feat(library/real): fix real.complete
This commit is contained in:
parent
0d0df0417d
commit
06c1a97259
1 changed files with 97 additions and 92 deletions
|
@ -16,15 +16,12 @@ are independent of each other.
|
||||||
-/
|
-/
|
||||||
|
|
||||||
import data.real.basic data.real.order data.real.division data.rat data.nat data.pnat
|
import data.real.basic data.real.order data.real.division data.rat data.nat data.pnat
|
||||||
open -[coercions] rat
|
open rat algebra -- nat
|
||||||
local notation 0 := rat.of_num 0
|
local notation 0 := rat.of_num 0
|
||||||
local notation 1 := rat.of_num 1
|
local notation 1 := rat.of_num 1
|
||||||
open -[coercions] nat
|
local postfix ⁻¹ := pnat.inv
|
||||||
open eq.ops pnat classical
|
open eq.ops pnat classical
|
||||||
|
|
||||||
local notation 2 := subtype.tag (nat.of_num 2) dec_trivial
|
|
||||||
local notation 3 := subtype.tag (nat.of_num 3) dec_trivial
|
|
||||||
|
|
||||||
namespace rat_seq
|
namespace rat_seq
|
||||||
|
|
||||||
theorem rat_approx {s : seq} (H : regular s) :
|
theorem rat_approx {s : seq} (H : regular s) :
|
||||||
|
@ -37,7 +34,7 @@ theorem rat_approx {s : seq} (H : regular s) :
|
||||||
apply rat.le.trans,
|
apply rat.le.trans,
|
||||||
apply H,
|
apply H,
|
||||||
rewrite -(add_halves n),
|
rewrite -(add_halves n),
|
||||||
apply rat.add_le_add_right,
|
apply algebra.add_le_add_right,
|
||||||
apply inv_ge_of_le Hm
|
apply inv_ge_of_le Hm
|
||||||
end
|
end
|
||||||
|
|
||||||
|
@ -58,13 +55,14 @@ theorem rat_approx_seq {s : seq} (H : regular s) :
|
||||||
rewrite ↑[sadd, sneg, s_abs, const],
|
rewrite ↑[sadd, sneg, s_abs, const],
|
||||||
apply rat.le.trans,
|
apply rat.le.trans,
|
||||||
rotate 1,
|
rotate 1,
|
||||||
apply rat.sub_le_sub_left,
|
rewrite -sub_eq_add_neg,
|
||||||
|
apply algebra.sub_le_sub_left,
|
||||||
apply HN,
|
apply HN,
|
||||||
apply pnat.le.trans,
|
apply pnat.le.trans,
|
||||||
apply Hp,
|
apply Hp,
|
||||||
rewrite -*pnat.mul.assoc,
|
rewrite -*pnat.mul.assoc,
|
||||||
apply pnat.mul_le_mul_left,
|
apply pnat.mul_le_mul_left,
|
||||||
rewrite [sub_self, -neg_zero],
|
rewrite [algebra.sub_self, -neg_zero],
|
||||||
apply neg_le_neg,
|
apply neg_le_neg,
|
||||||
apply rat.le_of_lt,
|
apply rat.le_of_lt,
|
||||||
apply inv_pos
|
apply inv_pos
|
||||||
|
@ -79,10 +77,11 @@ theorem const_bound {s : seq} (Hs : regular s) (n : ℕ+) :
|
||||||
begin
|
begin
|
||||||
rewrite ↑[s_le, nonneg, s_abs, sadd, sneg, const],
|
rewrite ↑[s_le, nonneg, s_abs, sadd, sneg, const],
|
||||||
intro m,
|
intro m,
|
||||||
apply iff.mp !rat.le_add_iff_neg_le_sub_left,
|
rewrite -sub_eq_add_neg,
|
||||||
|
apply iff.mp !le_add_iff_neg_le_sub_left,
|
||||||
apply rat.le.trans,
|
apply rat.le.trans,
|
||||||
apply Hs,
|
apply Hs,
|
||||||
apply rat.add_le_add_right,
|
apply algebra.add_le_add_right,
|
||||||
rewrite -*pnat.mul.assoc,
|
rewrite -*pnat.mul.assoc,
|
||||||
apply inv_ge_of_le,
|
apply inv_ge_of_le,
|
||||||
apply pnat.mul_le_mul_left
|
apply pnat.mul_le_mul_left
|
||||||
|
@ -104,18 +103,18 @@ theorem equiv_abs_of_ge_zero {s : seq} (Hs : regular s) (Hz : s_le zero s) : s_a
|
||||||
existsi 2 * j,
|
existsi 2 * j,
|
||||||
intro n Hn,
|
intro n Hn,
|
||||||
cases em (s n ≥ 0) with [Hpos, Hneg],
|
cases em (s n ≥ 0) with [Hpos, Hneg],
|
||||||
rewrite [rat.abs_of_nonneg Hpos, sub_self, abs_zero],
|
rewrite [abs_of_nonneg Hpos, algebra.sub_self, abs_zero],
|
||||||
apply rat.le_of_lt,
|
apply rat.le_of_lt,
|
||||||
apply inv_pos,
|
apply inv_pos,
|
||||||
let Hneg' := lt_of_not_ge Hneg,
|
let Hneg' := lt_of_not_ge Hneg,
|
||||||
have Hsn : -s n - s n > 0, from add_pos (neg_pos_of_neg Hneg') (neg_pos_of_neg Hneg'),
|
have Hsn : -s n - s n > 0, from add_pos (neg_pos_of_neg Hneg') (neg_pos_of_neg Hneg'),
|
||||||
rewrite [rat.abs_of_neg Hneg', rat.abs_of_pos Hsn],
|
rewrite [abs_of_neg Hneg', abs_of_pos Hsn],
|
||||||
apply rat.le.trans,
|
apply rat.le.trans,
|
||||||
apply rat.add_le_add,
|
apply add_le_add,
|
||||||
repeat (apply rat.neg_le_neg; apply Hz'),
|
repeat (apply neg_le_neg; apply Hz'),
|
||||||
rewrite *rat.neg_neg,
|
rewrite algebra.neg_neg,
|
||||||
apply rat.le.trans,
|
apply rat.le.trans,
|
||||||
apply rat.add_le_add,
|
apply add_le_add,
|
||||||
repeat (apply inv_ge_of_le; apply Hn),
|
repeat (apply inv_ge_of_le; apply Hn),
|
||||||
rewrite pnat.add_halves,
|
rewrite pnat.add_halves,
|
||||||
apply rat.le.refl
|
apply rat.le.refl
|
||||||
|
@ -140,18 +139,18 @@ theorem equiv_neg_abs_of_le_zero {s : seq} (Hs : regular s) (Hz : s_le s zero) :
|
||||||
intro n Hn,
|
intro n Hn,
|
||||||
cases em (s n ≥ 0) with [Hpos, Hneg],
|
cases em (s n ≥ 0) with [Hpos, Hneg],
|
||||||
have Hsn : s n + s n ≥ 0, from add_nonneg Hpos Hpos,
|
have Hsn : s n + s n ≥ 0, from add_nonneg Hpos Hpos,
|
||||||
rewrite [rat.abs_of_nonneg Hpos, ↑sneg, rat.sub_neg_eq_add, rat.abs_of_nonneg Hsn],
|
rewrite [abs_of_nonneg Hpos, ↑sneg, sub_neg_eq_add, abs_of_nonneg Hsn],
|
||||||
rewrite [↑nonneg at Hz', ↑sneg at Hz'],
|
rewrite [↑nonneg at Hz', ↑sneg at Hz'],
|
||||||
apply rat.le.trans,
|
apply rat.le.trans,
|
||||||
apply rat.add_le_add,
|
apply add_le_add,
|
||||||
repeat apply (rat.le_of_neg_le_neg !Hz'),
|
repeat apply (le_of_neg_le_neg !Hz'),
|
||||||
apply rat.le.trans,
|
apply rat.le.trans,
|
||||||
apply rat.add_le_add,
|
apply add_le_add,
|
||||||
repeat (apply inv_ge_of_le; apply Hn),
|
repeat (apply inv_ge_of_le; apply Hn),
|
||||||
rewrite pnat.add_halves,
|
rewrite pnat.add_halves,
|
||||||
apply rat.le.refl,
|
apply rat.le.refl,
|
||||||
let Hneg' := lt_of_not_ge Hneg,
|
let Hneg' := lt_of_not_ge Hneg,
|
||||||
rewrite [rat.abs_of_neg Hneg', ↑sneg, rat.sub_neg_eq_add, rat.neg_add_eq_sub, rat.sub_self,
|
rewrite [abs_of_neg Hneg', ↑sneg, sub_neg_eq_add, neg_add_eq_sub, algebra.sub_self,
|
||||||
abs_zero],
|
abs_zero],
|
||||||
apply rat.le_of_lt,
|
apply rat.le_of_lt,
|
||||||
apply inv_pos
|
apply inv_pos
|
||||||
|
@ -169,10 +168,10 @@ namespace real
|
||||||
open [classes] rat_seq
|
open [classes] rat_seq
|
||||||
|
|
||||||
private theorem rewrite_helper9 (a b c : ℝ) : b - c = (b - a) - (c - a) :=
|
private theorem rewrite_helper9 (a b c : ℝ) : b - c = (b - a) - (c - a) :=
|
||||||
by rewrite[-sub_add_eq_sub_sub_swap,sub_add_cancel]
|
by rewrite [-sub_add_eq_sub_sub_swap, algebra.sub_add_cancel]
|
||||||
|
|
||||||
private theorem rewrite_helper10 (a b c d : ℝ) : c - d = (c - a) + (a - b) + (b - d) :=
|
private theorem rewrite_helper10 (a b c d : ℝ) : c - d = (c - a) + (a - b) + (b - d) :=
|
||||||
by rewrite[*add_sub,*sub_add_cancel]
|
by rewrite [*add_sub, *algebra.sub_add_cancel]
|
||||||
|
|
||||||
noncomputable definition rep (x : ℝ) : rat_seq.reg_seq := some (quot.exists_rep x)
|
noncomputable definition rep (x : ℝ) : rat_seq.reg_seq := some (quot.exists_rep x)
|
||||||
|
|
||||||
|
@ -185,20 +184,20 @@ theorem r_abs_nonneg {x : ℝ} : zero ≤ x → re_abs x = x :=
|
||||||
theorem r_abs_nonpos {x : ℝ} : x ≤ zero → re_abs x = -x :=
|
theorem r_abs_nonpos {x : ℝ} : x ≤ zero → re_abs x = -x :=
|
||||||
quot.induction_on x (λ a Ha, quot.sound (rat_seq.r_equiv_neg_abs_of_le_zero Ha))
|
quot.induction_on x (λ a Ha, quot.sound (rat_seq.r_equiv_neg_abs_of_le_zero Ha))
|
||||||
|
|
||||||
private theorem abs_const' (a : ℚ) : of_rat (rat.abs a) = re_abs (of_rat a) := quot.sound (rat_seq.r_abs_const a)
|
private theorem abs_const' (a : ℚ) : of_rat (abs a) = re_abs (of_rat a) := quot.sound (rat_seq.r_abs_const a)
|
||||||
|
|
||||||
private theorem re_abs_is_abs : re_abs = real.abs := funext
|
private theorem re_abs_is_abs : re_abs = abs := funext
|
||||||
(begin
|
(begin
|
||||||
intro x,
|
intro x,
|
||||||
apply eq.symm,
|
apply eq.symm,
|
||||||
cases em (zero ≤ x) with [Hor1, Hor2],
|
cases em (zero ≤ x) with [Hor1, Hor2],
|
||||||
rewrite [abs_of_nonneg Hor1, r_abs_nonneg Hor1],
|
rewrite [abs_of_nonneg Hor1, r_abs_nonneg Hor1],
|
||||||
have Hor2' : x ≤ zero, from le_of_lt (lt_of_not_ge Hor2),
|
have Hor2' : x ≤ zero, from algebra.le_of_lt (lt_of_not_ge Hor2),
|
||||||
rewrite [abs_of_neg (lt_of_not_ge Hor2), r_abs_nonpos Hor2']
|
rewrite [abs_of_neg (lt_of_not_ge Hor2), r_abs_nonpos Hor2']
|
||||||
end)
|
end)
|
||||||
|
|
||||||
theorem abs_const (a : ℚ) : of_rat (rat.abs a) = abs (of_rat a) :=
|
theorem abs_const (a : ℚ) : of_rat (abs a) = abs (of_rat a) :=
|
||||||
by rewrite -re_abs_is_abs
|
by rewrite -re_abs_is_abs
|
||||||
|
|
||||||
private theorem rat_approx' (x : ℝ) : ∀ n : ℕ+, ∃ q : ℚ, re_abs (x - of_rat q) ≤ of_rat n⁻¹ :=
|
private theorem rat_approx' (x : ℝ) : ∀ n : ℕ+, ∃ q : ℚ, re_abs (x - of_rat q) ≤ of_rat n⁻¹ :=
|
||||||
quot.induction_on x (λ s n, rat_seq.r_rat_approx s n)
|
quot.induction_on x (λ s n, rat_seq.r_rat_approx s n)
|
||||||
|
@ -228,9 +227,9 @@ theorem cauchy_with_rate_of_converges_to_with_rate {X : r_seq} {a : ℝ} {N :
|
||||||
begin
|
begin
|
||||||
intro k m n Hm Hn,
|
intro k m n Hm Hn,
|
||||||
rewrite (rewrite_helper9 a),
|
rewrite (rewrite_helper9 a),
|
||||||
apply le.trans,
|
apply algebra.le.trans,
|
||||||
apply abs_add_le_abs_add_abs,
|
apply abs_add_le_abs_add_abs,
|
||||||
apply le.trans,
|
apply algebra.le.trans,
|
||||||
apply add_le_add,
|
apply add_le_add,
|
||||||
apply Hc,
|
apply Hc,
|
||||||
apply Hm,
|
apply Hm,
|
||||||
|
@ -262,7 +261,7 @@ private theorem lim_seq_reg_helper {m n : ℕ+} (Hmn : M (2 * n) ≤M (2 * m)) :
|
||||||
abs (of_rat (lim_seq m) - X (Nb M m)) + abs (X (Nb M m) - X (Nb M n)) + abs
|
abs (of_rat (lim_seq m) - X (Nb M m)) + abs (X (Nb M m) - X (Nb M n)) + abs
|
||||||
(X (Nb M n) - of_rat (lim_seq n)) ≤ of_rat (m⁻¹ + n⁻¹) :=
|
(X (Nb M n) - of_rat (lim_seq n)) ≤ of_rat (m⁻¹ + n⁻¹) :=
|
||||||
begin
|
begin
|
||||||
apply le.trans,
|
apply algebra.le.trans,
|
||||||
apply add_le_add_three,
|
apply add_le_add_three,
|
||||||
apply approx_spec',
|
apply approx_spec',
|
||||||
rotate 1,
|
rotate 1,
|
||||||
|
@ -277,7 +276,7 @@ private theorem lim_seq_reg_helper {m n : ℕ+} (Hmn : M (2 * n) ≤M (2 * m)) :
|
||||||
apply Nb_spec_right,
|
apply Nb_spec_right,
|
||||||
rewrite [-*of_rat_add, rat.add.assoc, pnat.add_halves],
|
rewrite [-*of_rat_add, rat.add.assoc, pnat.add_halves],
|
||||||
apply of_rat_le_of_rat_of_le,
|
apply of_rat_le_of_rat_of_le,
|
||||||
apply rat.add_le_add_right,
|
apply add_le_add_right,
|
||||||
apply inv_ge_of_le,
|
apply inv_ge_of_le,
|
||||||
apply pnat.mul_le_mul_left
|
apply pnat.mul_le_mul_left
|
||||||
end
|
end
|
||||||
|
@ -288,12 +287,12 @@ theorem lim_seq_reg : rat_seq.regular lim_seq :=
|
||||||
intro m n,
|
intro m n,
|
||||||
apply le_of_of_rat_le_of_rat,
|
apply le_of_of_rat_le_of_rat,
|
||||||
rewrite [abs_const, of_rat_sub, (rewrite_helper10 (X (Nb M m)) (X (Nb M n)))],
|
rewrite [abs_const, of_rat_sub, (rewrite_helper10 (X (Nb M m)) (X (Nb M n)))],
|
||||||
apply real.le.trans,
|
apply algebra.le.trans,
|
||||||
apply abs_add_three,
|
apply abs_add_three,
|
||||||
cases em (M (2 * m) ≥ M (2 * n)) with [Hor1, Hor2],
|
cases em (M (2 * m) ≥ M (2 * n)) with [Hor1, Hor2],
|
||||||
apply lim_seq_reg_helper Hor1,
|
apply lim_seq_reg_helper Hor1,
|
||||||
let Hor2' := pnat.le_of_lt (pnat.lt_of_not_le Hor2),
|
let Hor2' := pnat.le_of_lt (pnat.lt_of_not_le Hor2),
|
||||||
rewrite [real.abs_sub (X (Nb M n)), abs_sub (X (Nb M m)), abs_sub,
|
rewrite [abs_sub (X (Nb M n)), abs_sub (X (Nb M m)), abs_sub,
|
||||||
rat.add.comm, add_comm_three],
|
rat.add.comm, add_comm_three],
|
||||||
apply lim_seq_reg_helper Hor2'
|
apply lim_seq_reg_helper Hor2'
|
||||||
end
|
end
|
||||||
|
@ -329,9 +328,9 @@ theorem converges_to_with_rate_of_cauchy_with_rate : converges_to_with_rate X li
|
||||||
begin
|
begin
|
||||||
intro k n Hn,
|
intro k n Hn,
|
||||||
rewrite (rewrite_helper10 (X (Nb M n)) (of_rat (lim_seq n))),
|
rewrite (rewrite_helper10 (X (Nb M n)) (of_rat (lim_seq n))),
|
||||||
apply le.trans,
|
apply algebra.le.trans,
|
||||||
apply abs_add_three,
|
apply abs_add_three,
|
||||||
apply le.trans,
|
apply algebra.le.trans,
|
||||||
apply add_le_add_three,
|
apply add_le_add_three,
|
||||||
apply Hc,
|
apply Hc,
|
||||||
apply pnat.le.trans,
|
apply pnat.le.trans,
|
||||||
|
@ -355,7 +354,7 @@ theorem converges_to_with_rate_of_cauchy_with_rate : converges_to_with_rate X li
|
||||||
rewrite [-*of_rat_add],
|
rewrite [-*of_rat_add],
|
||||||
apply of_rat_le_of_rat_of_le,
|
apply of_rat_le_of_rat_of_le,
|
||||||
apply rat.le.trans,
|
apply rat.le.trans,
|
||||||
apply rat.add_le_add_three,
|
apply add_le_add_three,
|
||||||
apply rat.le.refl,
|
apply rat.le.refl,
|
||||||
apply inv_ge_of_le,
|
apply inv_ge_of_le,
|
||||||
apply pnat_mul_le_mul_left',
|
apply pnat_mul_le_mul_left',
|
||||||
|
@ -403,10 +402,10 @@ theorem archimedean_upper_strict (x : ℝ) : ∃ z : ℤ, x < of_int z :=
|
||||||
begin
|
begin
|
||||||
cases archimedean_upper x with [z, Hz],
|
cases archimedean_upper x with [z, Hz],
|
||||||
existsi z + 1,
|
existsi z + 1,
|
||||||
apply lt_of_le_of_lt,
|
apply algebra.lt_of_le_of_lt,
|
||||||
apply Hz,
|
apply Hz,
|
||||||
apply of_int_lt_of_int_of_lt,
|
apply of_int_lt_of_int_of_lt,
|
||||||
apply int.lt_add_of_pos_right,
|
apply lt_add_of_pos_right,
|
||||||
apply dec_trivial
|
apply dec_trivial
|
||||||
end
|
end
|
||||||
|
|
||||||
|
@ -432,8 +431,8 @@ private definition ex_floor (x : ℝ) :=
|
||||||
existsi some (archimedean_upper_strict x),
|
existsi some (archimedean_upper_strict x),
|
||||||
let Har := some_spec (archimedean_upper_strict x),
|
let Har := some_spec (archimedean_upper_strict x),
|
||||||
intros z Hz,
|
intros z Hz,
|
||||||
apply not_le_of_gt,
|
apply algebra.not_le_of_gt,
|
||||||
apply lt_of_lt_of_le,
|
apply algebra.lt_of_lt_of_le,
|
||||||
apply Har,
|
apply Har,
|
||||||
have H : of_int (some (archimedean_upper_strict x)) ≤ of_int z, begin
|
have H : of_int (some (archimedean_upper_strict x)) ≤ of_int z, begin
|
||||||
apply of_int_le_of_int_of_le,
|
apply of_int_le_of_int_of_le,
|
||||||
|
@ -468,7 +467,7 @@ theorem le_ceil (x : ℝ) : x ≤ ceil x :=
|
||||||
theorem lt_of_lt_ceil {x : ℝ} {z : ℤ} (Hz : z < ceil x) : z < x :=
|
theorem lt_of_lt_ceil {x : ℝ} {z : ℤ} (Hz : z < ceil x) : z < x :=
|
||||||
begin
|
begin
|
||||||
rewrite ↑ceil at Hz,
|
rewrite ↑ceil at Hz,
|
||||||
let Hz' := lt_of_floor_lt (iff.mp !int.lt_neg_iff_lt_neg Hz),
|
let Hz' := lt_of_floor_lt (iff.mp !lt_neg_iff_lt_neg Hz),
|
||||||
rewrite [of_int_neg at Hz'],
|
rewrite [of_int_neg at Hz'],
|
||||||
apply lt_of_neg_lt_neg Hz'
|
apply lt_of_neg_lt_neg Hz'
|
||||||
end
|
end
|
||||||
|
@ -477,37 +476,39 @@ theorem floor_succ (x : ℝ) : floor (x + 1) = floor x + 1 :=
|
||||||
begin
|
begin
|
||||||
apply by_contradiction,
|
apply by_contradiction,
|
||||||
intro H,
|
intro H,
|
||||||
cases int.lt_or_gt_of_ne H with [Hgt, Hlt],
|
cases lt_or_gt_of_ne H with [Hgt, Hlt],
|
||||||
let Hl := lt_of_floor_lt Hgt,
|
let Hl := lt_of_floor_lt Hgt,
|
||||||
rewrite [of_int_add at Hl],
|
rewrite [of_int_add at Hl],
|
||||||
apply not_le_of_gt (lt_of_add_lt_add_right Hl) !floor_le,
|
apply not_le_of_gt (lt_of_add_lt_add_right Hl) !floor_le,
|
||||||
let Hl := lt_of_floor_lt (iff.mp !int.add_lt_iff_lt_sub_right Hlt),
|
let Hl := lt_of_floor_lt (iff.mp !add_lt_iff_lt_sub_right Hlt),
|
||||||
rewrite [of_int_sub at Hl],
|
rewrite [of_int_sub at Hl],
|
||||||
apply not_le_of_gt (iff.mpr !add_lt_iff_lt_sub_right Hl) !floor_le
|
apply not_le_of_gt (iff.mpr !add_lt_iff_lt_sub_right Hl) !floor_le
|
||||||
end
|
end
|
||||||
|
|
||||||
theorem floor_sub_one_lt_floor (x : ℝ) : floor (x - 1) < floor x :=
|
theorem floor_sub_one_lt_floor (x : ℝ) : floor (x - 1) < floor x :=
|
||||||
begin
|
begin
|
||||||
apply @int.lt_of_add_lt_add_right _ 1,
|
|
||||||
|
apply @algebra.lt_of_add_lt_add_right ℤ _ _ 1,
|
||||||
rewrite [-floor_succ (x - 1), sub_add_cancel],
|
rewrite [-floor_succ (x - 1), sub_add_cancel],
|
||||||
apply int.lt_add_of_pos_right dec_trivial
|
apply lt_add_of_pos_right dec_trivial
|
||||||
end
|
end
|
||||||
|
|
||||||
theorem ceil_lt_ceil_succ (x : ℝ) : ceil x < ceil (x + 1) :=
|
theorem ceil_lt_ceil_succ (x : ℝ) : ceil x < ceil (x + 1) :=
|
||||||
begin
|
begin
|
||||||
rewrite [↑ceil, neg_add],
|
rewrite [↑ceil, neg_add],
|
||||||
apply int.neg_lt_neg,
|
apply neg_lt_neg,
|
||||||
apply floor_sub_one_lt_floor
|
apply floor_sub_one_lt_floor
|
||||||
end
|
end
|
||||||
|
open nat
|
||||||
|
set_option pp.coercions true
|
||||||
theorem archimedean_small {ε : ℝ} (H : ε > 0) : ∃ (n : ℕ), 1 / succ n < ε :=
|
theorem archimedean_small {ε : ℝ} (H : ε > 0) : ∃ (n : ℕ), 1 / succ n < ε :=
|
||||||
let n := int.nat_abs (ceil (2 / ε)) in
|
let n := int.nat_abs (ceil (2 / ε)) in
|
||||||
have int.of_nat n ≥ ceil (2 / ε),
|
assert int.of_nat n ≥ ceil (2 / ε),
|
||||||
by rewrite int.of_nat_nat_abs; apply int.le_abs_self,
|
by rewrite of_nat_nat_abs; apply le_abs_self,
|
||||||
have int.of_nat (succ n) ≥ ceil (2 / ε),
|
have int.of_nat (succ n) ≥ ceil (2 / ε),
|
||||||
from int.le.trans this (int.of_nat_le_of_nat_of_le !le_succ),
|
begin apply algebra.le.trans, exact this, apply int.of_nat_le_of_nat_of_le, apply le_succ end,
|
||||||
have H₁ : succ n ≥ ceil (2 / ε), from of_int_le_of_int_of_le this,
|
have H₁ : succ n ≥ ceil (2 / ε), from of_int_le_of_int_of_le this,
|
||||||
have H₂ : succ n ≥ 2 / ε, from !le.trans !le_ceil H₁,
|
have H₂ : succ n ≥ 2 / ε, from !algebra.le.trans !le_ceil H₁,
|
||||||
have H₃ : 2 / ε > 0, from div_pos_of_pos_of_pos two_pos H,
|
have H₃ : 2 / ε > 0, from div_pos_of_pos_of_pos two_pos H,
|
||||||
have 1 / succ n < ε, from calc
|
have 1 / succ n < ε, from calc
|
||||||
1 / succ n ≤ 1 / (2 / ε) : one_div_le_one_div_of_le H₃ H₂
|
1 / succ n ≤ 1 / (2 / ε) : one_div_le_one_div_of_le H₃ H₂
|
||||||
|
@ -560,7 +561,7 @@ private theorem under_spec1 : of_rat under < elt :=
|
||||||
apply of_int_lt_of_int_of_lt,
|
apply of_int_lt_of_int_of_lt,
|
||||||
apply floor_sub_one_lt_floor
|
apply floor_sub_one_lt_floor
|
||||||
end,
|
end,
|
||||||
lt_of_lt_of_le H !floor_le
|
algebra.lt_of_lt_of_le H !floor_le
|
||||||
|
|
||||||
private theorem under_spec : ¬ ub under :=
|
private theorem under_spec : ¬ ub under :=
|
||||||
begin
|
begin
|
||||||
|
@ -580,14 +581,14 @@ private theorem over_spec1 : bound < of_rat over :=
|
||||||
apply of_int_lt_of_int_of_lt,
|
apply of_int_lt_of_int_of_lt,
|
||||||
apply ceil_lt_ceil_succ
|
apply ceil_lt_ceil_succ
|
||||||
end,
|
end,
|
||||||
lt_of_le_of_lt !le_ceil H
|
algebra.lt_of_le_of_lt !le_ceil H
|
||||||
|
|
||||||
private theorem over_spec : ub over :=
|
private theorem over_spec : ub over :=
|
||||||
begin
|
begin
|
||||||
rewrite ↑ub,
|
rewrite ↑ub,
|
||||||
intro y Hy,
|
intro y Hy,
|
||||||
apply le_of_lt,
|
apply algebra.le_of_lt,
|
||||||
apply lt_of_le_of_lt,
|
apply algebra.lt_of_le_of_lt,
|
||||||
apply bdd,
|
apply bdd,
|
||||||
apply Hy,
|
apply Hy,
|
||||||
apply over_spec1
|
apply over_spec1
|
||||||
|
@ -638,21 +639,23 @@ private theorem over_succ (n : ℕ) : over_seq (succ n) =
|
||||||
apply H
|
apply H
|
||||||
end
|
end
|
||||||
|
|
||||||
private theorem width (n : ℕ) : over_seq n - under_seq n = (over - under) / (rat.pow 2 n) :=
|
private theorem nat.zero_eq_0 : (zero : ℕ) = 0 := rfl
|
||||||
|
|
||||||
|
private theorem width (n : ℕ) : over_seq n - under_seq n = (over - under) / ((2^n) : ℚ) :=
|
||||||
nat.induction_on n
|
nat.induction_on n
|
||||||
(by xrewrite [over_0, under_0, rat.pow_zero, rat.div_one])
|
(by xrewrite [nat.zero_eq_0, over_0, under_0, pow_zero, div_one])
|
||||||
(begin
|
(begin
|
||||||
intro a Ha,
|
intro a Ha,
|
||||||
rewrite [over_succ, under_succ],
|
rewrite [over_succ, under_succ],
|
||||||
let Hou := calc
|
let Hou := calc
|
||||||
(over_seq a) / 2 - (under_seq a) / 2 = ((over - under) / rat.pow 2 a) / 2 :
|
(over_seq a) / 2 - (under_seq a) / 2 = ((over - under) / 2^a) / 2 :
|
||||||
by rewrite [rat.div_sub_div_same, Ha]
|
by rewrite [div_sub_div_same, Ha]
|
||||||
... = (over - under) / (rat.pow 2 a * 2) : rat.div_div_eq_div_mul
|
... = (over - under) / ((2^a) * 2) : by rewrite div_div_eq_div_mul
|
||||||
... = (over - under) / rat.pow 2 (a + 1) : by rewrite rat.pow_add,
|
... = (over - under) / 2^(a + 1) : by rewrite pow_add,
|
||||||
cases em (ub (avg_seq a)),
|
cases em (ub (avg_seq a)),
|
||||||
rewrite [*if_pos a_1, -add_one, -Hou, ↑avg_seq, ↑avg, rat.add.assoc, rat.div_two_sub_self],
|
rewrite [*if_pos a_1, -add_one, -Hou, ↑avg_seq, ↑avg, sub_eq_add_neg, algebra.add.assoc, -sub_eq_add_neg, div_two_sub_self],
|
||||||
rewrite [*if_neg a_1, -add_one, -Hou, ↑avg_seq, ↑avg, rat.sub_add_eq_sub_sub,
|
rewrite [*if_neg a_1, -add_one, -Hou, ↑avg_seq, ↑avg, sub_add_eq_sub_sub,
|
||||||
rat.sub_self_div_two]
|
algebra.sub_self_div_two]
|
||||||
end)
|
end)
|
||||||
|
|
||||||
private theorem width_narrows : ∃ n : ℕ, over_seq n - under_seq n ≤ 1 :=
|
private theorem width_narrows : ∃ n : ℕ, over_seq n - under_seq n ≤ 1 :=
|
||||||
|
@ -660,8 +663,8 @@ private theorem width_narrows : ∃ n : ℕ, over_seq n - under_seq n ≤ 1 :=
|
||||||
cases binary_bound (over - under) with [a, Ha],
|
cases binary_bound (over - under) with [a, Ha],
|
||||||
existsi a,
|
existsi a,
|
||||||
rewrite (width a),
|
rewrite (width a),
|
||||||
apply rat.div_le_of_le_mul,
|
apply div_le_of_le_mul,
|
||||||
apply rat.pow_pos dec_trivial,
|
apply pow_pos dec_trivial,
|
||||||
rewrite rat.mul_one,
|
rewrite rat.mul_one,
|
||||||
apply Ha
|
apply Ha
|
||||||
end
|
end
|
||||||
|
@ -682,17 +685,17 @@ private theorem under_seq'0 : under_seq' 0 = under' :=
|
||||||
|
|
||||||
private theorem under_over' : over' - under' ≤ 1 := some_spec width_narrows
|
private theorem under_over' : over' - under' ≤ 1 := some_spec width_narrows
|
||||||
|
|
||||||
private theorem width' (n : ℕ) : over_seq' n - under_seq' n ≤ 1 / rat.pow 2 n :=
|
private theorem width' (n : ℕ) : over_seq' n - under_seq' n ≤ 1 / 2^n :=
|
||||||
nat.induction_on n
|
nat.induction_on n
|
||||||
(begin
|
(begin
|
||||||
xrewrite [over_seq'0, under_seq'0, rat.pow_zero, rat.div_one],
|
xrewrite [nat.zero_eq_0, over_seq'0, under_seq'0, pow_zero, div_one],
|
||||||
apply under_over'
|
apply under_over'
|
||||||
end)
|
end)
|
||||||
(begin
|
(begin
|
||||||
intros a Ha,
|
intros a Ha,
|
||||||
rewrite [↑over_seq' at *, ↑under_seq' at *, *succ_add at *, width at *,
|
rewrite [↑over_seq' at *, ↑under_seq' at *, *succ_add at *, width at *,
|
||||||
-add_one, -(add_one a), rat.pow_add, rat.pow_add _ a 1, *rat.pow_one],
|
-add_one, -(add_one a), pow_add, pow_add _ a 1, *pow_one],
|
||||||
apply rat.div_mul_le_div_mul_of_div_le_div_pos' Ha dec_trivial
|
apply div_mul_le_div_mul_of_div_le_div_pos' Ha dec_trivial
|
||||||
end)
|
end)
|
||||||
|
|
||||||
private theorem PA (n : ℕ) : ¬ ub (under_seq n) :=
|
private theorem PA (n : ℕ) : ¬ ub (under_seq n) :=
|
||||||
|
@ -726,7 +729,7 @@ private theorem under_lt_over : under < over :=
|
||||||
cases exists_not_of_not_forall under_spec with [x, Hx],
|
cases exists_not_of_not_forall under_spec with [x, Hx],
|
||||||
cases iff.mp not_implies_iff_and_not Hx with [HXx, Hxu],
|
cases iff.mp not_implies_iff_and_not Hx with [HXx, Hxu],
|
||||||
apply lt_of_of_rat_lt_of_rat,
|
apply lt_of_of_rat_lt_of_rat,
|
||||||
apply lt_of_lt_of_le,
|
apply algebra.lt_of_lt_of_le,
|
||||||
apply lt_of_not_ge Hxu,
|
apply lt_of_not_ge Hxu,
|
||||||
apply over_spec _ HXx
|
apply over_spec _ HXx
|
||||||
end
|
end
|
||||||
|
@ -737,7 +740,7 @@ private theorem under_seq_lt_over_seq : ∀ m n : ℕ, under_seq m < over_seq n
|
||||||
cases exists_not_of_not_forall (PA m) with [x, Hx],
|
cases exists_not_of_not_forall (PA m) with [x, Hx],
|
||||||
cases iff.mp not_implies_iff_and_not Hx with [HXx, Hxu],
|
cases iff.mp not_implies_iff_and_not Hx with [HXx, Hxu],
|
||||||
apply lt_of_of_rat_lt_of_rat,
|
apply lt_of_of_rat_lt_of_rat,
|
||||||
apply lt_of_lt_of_le,
|
apply algebra.lt_of_lt_of_le,
|
||||||
apply lt_of_not_ge Hxu,
|
apply lt_of_not_ge Hxu,
|
||||||
apply PB,
|
apply PB,
|
||||||
apply HXx
|
apply HXx
|
||||||
|
@ -764,9 +767,9 @@ private theorem under_seq_mono_helper (i k : ℕ) : under_seq i ≤ under_seq (i
|
||||||
rewrite [if_neg Havg, ↑avg_seq, ↑avg],
|
rewrite [if_neg Havg, ↑avg_seq, ↑avg],
|
||||||
apply rat.le.trans,
|
apply rat.le.trans,
|
||||||
apply Ha,
|
apply Ha,
|
||||||
rewrite -rat.add_halves at {1},
|
rewrite -add_halves at {1},
|
||||||
apply rat.add_le_add_right,
|
apply add_le_add_right,
|
||||||
apply rat.div_le_div_of_le_of_pos,
|
apply div_le_div_of_le_of_pos,
|
||||||
apply rat.le_of_lt,
|
apply rat.le_of_lt,
|
||||||
apply under_seq_lt_over_seq,
|
apply under_seq_lt_over_seq,
|
||||||
apply dec_trivial
|
apply dec_trivial
|
||||||
|
@ -778,7 +781,7 @@ private theorem under_seq_mono (i j : ℕ) (H : i ≤ j) : under_seq i ≤ under
|
||||||
rewrite -Hk',
|
rewrite -Hk',
|
||||||
apply under_seq_mono_helper
|
apply under_seq_mono_helper
|
||||||
end
|
end
|
||||||
|
set_option pp.coercions true
|
||||||
private theorem over_seq_mono_helper (i k : ℕ) : over_seq (i + k) ≤ over_seq i :=
|
private theorem over_seq_mono_helper (i k : ℕ) : over_seq (i + k) ≤ over_seq i :=
|
||||||
nat.induction_on k
|
nat.induction_on k
|
||||||
(by rewrite nat.add_zero; apply rat.le.refl)
|
(by rewrite nat.add_zero; apply rat.le.refl)
|
||||||
|
@ -791,9 +794,9 @@ private theorem over_seq_mono_helper (i k : ℕ) : over_seq (i + k) ≤ over_seq
|
||||||
rotate 1,
|
rotate 1,
|
||||||
apply Ha,
|
apply Ha,
|
||||||
rotate 1,
|
rotate 1,
|
||||||
rewrite -{over_seq (i + a)}rat.add_halves at {2},
|
apply add_le_of_le_sub_left,
|
||||||
apply rat.add_le_add_left,
|
rewrite sub_self_div_two,
|
||||||
apply rat.div_le_div_of_le_of_pos,
|
apply div_le_div_of_le_of_pos,
|
||||||
apply rat.le_of_lt,
|
apply rat.le_of_lt,
|
||||||
apply under_seq_lt_over_seq,
|
apply under_seq_lt_over_seq,
|
||||||
apply dec_trivial,
|
apply dec_trivial,
|
||||||
|
@ -808,18 +811,18 @@ private theorem over_seq_mono (i j : ℕ) (H : i ≤ j) : over_seq j ≤ over_se
|
||||||
apply over_seq_mono_helper
|
apply over_seq_mono_helper
|
||||||
end
|
end
|
||||||
|
|
||||||
private theorem rat_power_two_inv_ge (k : ℕ+) : 1 / rat.pow 2 k~ ≤ k⁻¹ :=
|
private theorem rat_power_two_inv_ge (k : ℕ+) : 1 / 2^k~ ≤ k⁻¹ :=
|
||||||
rat.one_div_le_one_div_of_le !rat_of_pnat_is_pos !rat_power_two_le
|
one_div_le_one_div_of_le !rat_of_pnat_is_pos !rat_power_two_le
|
||||||
|
|
||||||
open rat_seq
|
open rat_seq
|
||||||
private theorem regular_lemma_helper {s : seq} {m n : ℕ+} (Hm : m ≤ n)
|
private theorem regular_lemma_helper {s : seq} {m n : ℕ+} (Hm : m ≤ n)
|
||||||
(H : ∀ n i : ℕ+, i ≥ n → under_seq' n~ ≤ s i ∧ s i ≤ over_seq' n~) :
|
(H : ∀ n i : ℕ+, i ≥ n → under_seq' n~ ≤ s i ∧ s i ≤ over_seq' n~) :
|
||||||
rat.abs (s m - s n) ≤ m⁻¹ + n⁻¹ :=
|
abs (s m - s n) ≤ m⁻¹ + n⁻¹ :=
|
||||||
begin
|
begin
|
||||||
cases H m n Hm with [T1under, T1over],
|
cases H m n Hm with [T1under, T1over],
|
||||||
cases H m m (!pnat.le.refl) with [T2under, T2over],
|
cases H m m (!pnat.le.refl) with [T2under, T2over],
|
||||||
apply rat.le.trans,
|
apply rat.le.trans,
|
||||||
apply rat.dist_bdd_within_interval,
|
apply dist_bdd_within_interval,
|
||||||
apply under_seq'_lt_over_seq'_single,
|
apply under_seq'_lt_over_seq'_single,
|
||||||
rotate 1,
|
rotate 1,
|
||||||
repeat assumption,
|
repeat assumption,
|
||||||
|
@ -827,7 +830,7 @@ private theorem regular_lemma_helper {s : seq} {m n : ℕ+} (Hm : m ≤ n)
|
||||||
apply width',
|
apply width',
|
||||||
apply rat.le.trans,
|
apply rat.le.trans,
|
||||||
apply rat_power_two_inv_ge,
|
apply rat_power_two_inv_ge,
|
||||||
apply rat.le_add_of_nonneg_right,
|
apply le_add_of_nonneg_right,
|
||||||
apply rat.le_of_lt (!inv_pos)
|
apply rat.le_of_lt (!inv_pos)
|
||||||
end
|
end
|
||||||
|
|
||||||
|
@ -839,7 +842,7 @@ private theorem regular_lemma (s : seq) (H : ∀ n i : ℕ+, i ≥ n → under_s
|
||||||
cases em (m ≤ n) with [Hm, Hn],
|
cases em (m ≤ n) with [Hm, Hn],
|
||||||
apply regular_lemma_helper Hm H,
|
apply regular_lemma_helper Hm H,
|
||||||
let T := regular_lemma_helper (pnat.le_of_lt (pnat.lt_of_not_le Hn)) H,
|
let T := regular_lemma_helper (pnat.le_of_lt (pnat.lt_of_not_le Hn)) H,
|
||||||
rewrite [rat.abs_sub at T, {n⁻¹ + _}rat.add.comm at T],
|
rewrite [abs_sub at T, {n⁻¹ + _}rat.add.comm at T],
|
||||||
exact T
|
exact T
|
||||||
end
|
end
|
||||||
|
|
||||||
|
@ -853,7 +856,8 @@ private theorem under_seq_regular : regular p_under_seq :=
|
||||||
intros n i Hni,
|
intros n i Hni,
|
||||||
apply and.intro,
|
apply and.intro,
|
||||||
apply under_seq_mono,
|
apply under_seq_mono,
|
||||||
apply nat.add_le_add_right Hni,
|
apply add_le_add_right,
|
||||||
|
apply Hni,
|
||||||
apply rat.le_of_lt,
|
apply rat.le_of_lt,
|
||||||
apply under_seq_lt_over_seq
|
apply under_seq_lt_over_seq
|
||||||
end
|
end
|
||||||
|
@ -866,7 +870,8 @@ private theorem over_seq_regular : regular p_over_seq :=
|
||||||
apply rat.le_of_lt,
|
apply rat.le_of_lt,
|
||||||
apply under_seq_lt_over_seq,
|
apply under_seq_lt_over_seq,
|
||||||
apply over_seq_mono,
|
apply over_seq_mono,
|
||||||
apply nat.add_le_add_right Hni
|
apply add_le_add_right,
|
||||||
|
apply Hni
|
||||||
end
|
end
|
||||||
|
|
||||||
private noncomputable definition sup_over : ℝ := quot.mk (reg_seq.mk p_over_seq over_seq_regular)
|
private noncomputable definition sup_over : ℝ := quot.mk (reg_seq.mk p_over_seq over_seq_regular)
|
||||||
|
@ -890,8 +895,8 @@ private theorem under_lowest_bound : ∀ y : ℝ, ub y → sup_under ≤ y :=
|
||||||
intro n,
|
intro n,
|
||||||
cases exists_not_of_not_forall (PA _) with [x, Hx],
|
cases exists_not_of_not_forall (PA _) with [x, Hx],
|
||||||
cases iff.mp not_implies_iff_and_not Hx with [HXx, Hxn],
|
cases iff.mp not_implies_iff_and_not Hx with [HXx, Hxn],
|
||||||
apply le.trans,
|
apply algebra.le.trans,
|
||||||
apply le_of_lt,
|
apply algebra.le_of_lt,
|
||||||
apply lt_of_not_ge Hxn,
|
apply lt_of_not_ge Hxn,
|
||||||
apply Hy,
|
apply Hy,
|
||||||
apply HXx
|
apply HXx
|
||||||
|
@ -902,11 +907,11 @@ private theorem under_over_equiv : p_under_seq ≡ p_over_seq :=
|
||||||
intros,
|
intros,
|
||||||
apply rat.le.trans,
|
apply rat.le.trans,
|
||||||
have H : p_under_seq n < p_over_seq n, from !under_seq_lt_over_seq,
|
have H : p_under_seq n < p_over_seq n, from !under_seq_lt_over_seq,
|
||||||
rewrite [rat.abs_of_neg (iff.mpr !rat.sub_neg_iff_lt H), rat.neg_sub],
|
rewrite [abs_of_neg (iff.mpr !sub_neg_iff_lt H), neg_sub],
|
||||||
apply width',
|
apply width',
|
||||||
apply rat.le.trans,
|
apply rat.le.trans,
|
||||||
apply rat_power_two_inv_ge,
|
apply rat_power_two_inv_ge,
|
||||||
apply rat.le_add_of_nonneg_left,
|
apply le_add_of_nonneg_left,
|
||||||
apply rat.le_of_lt !inv_pos
|
apply rat.le_of_lt !inv_pos
|
||||||
end
|
end
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue