From 072fa7ec49d22555febc3c1a5afae4a95b052bf5 Mon Sep 17 00:00:00 2001 From: Leonardo de Moura Date: Thu, 2 Jul 2015 22:27:21 -0700 Subject: [PATCH] feat(library/data/nat): add aux lemmas --- library/data/nat/div.lean | 23 +++++++++++++++++++++++ library/data/nat/power.lean | 12 ++++++++++++ 2 files changed, 35 insertions(+) diff --git a/library/data/nat/div.lean b/library/data/nat/div.lean index ff565cf29..86f02cb27 100644 --- a/library/data/nat/div.lean +++ b/library/data/nat/div.lean @@ -399,6 +399,9 @@ dvd.elim H theorem dvd_of_mul_dvd_mul_right {m n k : ℕ} (kpos : k > 0) (H : m * k ∣ n * k) : m ∣ n := dvd_of_mul_dvd_mul_left kpos (!mul.comm ▸ !mul.comm ▸ H) +lemma dvd_of_eq_mul (i j n : nat) : n = j*i → j ∣ n := +begin intros, subst n, apply dvd_mul_right end + theorem div_dvd_div {k m n : ℕ} (H1 : k ∣ m) (H2 : m ∣ n) : m div k ∣ n div k := have H3 : m = m div k * k, from (div_mul_cancel H1)⁻¹, have H4 : n = n div k * k, from (div_mul_cancel (dvd.trans H1 H2))⁻¹, @@ -439,8 +442,28 @@ theorem div_eq_of_eq_mul_left {m n k : ℕ} (H1 : n > 0) (H2 : m = k * n) : m div n = k := !div_eq_of_eq_mul_right H1 (!mul.comm ▸ H2) +lemma add_mod_eq_of_dvd (i j n : nat) : n ∣ j → (i + j) mod n = i mod n := +assume h, +obtain k (hk : j = n * k), from exists_eq_mul_right_of_dvd h, +begin + subst j, rewrite mul.comm, + apply add_mul_mod_self +end + /- div and ordering -/ +lemma le_of_dvd {m n} : n > 0 → m ∣ n → m ≤ n := +assume (h₁ : n > 0) (h₂ : m ∣ n), +assert h₃ : n mod m = 0, from mod_eq_zero_of_dvd h₂, +by_contradiction + (λ nle : ¬ m ≤ n, + have h₄ : m > n, from lt_of_not_ge nle, + assert h₅ : n mod m = n, from mod_eq_of_lt h₄, + begin + rewrite h₃ at h₅, subst n, + exact absurd h₁ (lt.irrefl 0) + end) + theorem div_mul_le (m n : ℕ) : m div n * n ≤ m := calc m = m div n * n + m mod n : eq_div_mul_add_mod diff --git a/library/data/nat/power.lean b/library/data/nat/power.lean index 10e9164f7..885ca2d4a 100644 --- a/library/data/nat/power.lean +++ b/library/data/nat/power.lean @@ -49,4 +49,16 @@ theorem pow_cancel_left : ∀ {a b c : nat}, a > 1 → pow a b = pow a c → b = theorem pow_div_cancel : ∀ {a b : nat}, a ≠ 0 → pow a (succ b) div a = pow a b | a 0 h := by rewrite [pow_succ', pow_zero, mul_one, div_self (pos_of_ne_zero h)] | a (succ b) h := by rewrite [pow_succ', mul_div_cancel_left _ (pos_of_ne_zero h)] + +lemma dvd_pow : ∀ (i : nat) {n : nat}, n > 0 → i ∣ i^n +| i 0 h := absurd h !lt.irrefl +| i (succ n) h := by rewrite [pow_succ]; apply dvd_mul_left + +lemma dvd_pow_of_dvd_of_pos : ∀ {i j n : nat}, i ∣ j → n > 0 → i ∣ j^n +| i j 0 h₁ h₂ := absurd h₂ !lt.irrefl +| i j (succ n) h₁ h₂ := by rewrite [pow_succ]; apply dvd_mul_of_dvd_right h₁ + +lemma pow_mod_eq_zero (i : nat) {n : nat} (h : n > 0) : (i^n) mod i = 0 := +iff.mp !dvd_iff_mod_eq_zero (dvd_pow i h) + end nat