of_neg Hneg', rat.abs_of_pos Hsn], rewrite [abs_of_neg Hneg', abs_of_pos Hsn],
apply rat.le.trans, apply rat.le.trans,
apply rat.add_le_add, apply add_le_add,
repeat (apply rat.neg_le_neg; apply Hz'), repeat (apply neg_le_neg; apply Hz'),
rewrite *rat.neg_neg, rewrite algebra.neg_neg,
apply rat.le.trans, apply rat.le.trans,
apply rat.add_le_add, apply add_le_add,
repeat (apply inv_ge_of_le; apply Hn), repeat (apply inv_ge_of_le; apply Hn),
rewrite pnat.add_halves, rewrite pnat.add_halves,
apply rat.le.refl apply rat.le.refl
@ -140,18 +139,18 @@ theorem equiv_neg_abs_of_le_zero {s : seq} (Hs : regular s) (Hz : s_le s zero) :
intro n Hn, intro n Hn,
cases em (s n ≥ 0) with [Hpos, Hneg], cases em (s n ≥ 0) with [Hpos, Hneg],
have Hsn : s n + s n ≥ 0, from add_nonneg Hpos Hpos, have Hsn : s n + s n ≥ 0, from add_nonneg Hpos Hpos,
rewrite [rat.abs_of_nonneg Hpos, ↑sneg, rat.sub_neg_eq_add, rat.abs_of_nonneg Hsn], rewrite [abs_of_nonneg Hpos, ↑sneg, sub_neg_eq_add, abs_of_nonneg Hsn],
rewrite [↑nonneg at Hz', ↑sneg at Hz'], rewrite [↑nonneg at Hz', ↑sneg at Hz'],
apply rat.le.trans, apply rat.le.trans,
apply rat.add_le_add, apply add_le_add,
repeat apply (rat.le_of_neg_le_neg !Hz'), repeat apply (le_of_neg_le_neg !Hz'),
apply rat.le.trans, apply rat.le.trans,
apply rat.add_le_add, apply add_le_add,
repeat (apply inv_ge_of_le; apply Hn), repeat (apply inv_ge_of_le; apply Hn),
rewrite pnat.add_halves, rewrite pnat.add_halves,
apply rat.le.refl, apply rat.le.refl,
let Hneg' := lt_of_not_ge Hneg, let Hneg' := lt_of_not_ge Hneg,
rewrite [rat.abs_of_neg Hneg', ↑sneg, rat.sub_neg_eq_add, rat.neg_add_eq_sub, rat.sub_self, rewrite [abs_of_neg Hneg', ↑sneg, sub_neg_eq_add, neg_add_eq_sub, algebra.sub_self,
abs_zero], abs_zero],
apply rat.le_of_lt, apply rat.le_of_lt,
apply inv_pos apply inv_pos
@ -169,10 +168,10 @@ namespace real
open [classes] rat_seq open [classes] rat_seq
private theorem rewrite_helper9 (a b c : ) : b - c = (b - a) - (c - a) := private theorem rewrite_helper9 (a b c : ) : b - c = (b - a) - (c - a) :=
by rewrite[-sub_add_eq_sub_sub_swap,sub_add_cancel] by rewrite [-sub_add_eq_sub_sub_swap, algebra.sub_add_cancel]
private theorem rewrite_helper10 (a b c d : ) : c - d = (c - a) + (a - b) + (b - d) := private theorem rewrite_helper10 (a b c d : ) : c - d = (c - a) + (a - b) + (b - d) :=
by rewrite[*add_sub,*sub_add_cancel] by rewrite [*add_sub, *algebra.sub_add_cancel]
noncomputable definition rep (x : ) : rat_seq.reg_seq := some (quot.exists_rep x) noncomputable definition rep (x : ) : rat_seq.reg_seq := some (quot.exists_rep x)
@ -185,19 +184,19 @@ theorem r_abs_nonneg {x : } : zero ≤ x → re_abs x = x :=
theorem r_abs_nonpos {x : } : x ≤ zero → re_abs x = -x := theorem r_abs_nonpos {x : } : x ≤ zero → re_abs x = -x :=
quot.induction_on x (λ a Ha, quot.sound (rat_seq.r_equiv_neg_abs_of_le_zero Ha)) quot.induction_on x (λ a Ha, quot.sound (rat_seq.r_equiv_neg_abs_of_le_zero Ha))
private theorem abs_const' (a : ) : of_rat (rat.abs a) = re_abs (of_rat a) := quot.sound (rat_seq.r_abs_const a) private theorem abs_const' (a : ) : of_rat (abs a) = re_abs (of_rat a) := quot.sound (rat_seq.r_abs_const a)
private theorem re_abs_is_abs : re_abs = real.abs := funext private theorem re_abs_is_abs : re_abs = abs := funext
(begin (begin
intro x, intro x,
apply eq.symm, apply eq.symm,
cases em (zero ≤ x) with [Hor1, Hor2], cases em (zero ≤ x) with [Hor1, Hor2],
rewrite [abs_of_nonneg Hor1, r_abs_nonneg Hor1], rewrite [abs_of_nonneg Hor1, r_abs_nonneg Hor1],
have Hor2' : x ≤ zero, from le_of_lt (lt_of_not_ge Hor2), have Hor2' : x ≤ zero, from algebra.le_of_lt (lt_of_not_ge Hor2),
rewrite [abs_of_neg (lt_of_not_ge Hor2), r_abs_nonpos Hor2'] rewrite [abs_of_neg (lt_of_not_ge Hor2), r_abs_nonpos Hor2']
end) end)
theorem abs_const (a : ) : of_rat (rat.abs a) = abs (of_rat a) := theorem abs_const (a : ) : of_rat (abs a) = abs (of_rat a) :=
by rewrite -re_abs_is_abs by rewrite -re_abs_is_abs
private theorem rat_approx' (x : ) : ∀ n : +, ∃ q : , re_abs (x - of_rat q) ≤ of_rat n⁻¹ := private theorem rat_approx' (x : ) : ∀ n : +, ∃ q : , re_abs (x - of_rat q) ≤ of_rat n⁻¹ :=
@ -228,9 +227,9 @@ theorem cauchy_with_rate_of_converges_to_with_rate {X : r_seq} {a : } {N :
begin begin
intro k m n Hm Hn, intro k m n Hm Hn,
rewrite (rewrite_helper9 a), rewrite (rewrite_helper9 a),
apply le.trans, apply algebra.le.trans,
apply abs_add_le_abs_add_abs, apply abs_add_le_abs_add_abs,
apply le.trans, apply algebra.le.trans,
apply add_le_add, apply add_le_add,
apply Hc, apply Hc,
apply Hm, apply Hm,
@ -262,7 +261,7 @@ private theorem lim_seq_reg_helper {m n : +} (Hmn : M (2 * n) ≤M (2 * m)) :
abs (of_rat (lim_seq m) - X (Nb M m)) + abs (X (Nb M m) - X (Nb M n)) + abs abs (of_rat (lim_seq m) - X (Nb M m)) + abs (X (Nb M m) - X (Nb M n)) + abs
(X (Nb M n) - of_rat (lim_seq n)) ≤ of_rat (m⁻¹ + n⁻¹) := (X (Nb M n) - of_rat (lim_seq n)) ≤ of_rat (m⁻¹ + n⁻¹) :=
begin begin
apply le.trans, apply algebra.le.trans,
apply add_le_add_three, apply add_le_add_three,
apply approx_spec', apply approx_spec',
rotate 1, rotate 1,
@ -277,7 +276,7 @@ private theorem lim_seq_reg_helper {m n : +} (Hmn : M (2 * n) ≤M (2 * m)) :
apply Nb_spec_right, apply Nb_spec_right,
rewrite [-*of_rat_add, rat.add.assoc, pnat.add_halves], rewrite [-*of_rat_add, rat.add.assoc, pnat.add_halves],
apply of_rat_le_of_rat_of_le, apply of_rat_le_of_rat_of_le,
apply rat.add_le_add_right, apply add_le_add_right,
apply inv_ge_of_le, apply inv_ge_of_le,
apply pnat.mul_le_mul_left apply pnat.mul_le_mul_left
end end
@ -288,12 +287,12 @@ theorem lim_seq_reg : rat_seq.regular lim_seq :=
intro m n, intro m n,
apply le_of_of_rat_le_of_rat, apply le_of_of_rat_le_of_rat,
rewrite [abs_const, of_rat_sub, (rewrite_helper10 (X (Nb M m)) (X (Nb M n)))], rewrite [abs_const, of_rat_sub, (rewrite_helper10 (X (Nb M m)) (X (Nb M n)))],
apply real.le.trans, apply algebra.le.trans,
apply abs_add_three, apply abs_add_three,
cases em (M (2 * m) ≥ M (2 * n)) with [Hor1, Hor2], cases em (M (2 * m) ≥ M (2 * n)) with [Hor1, Hor2],
apply lim_seq_reg_helper Hor1, apply lim_seq_reg_helper Hor1,
let Hor2' := pnat.le_of_lt (pnat.lt_of_not_le Hor2), let Hor2' := pnat.le_of_lt (pnat.lt_of_not_le Hor2),
rewrite [real.abs_sub (X (Nb M n)), abs_sub (X (Nb M m)), abs_sub, rewrite [abs_sub (X (Nb M n)), abs_sub (X (Nb M m)), abs_sub,
rat.add.comm, add_comm_three], rat.add.comm, add_comm_three],
apply lim_seq_reg_helper Hor2' apply lim_seq_reg_helper Hor2'
end end
@ -329,9 +328,9 @@ theorem converges_to_with_rate_of_cauchy_with_rate : converges_to_with_rate X li
begin begin
intro k n Hn, intro k n Hn,
rewrite (rewrite_helper10 (X (Nb M n)) (of_rat (lim_seq n))), rewrite (rewrite_helper10 (X (Nb M n)) (of_rat (lim_seq n))),
apply le.trans, apply algebra.le.trans,
apply abs_add_three, apply abs_add_three,
apply le.trans, apply algebra.le.trans,
apply add_le_add_three, apply add_le_add_three,
apply Hc, apply Hc,
apply pnat.le.trans, apply pnat.le.trans,
@ -355,7 +354,7 @@ theorem converges_to_with_rate_of_cauchy_with_rate : converges_to_with_rate X li
rewrite [-*of_rat_add], rewrite [-*of_rat_add],
apply of_rat_le_of_rat_of_le, apply of_rat_le_of_rat_of_le,
apply rat.le.trans, apply rat.le.trans,
apply rat.add_le_add_three, apply add_le_add_three,
apply rat.le.refl, apply rat.le.refl,
apply inv_ge_of_le, apply inv_ge_of_le,
apply pnat_mul_le_mul_left', apply pnat_mul_le_mul_left',
@ -403,10 +402,10 @@ theorem archimedean_upper_strict (x : ) : ∃ z : , x < of_int z :=
begin begin
cases archimedean_upper x with [z, Hz], cases archimedean_upper x with [z, Hz],
existsi z + 1, existsi z + 1,
apply lt_of_le_of_lt, apply algebra.lt_of_le_of_lt,
apply Hz, apply Hz,
apply of_int_lt_of_int_of_lt, apply of_int_lt_of_int_of_lt,
apply int.lt_add_of_pos_right, apply lt_add_of_pos_right,
apply dec_trivial apply dec_trivial
end end
@ -432,8 +431,8 @@ private definition ex_floor (x : ) :=
existsi some (archimedean_upper_strict x), existsi some (archimedean_upper_strict x),
let Har := some_spec (archimedean_upper_strict x), let Har := some_spec (archimedean_upper_strict x),
intros z Hz, intros z Hz,
apply not_le_of_gt, apply algebra.not_le_of_gt,
apply lt_of_lt_of_le, apply algebra.lt_of_lt_of_le,
apply Har, apply Har,
have H : of_int (some (archimedean_upper_strict x)) ≤ of_int z, begin have H : of_int (some (archimedean_upper_strict x)) ≤ of_int z, begin
apply of_int_le_of_int_of_le, apply of_int_le_of_int_of_le,
@ -468,7 +467,7 @@ theorem le_ceil (x : ) : x ≤ ceil x :=
theorem lt_of_lt_ceil {x : } {z : } (Hz : z < ceil x) : z < x := theorem lt_of_lt_ceil {x : } {z : } (Hz : z < ceil x) : z < x :=
begin begin
rewrite ↑ceil at Hz, rewrite ↑ceil at Hz,
let Hz' := lt_of_floor_lt (iff.mp !int.lt_neg_iff_lt_neg Hz), let Hz' := lt_of_floor_lt (iff.mp !lt_neg_iff_lt_neg Hz),
rewrite [of_int_neg at Hz'], rewrite [of_int_neg at Hz'],
apply lt_of_neg_lt_neg Hz' apply lt_of_neg_lt_neg Hz'
end end
@ -477,37 +476,39 @@ theorem floor_succ (x : ) : floor (x + 1) = floor x + 1 :=
begin begin
apply by_contradiction, apply by_contradiction,
intro H, intro H,
cases int.lt_or_gt_of_ne H with [Hgt, Hlt], cases lt_or_gt_of_ne H with [Hgt, Hlt],
let Hl := lt_of_floor_lt Hgt, let Hl := lt_of_floor_lt Hgt,
rewrite [of_int_add at Hl], rewrite [of_int_add at Hl],
apply not_le_of_gt (lt_of_add_lt_add_right Hl) !floor_le, apply not_le_of_gt (lt_of_add_lt_add_right Hl) !floor_le,
let Hl := lt_of_floor_lt (iff.mp !int.add_lt_iff_lt_sub_right Hlt), let Hl := lt_of_floor_lt (iff.mp !add_lt_iff_lt_sub_right Hlt),
rewrite [of_int_sub at Hl], rewrite [of_int_sub at Hl],
apply not_le_of_gt (iff.mpr !add_lt_iff_lt_sub_right Hl) !floor_le apply not_le_of_gt (iff.mpr !add_lt_iff_lt_sub_right Hl) !floor_le
end end
theorem floor_sub_one_lt_floor (x : ) : floor (x - 1) < floor x := theorem floor_sub_one_lt_floor (x : ) : floor (x - 1) < floor x :=
begin begin
apply @int.lt_of_add_lt_add_right _ 1,
apply @algebra.lt_of_add_lt_add_right _ _ 1,
rewrite [-floor_succ (x - 1), sub_add_cancel], rewrite [-floor_succ (x - 1), sub_add_cancel],
apply int.lt_add_of_pos_right dec_trivial apply lt_add_of_pos_right dec_trivial
end end
theorem ceil_lt_ceil_succ (x : ) : ceil x < ceil (x + 1) := theorem ceil_lt_ceil_succ (x : ) : ceil x < ceil (x + 1) :=
begin begin
rewrite [↑ceil, neg_add], rewrite [↑ceil, neg_add],
apply int.neg_lt_neg, apply neg_lt_neg,
apply floor_sub_one_lt_floor apply floor_sub_one_lt_floor
end end
open nat
set_option pp.coercions true
theorem archimedean_small {ε : } (H : ε > 0) : ∃ (n : ), 1 / succ n < ε := theorem archimedean_small {ε : } (H : ε > 0) : ∃ (n : ), 1 / succ n < ε :=
let n := int.nat_abs (ceil (2 / ε)) in let n := int.nat_abs (ceil (2 / ε)) in
have int.of_nat n ≥ ceil (2 / ε), assert int.of_nat n ≥ ceil (2 / ε),
by rewrite int.of_nat_nat_abs; apply int.le_abs_self, by rewrite of_nat_nat_abs; apply le_abs_self,
have int.of_nat (succ n) ≥ ceil (2 / ε), have int.of_nat (succ n) ≥ ceil (2 / ε),
from int.le.trans this (int.of_nat_le_of_nat_of_le !le_succ), begin apply algebra.le.trans, exact this, apply int.of_nat_le_of_nat_of_le, apply le_succ end,
have H₁ : succ n ≥ ceil (2 / ε), from of_int_le_of_int_of_le this, have H₁ : succ n ≥ ceil (2 / ε), from of_int_le_of_int_of_le this,
have H₂ : succ n ≥ 2 / ε, from !le.trans !le_ceil H₁, have H₂ : succ n ≥ 2 / ε, from !algebra.le.trans !le_ceil H₁,
have H₃ : 2 / ε > 0, from div_pos_of_pos_of_pos two_pos H, have H₃ : 2 / ε > 0, from div_pos_of_pos_of_pos two_pos H,
have 1 / succ n < ε, from calc have 1 / succ n < ε, from calc
1 / succ n ≤ 1 / (2 / ε) : one_div_le_one_div_of_le H₃ H₂ 1 / succ n ≤ 1 / (2 / ε) : one_div_le_one_div_of_le H₃ H₂
@ -560,7 +561,7 @@ private theorem under_spec1 : of_rat under < elt :=
apply of_int_lt_of_int_of_lt, apply of_int_lt_of_int_of_lt,
apply floor_sub_one_lt_floor apply floor_sub_one_lt_floor
end, end,
lt_of_lt_of_le H !floor_le algebra.lt_of_lt_of_le H !floor_le
private theorem under_spec : ¬ ub under := private theorem under_spec : ¬ ub under :=
begin begin
@ -580,14 +581,14 @@ private theorem over_spec1 : bound < of_rat over :=
apply of_int_lt_of_int_of_lt, apply of_int_lt_of_int_of_lt,
apply ceil_lt_ceil_succ apply ceil_lt_ceil_succ
end, end,
lt_of_le_of_lt !le_ceil H algebra.lt_of_le_of_lt !le_ceil H
private theorem over_spec : ub over := private theorem over_spec : ub over :=
begin begin
rewrite ↑ub, rewrite ↑ub,
intro y Hy, intro y Hy,
apply le_of_lt, apply algebra.le_of_lt,
apply lt_of_le_of_lt, apply algebra.lt_of_le_of_lt,
apply bdd, apply bdd,
apply Hy, apply Hy,
apply over_spec1 apply over_spec1
@ -638,21 +639,23 @@ private theorem over_succ (n : ) : over_seq (succ n) =
apply H apply H
end end
private theorem width (n : ) : over_seq n - under_seq n = (over - under) / (rat.pow 2 n) := private theorem nat.zero_eq_0 : (zero : ) = 0 := rfl
private theorem width (n : ) : over_seq n - under_seq n = (over - under) / ((2^n) : ) :=
nat.induction_on n nat.induction_on n
(by xrewrite [over_0, under_0, rat.pow_zero, rat.div_one]) (by xrewrite [nat.zero_eq_0, over_0, under_0, pow_zero, div_one])
(begin (begin
intro a Ha, intro a Ha,
rewrite [over_succ, under_succ], rewrite [over_succ, under_succ],
let Hou := calc let Hou := calc
(over_seq a) / 2 - (under_seq a) / 2 = ((over - under) / rat.pow 2 a) / 2 : (over_seq a) / 2 - (under_seq a) / 2 = ((over - under) / 2^a) / 2 :
by rewrite [rat.div_sub_div_same, Ha] by rewrite [div_sub_div_same, Ha]
... = (over - under) / (rat.pow 2 a * 2) : rat.div_div_eq_div_mul ... = (over - under) / ((2^a) * 2) : by rewrite div_div_eq_div_mul
... = (over - under) / rat.pow 2 (a + 1) : by rewrite rat.pow_add, ... = (over - under) / 2^(a + 1) : by rewrite pow_add,
cases em (ub (avg_seq a)), cases em (ub (avg_seq a)),
rewrite [*if_pos a_1, -add_one, -Hou, ↑avg_seq, ↑avg, rat.add.assoc, rat.div_two_sub_self], rewrite [*if_pos a_1, -add_one, -Hou, ↑avg_seq, ↑avg, sub_eq_add_neg, algebra.add.assoc, -sub_eq_add_neg, div_two_sub_self],
rewrite [*if_neg a_1, -add_one, -Hou, ↑avg_seq, ↑avg, rat.sub_add_eq_sub_sub, rewrite [*if_neg a_1, -add_one, -Hou, ↑avg_seq, ↑avg, sub_add_eq_sub_sub,
rat.sub_self_div_two] algebra.sub_self_div_two]
end) end)
private theorem width_narrows : ∃ n : , over_seq n - under_seq n ≤ 1 := private theorem width_narrows : ∃ n : , over_seq n - under_seq n ≤ 1 :=
@ -660,8 +663,8 @@ private theorem width_narrows : ∃ n : , over_seq n - under_seq n ≤ 1 :=
cases binary_bound (over - under) with [a, Ha], cases binary_bound (over - under) with [a, Ha],
existsi a, existsi a,
rewrite (width a), rewrite (width a),
apply rat.div_le_of_le_mul, apply div_le_of_le_mul,
apply rat.pow_pos dec_trivial, apply pow_pos dec_trivial,
rewrite rat.mul_one, rewrite rat.mul_one,
apply Ha apply Ha
end end
@ -682,17 +685,17 @@ private theorem under_seq'0 : under_seq' 0 = under' :=
private theorem under_over' : over' - under' ≤ 1 := some_spec width_narrows private theorem under_over' : over' - under' ≤ 1 := some_spec width_narrows
private theorem width' (n : ) : over_seq' n - under_seq' n ≤ 1 / rat.pow 2 n := private theorem width' (n : ) : over_seq' n - under_seq' n ≤ 1 / 2^n :=
nat.induction_on n nat.induction_on n
(begin (begin
xrewrite [over_seq'0, under_seq'0, rat.pow_zero, rat.div_one], xrewrite [nat.zero_eq_0, over_seq'0, under_seq'0, pow_zero, div_one],
apply under_over' apply under_over'
end) end)
(begin (begin
intros a Ha, intros a Ha,
rewrite [↑over_seq' at *, ↑under_seq' at *, *succ_add at *, width at *, rewrite [↑over_seq' at *, ↑under_seq' at *, *succ_add at *, width at *,
-add_one, -(add_one a), rat.pow_add, rat.pow_add _ a 1, *rat.pow_one], -add_one, -(add_one a), pow_add, pow_add _ a 1, *pow_one],
apply rat.div_mul_le_div_mul_of_div_le_div_pos' Ha dec_trivial apply div_mul_le_div_mul_of_div_le_div_pos' Ha dec_trivial
end) end)
private theorem PA (n : ) : ¬ ub (under_seq n) := private theorem PA (n : ) : ¬ ub (under_seq n) :=
@ -726,7 +729,7 @@ private theorem under_lt_over : under < over :=
cases exists_not_of_not_forall under_spec with [x, Hx], cases exists_not_of_not_forall under_spec with [x, Hx],
cases iff.mp not_implies_iff_and_not Hx with [HXx, Hxu], cases iff.mp not_implies_iff_and_not Hx with [HXx, Hxu],
apply lt_of_of_rat_lt_of_rat, apply lt_of_of_rat_lt_of_rat,
apply lt_of_lt_of_le, apply algebra.lt_of_lt_of_le,
apply lt_of_not_ge Hxu, apply lt_of_not_ge Hxu,
apply over_spec _ HXx apply over_spec _ HXx
end end
@ -737,7 +740,7 @@ private theorem under_seq_lt_over_seq : ∀ m n : , under_seq m < over_seq n
cases exists_not_of_not_forall (PA m) with [x, Hx], cases exists_not_of_not_forall (PA m) with [x, Hx],
cases iff.mp not_implies_iff_and_not Hx with [HXx, Hxu], cases iff.mp not_implies_iff_and_not Hx with [HXx, Hxu],
apply lt_of_of_rat_lt_of_rat, apply lt_of_of_rat_lt_of_rat,
apply lt_of_lt_of_le, apply algebra.lt_of_lt_of_le,
apply lt_of_not_ge Hxu, apply lt_of_not_ge Hxu,
apply PB, apply PB,
apply HXx apply HXx
@ -764,9 +767,9 @@ private theorem under_seq_mono_helper (i k : ) : under_seq i ≤ under_seq (i
rewrite [if_neg Havg, ↑avg_seq, ↑avg], rewrite [if_neg Havg, ↑avg_seq, ↑avg],
apply rat.le.trans, apply rat.le.trans,
apply Ha, apply Ha,
rewrite -rat.add_halves at {1}, rewrite -add_halves at {1},
apply rat.add_le_add_right, apply add_le_add_right,
apply rat.div_le_div_of_le_of_pos, apply div_le_div_of_le_of_pos,
apply rat.le_of_lt, apply rat.le_of_lt,
apply under_seq_lt_over_seq, apply under_seq_lt_over_seq,
apply dec_trivial apply dec_trivial
@ -778,7 +781,7 @@ private theorem under_seq_mono (i j : ) (H : i ≤ j) : under_seq i ≤ under
rewrite -Hk', rewrite -Hk',
apply under_seq_mono_helper apply under_seq_mono_helper
end end
set_option pp.coercions true
private theorem over_seq_mono_helper (i k : ) : over_seq (i + k) ≤ over_seq i := private theorem over_seq_mono_helper (i k : ) : over_seq (i + k) ≤ over_seq i :=
nat.induction_on k nat.induction_on k
(by rewrite nat.add_zero; apply rat.le.refl) (by rewrite nat.add_zero; apply rat.le.refl)
@ -791,9 +794,9 @@ private theorem over_seq_mono_helper (i k : ) : over_seq (i + k) ≤ over_seq
rotate 1, rotate 1,
apply Ha, apply Ha,
rotate 1, rotate 1,
rewrite -{over_seq (i + a)}rat.add_halves at {2}, apply add_le_of_le_sub_left,
apply rat.add_le_add_left, rewrite sub_self_div_two,
apply rat.div_le_div_of_le_of_pos, apply div_le_div_of_le_of_pos,
apply rat.le_of_lt, apply rat.le_of_lt,
apply under_seq_lt_over_seq, apply under_seq_lt_over_seq,
apply dec_trivial, apply dec_trivial,
@ -808,18 +811,18 @@ private theorem over_seq_mono (i j : ) (H : i ≤ j) : over_seq j ≤ over_se
apply over_seq_mono_helper apply over_seq_mono_helper
end end
private theorem rat_power_two_inv_ge (k : +) : 1 / rat.pow 2 k~ ≤ k⁻¹ := private theorem rat_power_two_inv_ge (k : +) : 1 / 2^k~ ≤ k⁻¹ :=
rat.one_div_le_one_div_of_le !rat_of_pnat_is_pos !rat_power_two_le one_div_le_one_div_of_le !rat_of_pnat_is_pos !rat_power_two_le
open rat_seq open rat_seq
private theorem regular_lemma_helper {s : seq} {m n : +} (Hm : m ≤ n) private theorem regular_lemma_helper {s : seq} {m n : +} (Hm : m ≤ n)
(H : ∀ n i : +, i ≥ n → under_seq' n~ ≤ s i ∧ s i ≤ over_seq' n~) : (H : ∀ n i : +, i ≥ n → under_seq' n~ ≤ s i ∧ s i ≤ over_seq' n~) :
rat.abs (s m - s n) ≤ m⁻¹ + n⁻¹ := abs (s m - s n) ≤ m⁻¹ + n⁻¹ :=
begin begin
cases H m n Hm with [T1under, T1over], cases H m n Hm with [T1under, T1over],
cases H m m (!pnat.le.refl) with [T2under, T2over], cases H m m (!pnat.le.refl) with [T2under, T2over],
apply rat.le.trans, apply rat.le.trans,
apply rat.dist_bdd_within_interval, apply dist_bdd_within_interval,
apply under_seq'_lt_over_seq'_single, apply under_seq'_lt_over_seq'_single,
rotate 1, rotate 1,
repeat assumption, repeat assumption,
@ -827,7 +830,7 @@ private theorem regular_lemma_helper {s : seq} {m n : +} (Hm : m ≤ n)
apply width', apply width',
apply rat.le.trans, apply rat.le.trans,
apply rat_power_two_inv_ge, apply rat_power_two_inv_ge,
apply rat.le_add_of_nonneg_right, apply le_add_of_nonneg_right,
apply rat.le_of_lt (!inv_pos) apply rat.le_of_lt (!inv_pos)
end end
@ -839,7 +842,7 @@ private theorem regular_lemma (s : seq) (H : ∀ n i : +, i ≥ n → under_s
cases em (m ≤ n) with [Hm, Hn], cases em (m ≤ n) with [Hm, Hn],
apply regular_lemma_helper Hm H, apply regular_lemma_helper Hm H,
let T := regular_lemma_helper (pnat.le_of_lt (pnat.lt_of_not_le Hn)) H, let T := regular_lemma_helper (pnat.le_of_lt (pnat.lt_of_not_le Hn)) H,
rewrite [rat.abs_sub at T, {n⁻¹ + _}rat.add.comm at T], rewrite [abs_sub at T, {n⁻¹ + _}rat.add.comm at T],
exact T exact T
end end
@ -853,7 +856,8 @@ private theorem under_seq_regular : regular p_under_seq :=
intros n i Hni, intros n i Hni,
apply and.intro, apply and.intro,
apply under_seq_mono, apply under_seq_mono,
apply nat.add_le_add_right Hni, apply add_le_add_right,
apply Hni,
apply rat.le_of_lt, apply rat.le_of_lt,
apply under_seq_lt_over_seq apply under_seq_lt_over_seq
end end
@ -866,7 +870,8 @@ private theorem over_seq_regular : regular p_over_seq :=
apply rat.le_of_lt, apply rat.le_of_lt,
apply under_seq_lt_over_seq, apply under_seq_lt_over_seq,
apply over_seq_mono, apply over_seq_mono,
apply nat.add_le_add_right Hni apply add_le_add_right,
apply Hni
end end
private noncomputable definition sup_over : := quot.mk (reg_seq.mk p_over_seq over_seq_regular) private noncomputable definition sup_over : := quot.mk (reg_seq.mk p_over_seq over_seq_regular)
@ -890,8 +895,8 @@ private theorem under_lowest_bound : ∀ y : , ub y → sup_under ≤ y :=
intro n, intro n,
cases exists_not_of_not_forall (PA _) with [x, Hx], cases exists_not_of_not_forall (PA _) with [x, Hx],
cases iff.mp not_implies_iff_and_not Hx with [HXx, Hxn], cases iff.mp not_implies_iff_and_not Hx with [HXx, Hxn],
apply le.trans, apply algebra.le.trans,
apply le_of_lt, apply algebra.le_of_lt,
apply lt_of_not_ge Hxn, apply lt_of_not_ge Hxn,
apply Hy, apply Hy,
apply HXx apply HXx
@ -902,11 +907,11 @@ private theorem under_over_equiv : p_under_seq ≡ p_over_seq :=
intros, intros,
apply rat.le.trans, apply rat.le.trans,
have H : p_under_seq n < p_over_seq n, from !under_seq_lt_over_seq, have H : p_under_seq n < p_over_seq n, from !under_seq_lt_over_seq,
rewrite [rat.abs_of_neg (iff.mpr !rat.sub_neg_iff_lt H), rat.neg_sub], rewrite [abs_of_neg (iff.mpr !sub_neg_iff_lt H), neg_sub],
apply width', apply width',
apply rat.le.trans, apply rat.le.trans,
apply rat_power_two_inv_ge, apply rat_power_two_inv_ge,
apply rat.le_add_of_nonneg_left, apply le_add_of_nonneg_left,
apply rat.le_of_lt !inv_pos apply rat.le_of_lt !inv_pos
end end