chore(hott/algebra) modify the proof that taking the dual category is involutive
This commit is contained in:
parent
428a2b6f58
commit
0915da6625
1 changed files with 5 additions and 18 deletions
|
@ -34,27 +34,14 @@ namespace precategory
|
|||
-- take the trick they use in Coq-HoTT, and introduce a further
|
||||
-- axiom in the definition of precategories that provides thee
|
||||
-- symmetric associativity proof.
|
||||
universe variables l k
|
||||
definition op_op' {ob : Type} (C : precategory.{l k} ob) : opposite (opposite C) = C :=
|
||||
sorry
|
||||
/-begin
|
||||
definition op_op' {ob : Type} (C : precategory ob) : opposite (opposite C) = C :=
|
||||
begin
|
||||
apply (rec_on C), intros (hom', homH', comp', ID', assoc', id_left', id_right'),
|
||||
apply (ap (λassoc'', precategory.mk hom' @homH' comp' ID' assoc'' id_left' id_right')),
|
||||
apply (@funext.path_pi _ _ _ _ assoc'), intro a,
|
||||
apply (@funext.path_pi _ _ _ _ (@assoc' a)), intro b,
|
||||
apply (@funext.path_pi _ _ _ _ (@assoc' a b)), intro c,
|
||||
apply (@funext.path_pi _ _ _ _ (@assoc' a b c)), intro d,
|
||||
apply (@funext.path_pi _ _ _ _ (@assoc' a b c d)), intro f,
|
||||
apply (@funext.path_pi _ _ _ _ (@assoc' a b c d f)), intro g,
|
||||
apply (@funext.path_pi _ _ _ _ (@assoc' a b c d f g)), intro h,
|
||||
repeat ( apply funext.path_pi ; intros ),
|
||||
apply ap,
|
||||
show @assoc ob (@opposite ob (@precategory.mk ob hom' @homH' comp' ID' assoc' id_left' id_right')) d c b a h
|
||||
g
|
||||
f ⁻¹ = @assoc' a b c d f g h,
|
||||
begin
|
||||
apply is_hset.elim,
|
||||
end
|
||||
end-/
|
||||
apply (@is_hset.elim), apply !homH',
|
||||
end
|
||||
|
||||
theorem op_op : Opposite (Opposite C) = C :=
|
||||
(ap (Precategory.mk C) (op_op' C)) ⬝ !Precategory.equal
|
||||
|
|
Loading…
Reference in a new issue