chore(library/data/real): remove redundant theorems

This commit is contained in:
Rob Lewis 2015-06-16 13:14:05 +10:00 committed by Leonardo de Moura
parent 34868d196e
commit 090f00458d

View file

@ -35,31 +35,6 @@ theorem find_midpoint {a b : } (H : a > b) : ∃ c : , a > b + c :=
from div_lt_div_of_lt_of_pos H2 two_pos, from div_lt_div_of_lt_of_pos H2 two_pos,
by rewrite [div_two at H3, -div_add_div_same at H3, div_two at H3]; exact H3) by rewrite [div_two at H3, -div_add_div_same at H3, div_two at H3]; exact H3)
definition ceil : := λ a, int.nat_abs (num a) + 1
theorem rat_of_nat_abs (z : ) : abs (of_int z) = of_nat (int.nat_abs z) :=
have simp [visible] : ∀ n : , of_int (int.neg_succ_of_nat n) = - of_nat (n + 1), from λ n, rfl,
int.induction_on z
(take a, abs_of_nonneg (!of_nat_nonneg))
(take a, by rewrite [simp, abs_neg, abs_of_nonneg (!of_nat_nonneg)])
theorem ceil_ge (a : ) : of_nat (ceil a) ≥ a :=
have H : abs a * abs (of_int (denom a)) = abs (of_int (num a)), from !abs_mul ▸ !mul_denom ▸ rfl,
have H'' : 1 ≤ abs (of_int (denom a)), begin
have J : of_int (denom a) > 0, from (iff.mp' !of_int_pos) !denom_pos,
rewrite (abs_of_pos J),
apply iff.mp' !of_int_le_of_int,
apply denom_pos
end,
have H' : abs a ≤ abs (of_int (num a)), from
le_of_mul_le_of_ge_one (H ▸ !le.refl) !abs_nonneg H'',
calc
a ≤ abs a : le_abs_self
... ≤ abs (of_int (num a)) : H'
... ≤ abs (of_int (num a)) + 1 : rat.le_add_of_nonneg_right trivial
... = of_nat (int.nat_abs (num a)) + 1 : rat_of_nat_abs
... = of_nat (int.nat_abs (num a) + 1) : of_nat_add
theorem add_sub_comm (a b c d : ) : a + b - (c + d) = (a - c) + (b - d) := sorry theorem add_sub_comm (a b c d : ) : a + b - (c + d) = (a - c) + (b - d) := sorry
theorem div_helper (a b : ) : (1 / (a * b)) * a = 1 / b := sorry theorem div_helper (a b : ) : (1 / (a * b)) * a = 1 / b := sorry
@ -68,7 +43,7 @@ theorem distrib_three_right (a b c d : ) : (a + b + c) * d = a * d + b * d +
theorem mul_le_mul_of_mul_div_le (a b c d : ) : a * (b / c) ≤ d → b * a ≤ d * c := sorry theorem mul_le_mul_of_mul_div_le (a b c d : ) : a * (b / c) ≤ d → b * a ≤ d * c := sorry
definition pceil (a : ) : + := pnat.pos (ceil a) (add_pos_right dec_trivial _) definition pceil (a : ) : + := pnat.pos (ubound a) !ubound_pos
theorem pceil_helper {a : } {n : +} (H : pceil a ≤ n) : n⁻¹ ≤ 1 / a := sorry theorem pceil_helper {a : } {n : +} (H : pceil a ≤ n) : n⁻¹ ≤ 1 / a := sorry
@ -84,7 +59,7 @@ theorem s_mul_assoc_lemma_4 {n : +} {ε q : } (Hε : ε > 0) (Hq : q > 0)
apply mul_le_mul_of_mul_div_le, apply mul_le_mul_of_mul_div_le,
assumption assumption
end end
exit
------------------------------------- -------------------------------------
-- small helper lemmas -- small helper lemmas
@ -268,7 +243,7 @@ theorem equiv.trans (s t u : seq) (Hs : regular s) (Ht : regular t) (Hu : regula
----------------------------------- -----------------------------------
-- define operations on cauchy sequences. show operations preserve regularity -- define operations on cauchy sequences. show operations preserve regularity
definition K (s : seq) : + := pnat.pos (ceil (abs (s pone)) + 1 + 1) dec_trivial definition K (s : seq) : + := pnat.pos (ubound (abs (s pone)) + 1 + 1) dec_trivial
theorem canon_bound {s : seq} (Hs : regular s) (n : +) : abs (s n) ≤ pnat.to_rat (K s) := theorem canon_bound {s : seq} (Hs : regular s) (n : +) : abs (s n) ≤ pnat.to_rat (K s) :=
calc calc
@ -279,9 +254,9 @@ theorem canon_bound {s : seq} (Hs : regular s) (n : +) : abs (s n) ≤ pnat.t
... ≤ 1 + (1 + abs (s pone)) : rat.add_le_add_right (inv_le_one n) ... ≤ 1 + (1 + abs (s pone)) : rat.add_le_add_right (inv_le_one n)
... = abs (s pone) + (1 + 1) : ... = abs (s pone) + (1 + 1) :
by rewrite [add.comm 1 (abs (s pone)), rat.add.comm 1, rat.add.assoc] by rewrite [add.comm 1 (abs (s pone)), rat.add.comm 1, rat.add.assoc]
... ≤ of_nat (ceil (abs (s pone))) + (1 + 1) : rat.add_le_add_right (!ceil_ge) ... ≤ of_nat (ubound (abs (s pone))) + (1 + 1) : rat.add_le_add_right (!ubound_ge)
... = of_nat (ceil (abs (s pone)) + (1 + 1)) : by rewrite of_nat_add ... = of_nat (ubound (abs (s pone)) + (1 + 1)) : by rewrite of_nat_add
... = of_nat (ceil (abs (s pone)) + 1 + 1) : by rewrite nat.add.assoc ... = of_nat (ubound (abs (s pone)) + 1 + 1) : by rewrite nat.add.assoc
definition K₂ (s t : seq) := max (K s) (K t) definition K₂ (s t : seq) := max (K s) (K t)