feat(library/data/list): add permutation theorems for union and insert
This commit is contained in:
parent
33422a387a
commit
07ff0900aa
2 changed files with 60 additions and 0 deletions
|
@ -188,6 +188,11 @@ iff.rfl
|
||||||
theorem mem_or_mem_of_mem_cons {x y : T} {l : list T} : x ∈ y::l → x = y ∨ x ∈ l :=
|
theorem mem_or_mem_of_mem_cons {x y : T} {l : list T} : x ∈ y::l → x = y ∨ x ∈ l :=
|
||||||
assume h, h
|
assume h, h
|
||||||
|
|
||||||
|
theorem mem_of_mem_cons_of_mem {a b : T} {l : list T} : a ∈ b::l → b ∈ l → a ∈ l :=
|
||||||
|
assume ainbl binl, or.elim (mem_or_mem_of_mem_cons ainbl)
|
||||||
|
(λ aeqb : a = b, by rewrite [aeqb]; exact binl)
|
||||||
|
(λ ainl : a ∈ l, ainl)
|
||||||
|
|
||||||
theorem mem_or_mem_of_mem_append {x : T} {s t : list T} : x ∈ s ++ t → x ∈ s ∨ x ∈ t :=
|
theorem mem_or_mem_of_mem_append {x : T} {s t : list T} : x ∈ s ++ t → x ∈ s ∨ x ∈ t :=
|
||||||
list.induction_on s or.inr
|
list.induction_on s or.inr
|
||||||
(take y s,
|
(take y s,
|
||||||
|
|
|
@ -77,6 +77,9 @@ assume p, perm.induction_on p
|
||||||
(assume ainl : a ∈ l, or.inr (or.inr ainl))))
|
(assume ainl : a ∈ l, or.inr (or.inr ainl))))
|
||||||
(λ l₁ l₂ l₃ p₁ p₂ r₁ r₂ ainl₁, r₂ (r₁ ainl₁))
|
(λ l₁ l₂ l₃ p₁ p₂ r₁ r₂ ainl₁, r₂ (r₁ ainl₁))
|
||||||
|
|
||||||
|
theorem not_mem_perm {a : A} {l₁ l₂ : list A} : l₁ ~ l₂ → a ∉ l₁ → a ∉ l₂ :=
|
||||||
|
assume p nainl₁ ainl₂, absurd (mem_perm (symm p) ainl₂) nainl₁
|
||||||
|
|
||||||
theorem perm_app_left {l₁ l₂ : list A} (t₁ : list A) : l₁ ~ l₂ → (l₁++t₁) ~ (l₂++t₁) :=
|
theorem perm_app_left {l₁ l₂ : list A} (t₁ : list A) : l₁ ~ l₂ → (l₁++t₁) ~ (l₂++t₁) :=
|
||||||
assume p, perm.induction_on p
|
assume p, perm.induction_on p
|
||||||
!refl
|
!refl
|
||||||
|
@ -565,4 +568,56 @@ assume p, perm_induction_on p
|
||||||
exact (xswap x y r)
|
exact (xswap x y r)
|
||||||
end)))
|
end)))
|
||||||
(λ t₁ t₂ t₃ p₁ p₂ r₁ r₂, trans r₁ r₂)
|
(λ t₁ t₂ t₃ p₁ p₂ r₁ r₂, trans r₁ r₂)
|
||||||
|
|
||||||
|
section perm_union
|
||||||
|
variable [H : decidable_eq A]
|
||||||
|
include H
|
||||||
|
|
||||||
|
theorem perm_union_left {l₁ l₂ : list A} (t₁ : list A) : l₁ ~ l₂ → (union l₁ t₁) ~ (union l₂ t₁) :=
|
||||||
|
assume p, perm.induction_on p
|
||||||
|
(by rewrite [union_nil]; exact !refl)
|
||||||
|
(λ x l₁ l₂ p₁ r₁, by_cases
|
||||||
|
(λ xint₁ : x ∈ t₁, by rewrite [*union_cons_of_mem _ xint₁]; exact r₁)
|
||||||
|
(λ nxint₁ : x ∉ t₁, by rewrite [*union_cons_of_not_mem _ nxint₁]; exact (skip _ r₁)))
|
||||||
|
(λ x y l, by_cases
|
||||||
|
(λ yint : y ∈ t₁, by_cases
|
||||||
|
(λ xint : x ∈ t₁,
|
||||||
|
by rewrite [*union_cons_of_mem _ xint, *union_cons_of_mem _ yint, *union_cons_of_mem _ xint]; exact !refl)
|
||||||
|
(λ nxint : x ∉ t₁,
|
||||||
|
by rewrite [*union_cons_of_mem _ yint, *union_cons_of_not_mem _ nxint, union_cons_of_mem _ yint]; exact !refl))
|
||||||
|
(λ nyint : y ∉ t₁, by_cases
|
||||||
|
(λ xint : x ∈ t₁,
|
||||||
|
by rewrite [*union_cons_of_mem _ xint, *union_cons_of_not_mem _ nyint, union_cons_of_mem _ xint]; exact !refl)
|
||||||
|
(λ nxint : x ∉ t₁,
|
||||||
|
by rewrite [*union_cons_of_not_mem _ nxint, *union_cons_of_not_mem _ nyint, union_cons_of_not_mem _ nxint]; exact !swap)))
|
||||||
|
(λ l₁ l₂ l₃ p₁ p₂ r₁ r₂, trans r₁ r₂)
|
||||||
|
|
||||||
|
theorem perm_union_right (l : list A) {t₁ t₂ : list A} : t₁ ~ t₂ → (union l t₁) ~ (union l t₂) :=
|
||||||
|
list.induction_on l
|
||||||
|
(λ p, by rewrite [*union_nil]; exact p)
|
||||||
|
(λ x xs r p, by_cases
|
||||||
|
(λ xint₁ : x ∈ t₁,
|
||||||
|
assert xint₂ : x ∈ t₂, from mem_perm p xint₁,
|
||||||
|
by rewrite [union_cons_of_mem _ xint₁, union_cons_of_mem _ xint₂]; exact (r p))
|
||||||
|
(λ nxint₁ : x ∉ t₁,
|
||||||
|
assert nxint₂ : x ∉ t₂, from not_mem_perm p nxint₁,
|
||||||
|
by rewrite [union_cons_of_not_mem _ nxint₁, union_cons_of_not_mem _ nxint₂]; exact (skip _ (r p))))
|
||||||
|
|
||||||
|
theorem perm_union {l₁ l₂ t₁ t₂ : list A} : l₁ ~ l₂ → t₁ ~ t₂ → (union l₁ t₁) ~ (union l₂ t₂) :=
|
||||||
|
assume p₁ p₂, trans (perm_union_left t₁ p₁) (perm_union_right l₂ p₂)
|
||||||
|
end perm_union
|
||||||
|
|
||||||
|
section perm_insert
|
||||||
|
variable [H : decidable_eq A]
|
||||||
|
include H
|
||||||
|
|
||||||
|
theorem perm_insert (a : A) {l₁ l₂ : list A} : l₁ ~ l₂ → (insert a l₁) ~ (insert a l₂) :=
|
||||||
|
assume p, by_cases
|
||||||
|
(λ ainl₁ : a ∈ l₁,
|
||||||
|
assert ainl₂ : a ∈ l₂, from mem_perm p ainl₁,
|
||||||
|
by rewrite [insert_eq_of_mem ainl₁, insert_eq_of_mem ainl₂]; exact p)
|
||||||
|
(λ nainl₁ : a ∉ l₁,
|
||||||
|
assert nainl₂ : a ∉ l₂, from not_mem_perm p nainl₁,
|
||||||
|
by rewrite [insert_eq_of_non_mem nainl₁, insert_eq_of_non_mem nainl₂]; exact (skip _ p))
|
||||||
|
end perm_insert
|
||||||
end perm
|
end perm
|
||||||
|
|
Loading…
Reference in a new issue