feat(library/data/fintype): add decidable_finite_pred instance
This commit is contained in:
parent
00d68cadc8
commit
07e195e9f1
1 changed files with 46 additions and 0 deletions
|
@ -84,6 +84,52 @@ definition decidable_eq_fun [instance] {A B : Type} [h₁ : fintype A] [h₂ : d
|
||||||
end rfl
|
end rfl
|
||||||
end
|
end
|
||||||
|
|
||||||
|
section check_pred
|
||||||
|
variables {A : Type}
|
||||||
|
|
||||||
|
definition check_pred (p : A → Prop) [h : decidable_pred p] : list A → bool
|
||||||
|
| [] := tt
|
||||||
|
| (a::l) := if p a then check_pred l else ff
|
||||||
|
|
||||||
|
theorem check_pred_cons_of_pos {p : A → Prop} [h : decidable_pred p] {a : A} (l : list A) : p a → check_pred p (a::l) = check_pred p l :=
|
||||||
|
assume pa, if_pos pa
|
||||||
|
|
||||||
|
theorem check_pred_cons_of_neg {p : A → Prop} [h : decidable_pred p] {a : A} (l : list A) : ¬ p a → check_pred p (a::l) = ff :=
|
||||||
|
assume npa, if_neg npa
|
||||||
|
|
||||||
|
theorem all_of_check_pred_eq_tt {p : A → Prop} [h : decidable_pred p] : ∀ {l : list A}, check_pred p l = tt → ∀ {a}, a ∈ l → p a
|
||||||
|
| [] eqtt a ainl := absurd ainl !not_mem_nil
|
||||||
|
| (b::l) eqtt a ainbl := by_cases
|
||||||
|
(λ pb : p b, or.elim (eq_or_mem_of_mem_cons ainbl)
|
||||||
|
(λ aeqb : a = b, by rewrite [aeqb]; exact pb)
|
||||||
|
(λ ainl : a ∈ l,
|
||||||
|
have eqtt₁ : check_pred p l = tt, by rewrite [check_pred_cons_of_pos _ pb at eqtt]; exact eqtt,
|
||||||
|
all_of_check_pred_eq_tt eqtt₁ ainl))
|
||||||
|
(λ npb : ¬ p b,
|
||||||
|
by rewrite [check_pred_cons_of_neg _ npb at eqtt]; exact (bool.no_confusion eqtt))
|
||||||
|
|
||||||
|
theorem ex_of_check_pred_eq_ff {p : A → Prop} [h : decidable_pred p] : ∀ {l : list A}, check_pred p l = ff → ∃ w, ¬ p w
|
||||||
|
| [] eqtt := bool.no_confusion eqtt
|
||||||
|
| (a::l) eqtt := by_cases
|
||||||
|
(λ pa : p a,
|
||||||
|
have eqtt₁ : check_pred p l = ff, by rewrite [check_pred_cons_of_pos _ pa at eqtt]; exact eqtt,
|
||||||
|
ex_of_check_pred_eq_ff eqtt₁)
|
||||||
|
(λ npa : ¬ p a, exists.intro a npa)
|
||||||
|
end check_pred
|
||||||
|
|
||||||
|
definition decidable_finite_pred [instance] {A : Type} {p : A → Prop} [h₁ : fintype A] [h₂ : decidable_pred p]
|
||||||
|
: decidable (∀ x : A, p x) :=
|
||||||
|
match h₁ with
|
||||||
|
| fintype.mk e u c :=
|
||||||
|
match check_pred p e with
|
||||||
|
| tt := λ h : check_pred p e = tt, inl (λ a : A, all_of_check_pred_eq_tt h (c a))
|
||||||
|
| ff := λ h : check_pred p e = ff,
|
||||||
|
inr (λ n : (∀ x, p x),
|
||||||
|
obtain (a : A) (w : ¬ p a), from ex_of_check_pred_eq_ff h,
|
||||||
|
absurd (n a) w)
|
||||||
|
end rfl
|
||||||
|
end
|
||||||
|
|
||||||
open list.as_type
|
open list.as_type
|
||||||
-- Auxiliary function for returning a list with all elements of the type: (list.as_type l)
|
-- Auxiliary function for returning a list with all elements of the type: (list.as_type l)
|
||||||
-- Remark ⟪s⟫ is notation for (list.as_type l)
|
-- Remark ⟪s⟫ is notation for (list.as_type l)
|
||||||
|
|
Loading…
Reference in a new issue