chore(hott/algebra) modify the proof that taking the dual category is involutive
This commit is contained in:
parent
428a2b6f58
commit
0915da6625
1 changed files with 5 additions and 18 deletions
|
@ -34,27 +34,14 @@ namespace precategory
|
||||||
-- take the trick they use in Coq-HoTT, and introduce a further
|
-- take the trick they use in Coq-HoTT, and introduce a further
|
||||||
-- axiom in the definition of precategories that provides thee
|
-- axiom in the definition of precategories that provides thee
|
||||||
-- symmetric associativity proof.
|
-- symmetric associativity proof.
|
||||||
universe variables l k
|
definition op_op' {ob : Type} (C : precategory ob) : opposite (opposite C) = C :=
|
||||||
definition op_op' {ob : Type} (C : precategory.{l k} ob) : opposite (opposite C) = C :=
|
begin
|
||||||
sorry
|
|
||||||
/-begin
|
|
||||||
apply (rec_on C), intros (hom', homH', comp', ID', assoc', id_left', id_right'),
|
apply (rec_on C), intros (hom', homH', comp', ID', assoc', id_left', id_right'),
|
||||||
apply (ap (λassoc'', precategory.mk hom' @homH' comp' ID' assoc'' id_left' id_right')),
|
apply (ap (λassoc'', precategory.mk hom' @homH' comp' ID' assoc'' id_left' id_right')),
|
||||||
apply (@funext.path_pi _ _ _ _ assoc'), intro a,
|
repeat ( apply funext.path_pi ; intros ),
|
||||||
apply (@funext.path_pi _ _ _ _ (@assoc' a)), intro b,
|
|
||||||
apply (@funext.path_pi _ _ _ _ (@assoc' a b)), intro c,
|
|
||||||
apply (@funext.path_pi _ _ _ _ (@assoc' a b c)), intro d,
|
|
||||||
apply (@funext.path_pi _ _ _ _ (@assoc' a b c d)), intro f,
|
|
||||||
apply (@funext.path_pi _ _ _ _ (@assoc' a b c d f)), intro g,
|
|
||||||
apply (@funext.path_pi _ _ _ _ (@assoc' a b c d f g)), intro h,
|
|
||||||
apply ap,
|
apply ap,
|
||||||
show @assoc ob (@opposite ob (@precategory.mk ob hom' @homH' comp' ID' assoc' id_left' id_right')) d c b a h
|
apply (@is_hset.elim), apply !homH',
|
||||||
g
|
end
|
||||||
f ⁻¹ = @assoc' a b c d f g h,
|
|
||||||
begin
|
|
||||||
apply is_hset.elim,
|
|
||||||
end
|
|
||||||
end-/
|
|
||||||
|
|
||||||
theorem op_op : Opposite (Opposite C) = C :=
|
theorem op_op : Opposite (Opposite C) = C :=
|
||||||
(ap (Precategory.mk C) (op_op' C)) ⬝ !Precategory.equal
|
(ap (Precategory.mk C) (op_op' C)) ⬝ !Precategory.equal
|
||||||
|
|
Loading…
Reference in a new issue