fix(library/data/int,library/data/rat): int and rat

This commit is contained in:
Leonardo de Moura 2015-10-09 14:50:17 -07:00
parent 744d1cba3d
commit 07b33ec75e
9 changed files with 43 additions and 36 deletions

View file

@ -18,6 +18,9 @@ section semiring
variable [s : semiring A] variable [s : semiring A]
include s include s
definition semiring_has_pow_nat [reducible] [instance] : has_pow_nat A :=
monoid_has_pow_nat
theorem zero_pow {m : } (mpos : m > 0) : 0^m = (0 : A) := theorem zero_pow {m : } (mpos : m > 0) : 0^m = (0 : A) :=
have h₁ : ∀ m : nat, (0 : A)^(succ m) = (0 : A), have h₁ : ∀ m : nat, (0 : A)^(succ m) = (0 : A),
begin begin
@ -34,6 +37,9 @@ section integral_domain
variable [s : integral_domain A] variable [s : integral_domain A]
include s include s
definition integral_domain_has_pow_nat [reducible] [instance] : has_pow_nat A :=
monoid_has_pow_nat
theorem eq_zero_of_pow_eq_zero {a : A} {m : } (H : a^m = 0) : a = 0 := theorem eq_zero_of_pow_eq_zero {a : A} {m : } (H : a^m = 0) : a = 0 :=
or.elim (eq_zero_or_pos m) or.elim (eq_zero_or_pos m)
(suppose m = 0, (suppose m = 0,
@ -128,6 +134,9 @@ section decidable_linear_ordered_comm_ring
variable [s : decidable_linear_ordered_comm_ring A] variable [s : decidable_linear_ordered_comm_ring A]
include s include s
definition decidable_linear_ordered_comm_ring_has_pow_nat [reducible] [instance] : has_pow_nat A :=
monoid_has_pow_nat
theorem abs_pow (a : A) (n : ) : abs (a^n) = abs a^n := theorem abs_pow (a : A) (n : ) : abs (a^n) = abs a^n :=
begin begin
induction n with n ih, induction n with n ih,

View file

@ -107,7 +107,7 @@ private definition has_decidable_eq₂ : Π (a b : ), decidable (a = b)
| -[1+ m] -[1+ n] := if H : m = n then | -[1+ m] -[1+ n] := if H : m = n then
inl (congr_arg neg_succ_of_nat H) else inr (not.mto neg_succ_of_nat.inj H) inl (congr_arg neg_succ_of_nat H) else inr (not.mto neg_succ_of_nat.inj H)
definition has_decidable_eq [instance] : decidable_eq := has_decidable_eq₂ definition has_decidable_eq [instance] [priority int.prio] : decidable_eq := has_decidable_eq₂
theorem of_nat_add (n m : nat) : of_nat (n + m) = of_nat n + of_nat m := rfl theorem of_nat_add (n m : nat) : of_nat (n + m) = of_nat n + of_nat m := rfl
@ -501,7 +501,7 @@ theorem eq_zero_or_eq_zero_of_mul_eq_zero {a b : } (H : a * b = 0) : a = 0
or.imp eq_zero_of_nat_abs_eq_zero eq_zero_of_nat_abs_eq_zero or.imp eq_zero_of_nat_abs_eq_zero eq_zero_of_nat_abs_eq_zero
(eq_zero_or_eq_zero_of_mul_eq_zero (by rewrite [-nat_abs_mul, H])) (eq_zero_or_eq_zero_of_mul_eq_zero (by rewrite [-nat_abs_mul, H]))
protected definition integral_domain [reducible] [instance] : algebra.integral_domain int := protected definition integral_domain [reducible] [trans_instance] : algebra.integral_domain int :=
⦃algebra.integral_domain, ⦃algebra.integral_domain,
add := int.add, add := int.add,
add_assoc := add.assoc, add_assoc := add.assoc,

View file

@ -233,7 +233,7 @@ theorem lt_of_le_of_lt {a b c : } (Hab : a ≤ b) (Hbc : b < c) : a < c :=
(iff.mpr !lt_iff_le_and_ne) (and.intro Hac (iff.mpr !lt_iff_le_and_ne) (and.intro Hac
(assume Heq, not_le_of_gt (Heq⁻¹ ▸ Hbc) Hab)) (assume Heq, not_le_of_gt (Heq⁻¹ ▸ Hbc) Hab))
protected definition linear_ordered_comm_ring [reducible] [instance] : protected definition linear_ordered_comm_ring [reducible] [trans_instance] :
algebra.linear_ordered_comm_ring int := algebra.linear_ordered_comm_ring int :=
⦃algebra.linear_ordered_comm_ring, int.integral_domain, ⦃algebra.linear_ordered_comm_ring, int.integral_domain,
le := int.le, le := int.le,

View file

@ -10,7 +10,7 @@ import data.int.basic data.int.order data.int.div algebra.group_power data.nat.p
namespace int namespace int
open - [notations] algebra open - [notations] algebra
definition int_has_pow_nat : has_pow_nat int := definition int_has_pow_nat [reducible] [instance] [priority int.prio] : has_pow_nat int :=
has_pow_nat.mk has_pow_nat.pow_nat has_pow_nat.mk has_pow_nat.pow_nat
/- /-

View file

@ -290,9 +290,10 @@ nat.cases_on n
!succ_ne_zero)) !succ_ne_zero))
open - [notations] algebra open - [notations] algebra
protected definition comm_semiring [reducible] [instance] : algebra.comm_semiring nat := protected definition comm_semiring [reducible] [trans_instance] : algebra.comm_semiring nat :=
⦃algebra.comm_semiring, ⦃algebra.comm_semiring,
add := nat.add, add := nat.add,
add_assoc := add.assoc, add_assoc := add.assoc,
zero := nat.zero, zero := nat.zero,
zero_add := zero_add, zero_add := zero_add,

View file

@ -136,7 +136,7 @@ else (eq_max_left h) ▸ !le.refl
open - [notations] algebra open - [notations] algebra
protected definition decidable_linear_ordered_semiring [reducible] [instance] : protected definition decidable_linear_ordered_semiring [reducible] [trans_instance] :
algebra.decidable_linear_ordered_semiring nat := algebra.decidable_linear_ordered_semiring nat :=
⦃ algebra.decidable_linear_ordered_semiring, nat.comm_semiring, ⦃ algebra.decidable_linear_ordered_semiring, nat.comm_semiring,
add_left_cancel := @add.cancel_left, add_left_cancel := @add.cancel_left,

View file

@ -535,7 +535,7 @@ decidable.by_cases
end)) end))
protected definition discrete_field [reducible] [instance] : algebra.discrete_field rat := protected definition discrete_field [reducible] [trans_instance] : algebra.discrete_field rat :=
⦃algebra.discrete_field, ⦃algebra.discrete_field,
add := rat.add, add := rat.add,
add_assoc := add.assoc, add_assoc := add.assoc,
@ -560,10 +560,10 @@ protected definition discrete_field [reducible] [instance] : algebra.discrete_fi
has_decidable_eq := has_decidable_eq⦄ has_decidable_eq := has_decidable_eq⦄
definition rat_has_division [instance] [reducible] [priority rat.prio] : has_division rat := definition rat_has_division [instance] [reducible] [priority rat.prio] : has_division rat :=
has_division.mk algebra.division has_division.mk has_division.division
definition rat_has_pow_nat [instance] [reducible] [priority rat.prio] : has_pow_nat rat := definition rat_has_pow_nat [instance] [reducible] [priority rat.prio] : has_pow_nat rat :=
has_pow_nat.mk pow_nat has_pow_nat.mk has_pow_nat.pow_nat
theorem eq_num_div_denom (a : ) : a = num a / denom a := theorem eq_num_div_denom (a : ) : a = num a / denom a :=
have H : of_int (denom a) ≠ 0, from assume H', ne_of_gt (denom_pos a) (of_int.inj H'), have H : of_int (denom a) ≠ 0, from assume H', ne_of_gt (denom_pos a) (of_int.inj H'),

View file

@ -302,7 +302,7 @@ let H' := le_of_lt H in
(take Heq, let Heq' := add_left_cancel Heq in (take Heq, let Heq' := add_left_cancel Heq in
!lt_irrefl (Heq' ▸ H))) !lt_irrefl (Heq' ▸ H)))
protected definition discrete_linear_ordered_field [reducible] [instance] : protected definition discrete_linear_ordered_field [reducible] [trans_instance] :
algebra.discrete_linear_ordered_field rat := algebra.discrete_linear_ordered_field rat :=
⦃algebra.discrete_linear_ordered_field, ⦃algebra.discrete_linear_ordered_field,
rat.discrete_field, rat.discrete_field,
@ -386,7 +386,7 @@ section
rewrite [-mul_denom], rewrite [-mul_denom],
apply mul_neg_of_neg_of_pos H, apply mul_neg_of_neg_of_pos H,
change of_int (denom q) > of_int 0, change of_int (denom q) > of_int 0,
rewrite [of_int_lt_of_int_iff], xrewrite [of_int_lt_of_int_iff],
exact !denom_pos exact !denom_pos
end, end,
show num q < 0, from lt_of_of_int_lt_of_int this show num q < 0, from lt_of_of_int_lt_of_int this
@ -397,7 +397,7 @@ section
rewrite [-mul_denom], rewrite [-mul_denom],
apply mul_nonpos_of_nonpos_of_nonneg H, apply mul_nonpos_of_nonpos_of_nonneg H,
change of_int (denom q) ≥ of_int 0, change of_int (denom q) ≥ of_int 0,
rewrite [of_int_le_of_int_iff], xrewrite [of_int_le_of_int_iff],
exact int.le_of_lt !denom_pos exact int.le_of_lt !denom_pos
end, end,
show num q ≤ 0, from le_of_of_int_le_of_int this show num q ≤ 0, from le_of_of_int_le_of_int this

View file

@ -38,26 +38,25 @@ section
open nat decidable open nat decidable
theorem root_irrational {a b c n : } (npos : n > 0) (apos : a > 0) (co : coprime a b) theorem root_irrational {a b c n : } (npos : n > 0) (apos : a > 0) (co : coprime a b)
(H : a^n = c * b^n) : (H : a^n = c * b^n) : b = 1 :=
b = 1 :=
have bpos : b > 0, from pos_of_ne_zero have bpos : b > 0, from pos_of_ne_zero
(suppose b = 0, (suppose b = 0,
have a^n = 0, by krewrite [H, this, zero_pow npos], have a^n = 0, by krewrite [H, this, zero_pow npos],
assert a = 0, from eq_zero_of_pow_eq_zero this, assert a = 0, from eq_zero_of_pow_eq_zero this,
show false, from ne_of_lt `0 < a` this⁻¹), show false, from ne_of_lt `0 < a` this⁻¹),
have H₁ : ∀ p, prime p → ¬ p b, from have H₁ : ∀ p, prime p → ¬ p b, from
take p, suppose prime p, suppose p b, take p, suppose prime p, suppose p b,
assert p b^n, from dvd_pow_of_dvd_of_pos `p b` `n > 0`, assert p b^n, from dvd_pow_of_dvd_of_pos `p b` `n > 0`,
have p a^n, by rewrite H; apply dvd_mul_of_dvd_right this, have p a^n, by rewrite H; apply dvd_mul_of_dvd_right this,
have p a, from dvd_of_prime_of_dvd_pow `prime p` this, have p a, from dvd_of_prime_of_dvd_pow `prime p` this,
have ¬ coprime a b, from not_coprime_of_dvd_of_dvd (gt_one_of_prime `prime p`) `p a` `p b`, have ¬ coprime a b, from not_coprime_of_dvd_of_dvd (gt_one_of_prime `prime p`) `p a` `p b`,
show false, from this `coprime a b`, show false, from this `coprime a b`,
have blt2 : b < 2, from by_contradiction have blt2 : b < 2, from by_contradiction
(suppose ¬ b < 2, (suppose ¬ b < 2,
have b ≥ 2, from le_of_not_gt this, have b ≥ 2, from le_of_not_gt this,
obtain p [primep pdvdb], from exists_prime_and_dvd this, obtain p [primep pdvdb], from exists_prime_and_dvd this,
show false, from H₁ p primep pdvdb), show false, from H₁ p primep pdvdb),
show b = 1, from (le.antisymm (le_of_lt_succ blt2) (succ_le_of_lt bpos)) show b = 1, from (le.antisymm (le_of_lt_succ blt2) (succ_le_of_lt bpos))
end end
/- /-
@ -71,10 +70,10 @@ section
theorem denom_eq_one_of_pow_eq {q : } {n : } {c : } (npos : n > 0) (H : q^n = c) : theorem denom_eq_one_of_pow_eq {q : } {n : } {c : } (npos : n > 0) (H : q^n = c) :
denom q = 1 := denom q = 1 :=
let a := num q, b := denom q in let a := num q, b := denom q in
have b ≠ 0, from ne_of_gt (denom_pos q), have b ≠ 0, from ne_of_gt (denom_pos q),
have bnz : b ≠ (0 : ), from assume H, `b ≠ 0` (of_int.inj H), have bnz : b ≠ (0 : ), from assume H, `b ≠ 0` (of_int.inj H),
have bnnz : ((b : rat)^n ≠ 0), from assume bneqz, bnz (eq_zero_of_pow_eq_zero bneqz), have bnnz : ((b : rat)^n ≠ 0), from assume bneqz, bnz (algebra.eq_zero_of_pow_eq_zero bneqz),
have a^n /[rat] b^n = c, using bnz, begin krewrite [*of_int_pow, -div_pow, -eq_num_div_denom, -H] end, have a^n /[rat] b^n = c, using bnz, begin rewrite [*of_int_pow, -algebra.div_pow, -eq_num_div_denom, -H] end,
have (a^n : rat) = c *[rat] b^n, from eq.symm (!mul_eq_of_eq_div bnnz this⁻¹), have (a^n : rat) = c *[rat] b^n, from eq.symm (!mul_eq_of_eq_div bnnz this⁻¹),
have a^n = c * b^n, -- int version have a^n = c * b^n, -- int version
using this, by rewrite [-of_int_pow at this, -of_int_mul at this]; exact of_int.inj this, using this, by rewrite [-of_int_pow at this, -of_int_mul at this]; exact of_int.inj this,
@ -82,7 +81,7 @@ section
using this, by rewrite [-abs_pow, this, abs_mul, abs_pow], using this, by rewrite [-abs_pow, this, abs_mul, abs_pow],
have H₁ : (nat_abs a)^n = nat_abs c * (nat_abs b)^n, have H₁ : (nat_abs a)^n = nat_abs c * (nat_abs b)^n,
using this, using this,
by apply int.of_nat.inj; rewrite [int.of_nat_mul, +int.of_nat_pow, +of_nat_nat_abs]; assumption, begin apply int.of_nat.inj, rewrite [int.of_nat_mul, +int.of_nat_pow, +of_nat_nat_abs], exact this end,
have H₂ : nat.coprime (nat_abs a) (nat_abs b), from of_nat.inj !coprime_num_denom, have H₂ : nat.coprime (nat_abs a) (nat_abs b), from of_nat.inj !coprime_num_denom,
have nat_abs b = 1, from have nat_abs b = 1, from
by_cases by_cases
@ -99,13 +98,11 @@ section
show nat_abs b = 1, from (root_irrational npos (pos_of_ne_zero this) H₂ H₁)), show nat_abs b = 1, from (root_irrational npos (pos_of_ne_zero this) H₂ H₁)),
show b = 1, using this, by rewrite [-of_nat_nat_abs_of_nonneg (le_of_lt !denom_pos), this] show b = 1, using this, by rewrite [-of_nat_nat_abs_of_nonneg (le_of_lt !denom_pos), this]
exit
theorem eq_num_pow_of_pow_eq {q : } {n : } {c : } (npos : n > 0) (H : q^n = c) : theorem eq_num_pow_of_pow_eq {q : } {n : } {c : } (npos : n > 0) (H : q^n = c) :
c = (num q)^n := c = (num q)^n :=
have denom q = 1, from denom_eq_one_of_pow_eq npos H, have denom q = 1, from denom_eq_one_of_pow_eq npos H,
have of_int c = (num q)^n, using this, have of_int c = of_int ((num q)^n), using this,
by rewrite [-H, eq_num_div_denom q at {1}, this, div_one, of_int_pow], by krewrite [-H, eq_num_div_denom q at {1}, this, div_one, of_int_pow],
show c = (num q)^n , from of_int.inj this show c = (num q)^n , from of_int.inj this
end end
@ -121,11 +118,11 @@ section
(suppose p = 0, (suppose p = 0,
show false, show false,
by let H := (pos_of_prime primep); rewrite this at H; exfalso; exact !lt.irrefl H), by let H := (pos_of_prime primep); rewrite this at H; exfalso; exact !lt.irrefl H),
have agtz : a > 0, from pos_of_ne_zero assert agtz : a > 0, from pos_of_ne_zero
(suppose a = 0, (suppose a = 0,
show false, using npos pnez, by revert peq; rewrite [this, zero_pow npos]; exact pnez), show false, using npos pnez, by revert peq; krewrite [this, zero_pow npos]; exact pnez),
have n * mult p a = 1, from calc have n * mult p a = 1, from calc
n * mult p a = mult p (a^n) : using agtz, by rewrite [mult_pow n agtz primep] n * mult p a = mult p (a^n) : begin krewrite [mult_pow n agtz primep] end
... = mult p p : peq ... = mult p p : peq
... = 1 : mult_self (gt_one_of_prime primep), ... = 1 : mult_self (gt_one_of_prime primep),
have n 1, from dvd_of_mul_right_eq this, have n 1, from dvd_of_mul_right_eq this,
@ -163,7 +160,7 @@ section
have a * a = c * b * b, by rewrite -mul.assoc at H; apply H, have a * a = c * b * b, by rewrite -mul.assoc at H; apply H,
have a div (gcd a b) = c * b div gcd (c * b) a, from div_gcd_eq_div_gcd this bpos apos, have a div (gcd a b) = c * b div gcd (c * b) a, from div_gcd_eq_div_gcd this bpos apos,
have a = c * b div gcd c a, have a = c * b div gcd c a,
using this, by revert this; rewrite [↑coprime at co, co, div_one, H₁]; intros; assumption, using this, by revert this; krewrite [↑coprime at co, co, int.div_one, H₁]; intros; assumption,
have a = b * (c div gcd c a), have a = b * (c div gcd c a),
using this, using this,
by revert this; rewrite [mul.comm, !mul_div_assoc !gcd_dvd_left]; intros; assumption, by revert this; rewrite [mul.comm, !mul_div_assoc !gcd_dvd_left]; intros; assumption,