feat(library/data/list): add permutation theorems for union and insert

This commit is contained in:
Leonardo de Moura 2015-04-08 19:02:35 -07:00
parent 33422a387a
commit 07ff0900aa
2 changed files with 60 additions and 0 deletions

View file

@ -188,6 +188,11 @@ iff.rfl
theorem mem_or_mem_of_mem_cons {x y : T} {l : list T} : x ∈ y::l → x = y x ∈ l :=
assume h, h
theorem mem_of_mem_cons_of_mem {a b : T} {l : list T} : a ∈ b::l → b ∈ l → a ∈ l :=
assume ainbl binl, or.elim (mem_or_mem_of_mem_cons ainbl)
(λ aeqb : a = b, by rewrite [aeqb]; exact binl)
(λ ainl : a ∈ l, ainl)
theorem mem_or_mem_of_mem_append {x : T} {s t : list T} : x ∈ s ++ t → x ∈ s x ∈ t :=
list.induction_on s or.inr
(take y s,

View file

@ -77,6 +77,9 @@ assume p, perm.induction_on p
(assume ainl : a ∈ l, or.inr (or.inr ainl))))
(λ l₁ l₂ l₃ p₁ p₂ r₁ r₂ ainl₁, r₂ (r₁ ainl₁))
theorem not_mem_perm {a : A} {l₁ l₂ : list A} : l₁ ~ l₂ → a ∉ l₁ → a ∉ l₂ :=
assume p nainl₁ ainl₂, absurd (mem_perm (symm p) ainl₂) nainl₁
theorem perm_app_left {l₁ l₂ : list A} (t₁ : list A) : l₁ ~ l₂ → (l₁++t₁) ~ (l₂++t₁) :=
assume p, perm.induction_on p
!refl
@ -565,4 +568,56 @@ assume p, perm_induction_on p
exact (xswap x y r)
end)))
(λ t₁ t₂ t₃ p₁ p₂ r₁ r₂, trans r₁ r₂)
section perm_union
variable [H : decidable_eq A]
include H
theorem perm_union_left {l₁ l₂ : list A} (t₁ : list A) : l₁ ~ l₂ → (union l₁ t₁) ~ (union l₂ t₁) :=
assume p, perm.induction_on p
(by rewrite [union_nil]; exact !refl)
(λ x l₁ l₂ p₁ r₁, by_cases
(λ xint₁ : x ∈ t₁, by rewrite [*union_cons_of_mem _ xint₁]; exact r₁)
(λ nxint₁ : x ∉ t₁, by rewrite [*union_cons_of_not_mem _ nxint₁]; exact (skip _ r₁)))
(λ x y l, by_cases
(λ yint : y ∈ t₁, by_cases
(λ xint : x ∈ t₁,
by rewrite [*union_cons_of_mem _ xint, *union_cons_of_mem _ yint, *union_cons_of_mem _ xint]; exact !refl)
(λ nxint : x ∉ t₁,
by rewrite [*union_cons_of_mem _ yint, *union_cons_of_not_mem _ nxint, union_cons_of_mem _ yint]; exact !refl))
(λ nyint : y ∉ t₁, by_cases
(λ xint : x ∈ t₁,
by rewrite [*union_cons_of_mem _ xint, *union_cons_of_not_mem _ nyint, union_cons_of_mem _ xint]; exact !refl)
(λ nxint : x ∉ t₁,
by rewrite [*union_cons_of_not_mem _ nxint, *union_cons_of_not_mem _ nyint, union_cons_of_not_mem _ nxint]; exact !swap)))
(λ l₁ l₂ l₃ p₁ p₂ r₁ r₂, trans r₁ r₂)
theorem perm_union_right (l : list A) {t₁ t₂ : list A} : t₁ ~ t₂ → (union l t₁) ~ (union l t₂) :=
list.induction_on l
(λ p, by rewrite [*union_nil]; exact p)
(λ x xs r p, by_cases
(λ xint₁ : x ∈ t₁,
assert xint₂ : x ∈ t₂, from mem_perm p xint₁,
by rewrite [union_cons_of_mem _ xint₁, union_cons_of_mem _ xint₂]; exact (r p))
(λ nxint₁ : x ∉ t₁,
assert nxint₂ : x ∉ t₂, from not_mem_perm p nxint₁,
by rewrite [union_cons_of_not_mem _ nxint₁, union_cons_of_not_mem _ nxint₂]; exact (skip _ (r p))))
theorem perm_union {l₁ l₂ t₁ t₂ : list A} : l₁ ~ l₂ → t₁ ~ t₂ → (union l₁ t₁) ~ (union l₂ t₂) :=
assume p₁ p₂, trans (perm_union_left t₁ p₁) (perm_union_right l₂ p₂)
end perm_union
section perm_insert
variable [H : decidable_eq A]
include H
theorem perm_insert (a : A) {l₁ l₂ : list A} : l₁ ~ l₂ → (insert a l₁) ~ (insert a l₂) :=
assume p, by_cases
(λ ainl₁ : a ∈ l₁,
assert ainl₂ : a ∈ l₂, from mem_perm p ainl₁,
by rewrite [insert_eq_of_mem ainl₁, insert_eq_of_mem ainl₂]; exact p)
(λ nainl₁ : a ∉ l₁,
assert nainl₂ : a ∉ l₂, from not_mem_perm p nainl₁,
by rewrite [insert_eq_of_non_mem nainl₁, insert_eq_of_non_mem nainl₂]; exact (skip _ p))
end perm_insert
end perm