chore(library/data/real): remove redundant theorems
This commit is contained in:
parent
34868d196e
commit
090f00458d
1 changed files with 6 additions and 31 deletions
|
@ -35,31 +35,6 @@ theorem find_midpoint {a b : ℚ} (H : a > b) : ∃ c : ℚ, a > b + c :=
|
||||||
from div_lt_div_of_lt_of_pos H2 two_pos,
|
from div_lt_div_of_lt_of_pos H2 two_pos,
|
||||||
by rewrite [div_two at H3, -div_add_div_same at H3, div_two at H3]; exact H3)
|
by rewrite [div_two at H3, -div_add_div_same at H3, div_two at H3]; exact H3)
|
||||||
|
|
||||||
definition ceil : ℚ → ℕ := λ a, int.nat_abs (num a) + 1
|
|
||||||
|
|
||||||
theorem rat_of_nat_abs (z : ℤ) : abs (of_int z) = of_nat (int.nat_abs z) :=
|
|
||||||
have simp [visible] : ∀ n : ℕ, of_int (int.neg_succ_of_nat n) = - of_nat (n + 1), from λ n, rfl,
|
|
||||||
int.induction_on z
|
|
||||||
(take a, abs_of_nonneg (!of_nat_nonneg))
|
|
||||||
(take a, by rewrite [simp, abs_neg, abs_of_nonneg (!of_nat_nonneg)])
|
|
||||||
|
|
||||||
theorem ceil_ge (a : ℚ) : of_nat (ceil a) ≥ a :=
|
|
||||||
have H : abs a * abs (of_int (denom a)) = abs (of_int (num a)), from !abs_mul ▸ !mul_denom ▸ rfl,
|
|
||||||
have H'' : 1 ≤ abs (of_int (denom a)), begin
|
|
||||||
have J : of_int (denom a) > 0, from (iff.mp' !of_int_pos) !denom_pos,
|
|
||||||
rewrite (abs_of_pos J),
|
|
||||||
apply iff.mp' !of_int_le_of_int,
|
|
||||||
apply denom_pos
|
|
||||||
end,
|
|
||||||
have H' : abs a ≤ abs (of_int (num a)), from
|
|
||||||
le_of_mul_le_of_ge_one (H ▸ !le.refl) !abs_nonneg H'',
|
|
||||||
calc
|
|
||||||
a ≤ abs a : le_abs_self
|
|
||||||
... ≤ abs (of_int (num a)) : H'
|
|
||||||
... ≤ abs (of_int (num a)) + 1 : rat.le_add_of_nonneg_right trivial
|
|
||||||
... = of_nat (int.nat_abs (num a)) + 1 : rat_of_nat_abs
|
|
||||||
... = of_nat (int.nat_abs (num a) + 1) : of_nat_add
|
|
||||||
|
|
||||||
theorem add_sub_comm (a b c d : ℚ) : a + b - (c + d) = (a - c) + (b - d) := sorry
|
theorem add_sub_comm (a b c d : ℚ) : a + b - (c + d) = (a - c) + (b - d) := sorry
|
||||||
|
|
||||||
theorem div_helper (a b : ℚ) : (1 / (a * b)) * a = 1 / b := sorry
|
theorem div_helper (a b : ℚ) : (1 / (a * b)) * a = 1 / b := sorry
|
||||||
|
@ -68,7 +43,7 @@ theorem distrib_three_right (a b c d : ℚ) : (a + b + c) * d = a * d + b * d +
|
||||||
|
|
||||||
theorem mul_le_mul_of_mul_div_le (a b c d : ℚ) : a * (b / c) ≤ d → b * a ≤ d * c := sorry
|
theorem mul_le_mul_of_mul_div_le (a b c d : ℚ) : a * (b / c) ≤ d → b * a ≤ d * c := sorry
|
||||||
|
|
||||||
definition pceil (a : ℚ) : ℕ+ := pnat.pos (ceil a) (add_pos_right dec_trivial _)
|
definition pceil (a : ℚ) : ℕ+ := pnat.pos (ubound a) !ubound_pos
|
||||||
|
|
||||||
theorem pceil_helper {a : ℚ} {n : ℕ+} (H : pceil a ≤ n) : n⁻¹ ≤ 1 / a := sorry
|
theorem pceil_helper {a : ℚ} {n : ℕ+} (H : pceil a ≤ n) : n⁻¹ ≤ 1 / a := sorry
|
||||||
|
|
||||||
|
@ -84,7 +59,7 @@ theorem s_mul_assoc_lemma_4 {n : ℕ+} {ε q : ℚ} (Hε : ε > 0) (Hq : q > 0)
|
||||||
apply mul_le_mul_of_mul_div_le,
|
apply mul_le_mul_of_mul_div_le,
|
||||||
assumption
|
assumption
|
||||||
end
|
end
|
||||||
exit
|
|
||||||
-------------------------------------
|
-------------------------------------
|
||||||
-- small helper lemmas
|
-- small helper lemmas
|
||||||
|
|
||||||
|
@ -268,7 +243,7 @@ theorem equiv.trans (s t u : seq) (Hs : regular s) (Ht : regular t) (Hu : regula
|
||||||
-----------------------------------
|
-----------------------------------
|
||||||
-- define operations on cauchy sequences. show operations preserve regularity
|
-- define operations on cauchy sequences. show operations preserve regularity
|
||||||
|
|
||||||
definition K (s : seq) : ℕ+ := pnat.pos (ceil (abs (s pone)) + 1 + 1) dec_trivial
|
definition K (s : seq) : ℕ+ := pnat.pos (ubound (abs (s pone)) + 1 + 1) dec_trivial
|
||||||
|
|
||||||
theorem canon_bound {s : seq} (Hs : regular s) (n : ℕ+) : abs (s n) ≤ pnat.to_rat (K s) :=
|
theorem canon_bound {s : seq} (Hs : regular s) (n : ℕ+) : abs (s n) ≤ pnat.to_rat (K s) :=
|
||||||
calc
|
calc
|
||||||
|
@ -279,9 +254,9 @@ theorem canon_bound {s : seq} (Hs : regular s) (n : ℕ+) : abs (s n) ≤ pnat.t
|
||||||
... ≤ 1 + (1 + abs (s pone)) : rat.add_le_add_right (inv_le_one n)
|
... ≤ 1 + (1 + abs (s pone)) : rat.add_le_add_right (inv_le_one n)
|
||||||
... = abs (s pone) + (1 + 1) :
|
... = abs (s pone) + (1 + 1) :
|
||||||
by rewrite [add.comm 1 (abs (s pone)), rat.add.comm 1, rat.add.assoc]
|
by rewrite [add.comm 1 (abs (s pone)), rat.add.comm 1, rat.add.assoc]
|
||||||
... ≤ of_nat (ceil (abs (s pone))) + (1 + 1) : rat.add_le_add_right (!ceil_ge)
|
... ≤ of_nat (ubound (abs (s pone))) + (1 + 1) : rat.add_le_add_right (!ubound_ge)
|
||||||
... = of_nat (ceil (abs (s pone)) + (1 + 1)) : by rewrite of_nat_add
|
... = of_nat (ubound (abs (s pone)) + (1 + 1)) : by rewrite of_nat_add
|
||||||
... = of_nat (ceil (abs (s pone)) + 1 + 1) : by rewrite nat.add.assoc
|
... = of_nat (ubound (abs (s pone)) + 1 + 1) : by rewrite nat.add.assoc
|
||||||
|
|
||||||
definition K₂ (s t : seq) := max (K s) (K t)
|
definition K₂ (s t : seq) := max (K s) (K t)
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue