feat(frontends/lean,library): rename '[rewrite]' to '[simp]'
This commit is contained in:
parent
b5c287d3d1
commit
092c8d05b9
20 changed files with 137 additions and 138 deletions
|
@ -50,22 +50,22 @@ lemma arrow_congr {A₁ B₁ A₂ B₂ : Type} : A₁ ≃ A₂ → B₁ ≃ B₂
|
|||
|
||||
section
|
||||
open unit
|
||||
lemma arrow_unit_equiv_unit [rewrite] (A : Type) : (A → unit) ≃ unit :=
|
||||
lemma arrow_unit_equiv_unit [simp] (A : Type) : (A → unit) ≃ unit :=
|
||||
mk (λ f, star) (λ u, (λ f, star))
|
||||
(λ f, funext (λ x, by cases (f x); reflexivity))
|
||||
(λ u, by cases u; reflexivity)
|
||||
|
||||
lemma unit_arrow_equiv [rewrite] (A : Type) : (unit → A) ≃ A :=
|
||||
lemma unit_arrow_equiv [simp] (A : Type) : (unit → A) ≃ A :=
|
||||
mk (λ f, f star) (λ a, (λ u, a))
|
||||
(λ f, funext (λ x, by cases x; reflexivity))
|
||||
(λ u, rfl)
|
||||
|
||||
lemma empty_arrow_equiv_unit [rewrite] (A : Type) : (empty → A) ≃ unit :=
|
||||
lemma empty_arrow_equiv_unit [simp] (A : Type) : (empty → A) ≃ unit :=
|
||||
mk (λ f, star) (λ u, λ e, empty.rec _ e)
|
||||
(λ f, funext (λ x, empty.rec _ x))
|
||||
(λ u, by cases u; reflexivity)
|
||||
|
||||
lemma false_arrow_equiv_unit [rewrite] (A : Type) : (false → A) ≃ unit :=
|
||||
lemma false_arrow_equiv_unit [simp] (A : Type) : (false → A) ≃ unit :=
|
||||
calc (false → A) ≃ (empty → A) : arrow_congr false_equiv_empty !equiv.refl
|
||||
... ≃ unit : empty_arrow_equiv_unit
|
||||
end
|
||||
|
@ -78,13 +78,13 @@ lemma prod_congr {A₁ B₁ A₂ B₂ : Type} : A₁ ≃ A₂ → B₁ ≃ B₂
|
|||
(λ p, begin cases p, esimp, rewrite [l₁, l₂] end)
|
||||
(λ p, begin cases p, esimp, rewrite [r₁, r₂] end)
|
||||
|
||||
lemma prod_comm [rewrite] (A B : Type) : (A × B) ≃ (B × A) :=
|
||||
lemma prod_comm [simp] (A B : Type) : (A × B) ≃ (B × A) :=
|
||||
mk (λ p, match p with (a, b) := (b, a) end)
|
||||
(λ p, match p with (b, a) := (a, b) end)
|
||||
(λ p, begin cases p, esimp end)
|
||||
(λ p, begin cases p, esimp end)
|
||||
|
||||
lemma prod_assoc [rewrite] (A B C : Type) : ((A × B) × C) ≃ (A × (B × C)) :=
|
||||
lemma prod_assoc [simp] (A B C : Type) : ((A × B) × C) ≃ (A × (B × C)) :=
|
||||
mk (λ t, match t with ((a, b), c) := (a, (b, c)) end)
|
||||
(λ t, match t with (a, (b, c)) := ((a, b), c) end)
|
||||
(λ t, begin cases t with ab c, cases ab, esimp end)
|
||||
|
@ -92,20 +92,20 @@ mk (λ t, match t with ((a, b), c) := (a, (b, c)) end)
|
|||
|
||||
section
|
||||
open unit prod.ops
|
||||
lemma prod_unit_right [rewrite] (A : Type) : (A × unit) ≃ A :=
|
||||
lemma prod_unit_right [simp] (A : Type) : (A × unit) ≃ A :=
|
||||
mk (λ p, p.1)
|
||||
(λ a, (a, star))
|
||||
(λ p, begin cases p with a u, cases u, esimp end)
|
||||
(λ a, rfl)
|
||||
|
||||
lemma prod_unit_left [rewrite] (A : Type) : (unit × A) ≃ A :=
|
||||
lemma prod_unit_left [simp] (A : Type) : (unit × A) ≃ A :=
|
||||
calc (unit × A) ≃ (A × unit) : prod_comm
|
||||
... ≃ A : prod_unit_right
|
||||
|
||||
lemma prod_empty_right [rewrite] (A : Type) : (A × empty) ≃ empty :=
|
||||
lemma prod_empty_right [simp] (A : Type) : (A × empty) ≃ empty :=
|
||||
mk (λ p, empty.rec _ p.2) (λ e, empty.rec _ e) (λ p, empty.rec _ p.2) (λ e, empty.rec _ e)
|
||||
|
||||
lemma prod_empty_left [rewrite] (A : Type) : (empty × A) ≃ empty :=
|
||||
lemma prod_empty_left [simp] (A : Type) : (empty × A) ≃ empty :=
|
||||
calc (empty × A) ≃ (A × empty) : prod_comm
|
||||
... ≃ empty : prod_empty_right
|
||||
end
|
||||
|
@ -127,25 +127,25 @@ mk (λ b, match b with tt := inl star | ff := inr star end)
|
|||
(λ b, begin cases b, esimp, esimp end)
|
||||
(λ s, begin cases s with u u, {cases u, esimp}, {cases u, esimp} end)
|
||||
|
||||
lemma sum_comm [rewrite] (A B : Type) : (A + B) ≃ (B + A) :=
|
||||
lemma sum_comm [simp] (A B : Type) : (A + B) ≃ (B + A) :=
|
||||
mk (λ s, match s with inl a := inr a | inr b := inl b end)
|
||||
(λ s, match s with inl b := inr b | inr a := inl a end)
|
||||
(λ s, begin cases s, esimp, esimp end)
|
||||
(λ s, begin cases s, esimp, esimp end)
|
||||
|
||||
lemma sum_assoc [rewrite] (A B C : Type) : ((A + B) + C) ≃ (A + (B + C)) :=
|
||||
lemma sum_assoc [simp] (A B C : Type) : ((A + B) + C) ≃ (A + (B + C)) :=
|
||||
mk (λ s, match s with inl (inl a) := inl a | inl (inr b) := inr (inl b) | inr c := inr (inr c) end)
|
||||
(λ s, match s with inl a := inl (inl a) | inr (inl b) := inl (inr b) | inr (inr c) := inr c end)
|
||||
(λ s, begin cases s with ab c, cases ab, repeat esimp end)
|
||||
(λ s, begin cases s with a bc, esimp, cases bc, repeat esimp end)
|
||||
|
||||
lemma sum_empty_right [rewrite] (A : Type) : (A + empty) ≃ A :=
|
||||
lemma sum_empty_right [simp] (A : Type) : (A + empty) ≃ A :=
|
||||
mk (λ s, match s with inl a := a | inr e := empty.rec _ e end)
|
||||
(λ a, inl a)
|
||||
(λ s, begin cases s with a e, esimp, exact empty.rec _ e end)
|
||||
(λ a, rfl)
|
||||
|
||||
lemma sum_empty_left [rewrite] (A : Type) : (empty + A) ≃ A :=
|
||||
lemma sum_empty_left [simp] (A : Type) : (empty + A) ≃ A :=
|
||||
calc (empty + A) ≃ (A + empty) : sum_comm
|
||||
... ≃ A : sum_empty_right
|
||||
end
|
||||
|
@ -191,23 +191,23 @@ mk (λ n, match n with 0 := inr star | succ a := inl a end)
|
|||
(λ n, begin cases n, repeat esimp end)
|
||||
(λ s, begin cases s with a u, esimp, {cases u, esimp} end)
|
||||
|
||||
lemma nat_sum_unit_equiv_nat [rewrite] : (nat + unit) ≃ nat :=
|
||||
lemma nat_sum_unit_equiv_nat [simp] : (nat + unit) ≃ nat :=
|
||||
equiv.symm nat_equiv_nat_sum_unit
|
||||
|
||||
lemma nat_prod_nat_equiv_nat [rewrite] : (nat × nat) ≃ nat :=
|
||||
lemma nat_prod_nat_equiv_nat [simp] : (nat × nat) ≃ nat :=
|
||||
mk (λ p, mkpair p.1 p.2)
|
||||
(λ n, unpair n)
|
||||
(λ p, begin cases p, apply unpair_mkpair end)
|
||||
(λ n, mkpair_unpair n)
|
||||
|
||||
lemma nat_sum_bool_equiv_nat [rewrite] : (nat + bool) ≃ nat :=
|
||||
lemma nat_sum_bool_equiv_nat [simp] : (nat + bool) ≃ nat :=
|
||||
calc (nat + bool) ≃ (nat + (unit + unit)) : sum_congr !equiv.refl bool_equiv_unit_sum_unit
|
||||
... ≃ ((nat + unit) + unit) : sum_assoc
|
||||
... ≃ (nat + unit) : sum_congr nat_sum_unit_equiv_nat !equiv.refl
|
||||
... ≃ nat : nat_sum_unit_equiv_nat
|
||||
|
||||
open decidable
|
||||
lemma nat_sum_nat_equiv_nat [rewrite] : (nat + nat) ≃ nat :=
|
||||
lemma nat_sum_nat_equiv_nat [simp] : (nat + nat) ≃ nat :=
|
||||
mk (λ s, match s with inl n := 2*n | inr n := 2*n+1 end)
|
||||
(λ n, if even n then inl (n div 2) else inr ((n - 1) div 2))
|
||||
(λ s, begin
|
||||
|
|
|
@ -84,7 +84,7 @@ theorem mem_list_of_mem {a : A} {l : nodup_list A} : a ∈ ⟦l⟧ → a ∈ elt
|
|||
definition singleton (a : A) : finset A :=
|
||||
to_finset_of_nodup [a] !nodup_singleton
|
||||
|
||||
theorem mem_singleton [rewrite] (a : A) : a ∈ singleton a :=
|
||||
theorem mem_singleton [simp] (a : A) : a ∈ singleton a :=
|
||||
mem_of_mem_list !mem_cons
|
||||
|
||||
theorem eq_of_mem_singleton {x a : A} : x ∈ singleton a → x = a :=
|
||||
|
@ -119,10 +119,10 @@ to_finset_of_nodup [] nodup_nil
|
|||
|
||||
notation `∅` := !empty
|
||||
|
||||
theorem not_mem_empty [rewrite] (a : A) : a ∉ ∅ :=
|
||||
theorem not_mem_empty [simp] (a : A) : a ∉ ∅ :=
|
||||
λ aine : a ∈ ∅, aine
|
||||
|
||||
theorem mem_empty_iff [rewrite] (x : A) : x ∈ ∅ ↔ false :=
|
||||
theorem mem_empty_iff [simp] (x : A) : x ∈ ∅ ↔ false :=
|
||||
iff.mpr !iff_false_iff_not !not_mem_empty
|
||||
|
||||
theorem mem_empty_eq (x : A) : x ∈ ∅ = false :=
|
||||
|
|
|
@ -21,7 +21,7 @@ notation `[` l:(foldr `,` (h t, cons h t) nil `]`) := l
|
|||
|
||||
variable {T : Type}
|
||||
|
||||
lemma cons_ne_nil [rewrite] (a : T) (l : list T) : a::l ≠ [] :=
|
||||
lemma cons_ne_nil [simp] (a : T) (l : list T) : a::l ≠ [] :=
|
||||
by contradiction
|
||||
|
||||
lemma head_eq_of_cons_eq {A : Type} {h₁ h₂ : A} {t₁ t₂ : list A} :
|
||||
|
@ -43,17 +43,17 @@ definition append : list T → list T → list T
|
|||
|
||||
notation l₁ ++ l₂ := append l₁ l₂
|
||||
|
||||
theorem append_nil_left [rewrite] (t : list T) : [] ++ t = t
|
||||
theorem append_nil_left [simp] (t : list T) : [] ++ t = t
|
||||
|
||||
theorem append_cons [rewrite] (x : T) (s t : list T) : (x::s) ++ t = x::(s ++ t)
|
||||
theorem append_cons [simp] (x : T) (s t : list T) : (x::s) ++ t = x::(s ++ t)
|
||||
|
||||
theorem append_nil_right [rewrite] : ∀ (t : list T), t ++ [] = t
|
||||
theorem append_nil_right [simp] : ∀ (t : list T), t ++ [] = t
|
||||
| [] := rfl
|
||||
| (a :: l) := calc
|
||||
(a :: l) ++ [] = a :: (l ++ []) : rfl
|
||||
... = a :: l : append_nil_right l
|
||||
|
||||
theorem append.assoc [rewrite] : ∀ (s t u : list T), s ++ t ++ u = s ++ (t ++ u)
|
||||
theorem append.assoc [simp] : ∀ (s t u : list T), s ++ t ++ u = s ++ (t ++ u)
|
||||
| [] t u := rfl
|
||||
| (a :: l) t u :=
|
||||
show a :: (l ++ t ++ u) = (a :: l) ++ (t ++ u),
|
||||
|
@ -64,11 +64,11 @@ definition length : list T → nat
|
|||
| [] := 0
|
||||
| (a :: l) := length l + 1
|
||||
|
||||
theorem length_nil [rewrite] : length (@nil T) = 0
|
||||
theorem length_nil [simp] : length (@nil T) = 0
|
||||
|
||||
theorem length_cons [rewrite] (x : T) (t : list T) : length (x::t) = length t + 1
|
||||
theorem length_cons [simp] (x : T) (t : list T) : length (x::t) = length t + 1
|
||||
|
||||
theorem length_append [rewrite] : ∀ (s t : list T), length (s ++ t) = length s + length t
|
||||
theorem length_append [simp] : ∀ (s t : list T), length (s ++ t) = length s + length t
|
||||
| [] t := calc
|
||||
length ([] ++ t) = length t : rfl
|
||||
... = length [] + length t : zero_add
|
||||
|
@ -94,9 +94,9 @@ definition concat : Π (x : T), list T → list T
|
|||
| a [] := [a]
|
||||
| a (b :: l) := b :: concat a l
|
||||
|
||||
theorem concat_nil [rewrite] (x : T) : concat x [] = [x]
|
||||
theorem concat_nil [simp] (x : T) : concat x [] = [x]
|
||||
|
||||
theorem concat_cons [rewrite] (x y : T) (l : list T) : concat x (y::l) = y::(concat x l)
|
||||
theorem concat_cons [simp] (x y : T) (l : list T) : concat x (y::l) = y::(concat x l)
|
||||
|
||||
theorem concat_eq_append (a : T) : ∀ (l : list T), concat a l = l ++ [a]
|
||||
| [] := rfl
|
||||
|
@ -104,7 +104,7 @@ theorem concat_eq_append (a : T) : ∀ (l : list T), concat a l = l ++ [a]
|
|||
show b :: (concat a l) = (b :: l) ++ (a :: []),
|
||||
by rewrite concat_eq_append
|
||||
|
||||
theorem concat_ne_nil [rewrite] (a : T) : ∀ (l : list T), concat a l ≠ [] :=
|
||||
theorem concat_ne_nil [simp] (a : T) : ∀ (l : list T), concat a l ≠ [] :=
|
||||
by intro l; induction l; repeat contradiction
|
||||
|
||||
/- last -/
|
||||
|
@ -114,16 +114,16 @@ definition last : Π l : list T, l ≠ [] → T
|
|||
| [a] h := a
|
||||
| (a₁::a₂::l) h := last (a₂::l) !cons_ne_nil
|
||||
|
||||
lemma last_singleton [rewrite] (a : T) (h : [a] ≠ []) : last [a] h = a :=
|
||||
lemma last_singleton [simp] (a : T) (h : [a] ≠ []) : last [a] h = a :=
|
||||
rfl
|
||||
|
||||
lemma last_cons_cons [rewrite] (a₁ a₂ : T) (l : list T) (h : a₁::a₂::l ≠ []) : last (a₁::a₂::l) h = last (a₂::l) !cons_ne_nil :=
|
||||
lemma last_cons_cons [simp] (a₁ a₂ : T) (l : list T) (h : a₁::a₂::l ≠ []) : last (a₁::a₂::l) h = last (a₂::l) !cons_ne_nil :=
|
||||
rfl
|
||||
|
||||
theorem last_congr {l₁ l₂ : list T} (h₁ : l₁ ≠ []) (h₂ : l₂ ≠ []) (h₃ : l₁ = l₂) : last l₁ h₁ = last l₂ h₂ :=
|
||||
by subst l₁
|
||||
|
||||
theorem last_concat [rewrite] {x : T} : ∀ {l : list T} (h : concat x l ≠ []), last (concat x l) h = x
|
||||
theorem last_concat [simp] {x : T} : ∀ {l : list T} (h : concat x l ≠ []), last (concat x l) h = x
|
||||
| [] h := rfl
|
||||
| [a] h := rfl
|
||||
| (a₁::a₂::l) h :=
|
||||
|
@ -142,13 +142,13 @@ definition reverse : list T → list T
|
|||
| [] := []
|
||||
| (a :: l) := concat a (reverse l)
|
||||
|
||||
theorem reverse_nil [rewrite] : reverse (@nil T) = []
|
||||
theorem reverse_nil [simp] : reverse (@nil T) = []
|
||||
|
||||
theorem reverse_cons [rewrite] (x : T) (l : list T) : reverse (x::l) = concat x (reverse l)
|
||||
theorem reverse_cons [simp] (x : T) (l : list T) : reverse (x::l) = concat x (reverse l)
|
||||
|
||||
theorem reverse_singleton [rewrite] (x : T) : reverse [x] = [x]
|
||||
theorem reverse_singleton [simp] (x : T) : reverse [x] = [x]
|
||||
|
||||
theorem reverse_append [rewrite] : ∀ (s t : list T), reverse (s ++ t) = (reverse t) ++ (reverse s)
|
||||
theorem reverse_append [simp] : ∀ (s t : list T), reverse (s ++ t) = (reverse t) ++ (reverse s)
|
||||
| [] t2 := calc
|
||||
reverse ([] ++ t2) = reverse t2 : rfl
|
||||
... = (reverse t2) ++ [] : append_nil_right
|
||||
|
@ -161,7 +161,7 @@ theorem reverse_append [rewrite] : ∀ (s t : list T), reverse (s ++ t) = (rever
|
|||
... = reverse t2 ++ concat a2 (reverse s2) : concat_eq_append
|
||||
... = reverse t2 ++ reverse (a2 :: s2) : rfl
|
||||
|
||||
theorem reverse_reverse [rewrite] : ∀ (l : list T), reverse (reverse l) = l
|
||||
theorem reverse_reverse [simp] : ∀ (l : list T), reverse (reverse l) = l
|
||||
| [] := rfl
|
||||
| (a :: l) := calc
|
||||
reverse (reverse (a :: l)) = reverse (concat a (reverse l)) : rfl
|
||||
|
@ -181,9 +181,9 @@ definition head [h : inhabited T] : list T → T
|
|||
| [] := arbitrary T
|
||||
| (a :: l) := a
|
||||
|
||||
theorem head_cons [rewrite] [h : inhabited T] (a : T) (l : list T) : head (a::l) = a
|
||||
theorem head_cons [simp] [h : inhabited T] (a : T) (l : list T) : head (a::l) = a
|
||||
|
||||
theorem head_append [rewrite] [h : inhabited T] (t : list T) : ∀ {s : list T}, s ≠ [] → head (s ++ t) = head s
|
||||
theorem head_append [simp] [h : inhabited T] (t : list T) : ∀ {s : list T}, s ≠ [] → head (s ++ t) = head s
|
||||
| [] H := absurd rfl H
|
||||
| (a :: s) H :=
|
||||
show head (a :: (s ++ t)) = head (a :: s),
|
||||
|
@ -193,9 +193,9 @@ definition tail : list T → list T
|
|||
| [] := []
|
||||
| (a :: l) := l
|
||||
|
||||
theorem tail_nil [rewrite] : tail (@nil T) = []
|
||||
theorem tail_nil [simp] : tail (@nil T) = []
|
||||
|
||||
theorem tail_cons [rewrite] (a : T) (l : list T) : tail (a::l) = l
|
||||
theorem tail_cons [simp] (a : T) (l : list T) : tail (a::l) = l
|
||||
|
||||
theorem cons_head_tail [h : inhabited T] {l : list T} : l ≠ [] → (head l)::(tail l) = l :=
|
||||
list.cases_on l
|
||||
|
@ -211,13 +211,13 @@ definition mem : T → list T → Prop
|
|||
notation e ∈ s := mem e s
|
||||
notation e ∉ s := ¬ e ∈ s
|
||||
|
||||
theorem mem_nil_iff [rewrite] (x : T) : x ∈ [] ↔ false :=
|
||||
theorem mem_nil_iff [simp] (x : T) : x ∈ [] ↔ false :=
|
||||
iff.rfl
|
||||
|
||||
theorem not_mem_nil (x : T) : x ∉ [] :=
|
||||
iff.mp !mem_nil_iff
|
||||
|
||||
theorem mem_cons [rewrite] (x : T) (l : list T) : x ∈ x :: l :=
|
||||
theorem mem_cons [simp] (x : T) (l : list T) : x ∈ x :: l :=
|
||||
or.inl rfl
|
||||
|
||||
theorem mem_cons_of_mem (y : T) {x : T} {l : list T} : x ∈ l → x ∈ y :: l :=
|
||||
|
@ -346,16 +346,16 @@ definition sublist (l₁ l₂ : list T) := ∀ ⦃a : T⦄, a ∈ l₁ → a ∈
|
|||
|
||||
infix `⊆` := sublist
|
||||
|
||||
theorem nil_sub [rewrite] (l : list T) : [] ⊆ l :=
|
||||
theorem nil_sub [simp] (l : list T) : [] ⊆ l :=
|
||||
λ b i, false.elim (iff.mp (mem_nil_iff b) i)
|
||||
|
||||
theorem sub.refl [rewrite] (l : list T) : l ⊆ l :=
|
||||
theorem sub.refl [simp] (l : list T) : l ⊆ l :=
|
||||
λ b i, i
|
||||
|
||||
theorem sub.trans {l₁ l₂ l₃ : list T} (H₁ : l₁ ⊆ l₂) (H₂ : l₂ ⊆ l₃) : l₁ ⊆ l₃ :=
|
||||
λ b i, H₂ (H₁ i)
|
||||
|
||||
theorem sub_cons [rewrite] (a : T) (l : list T) : l ⊆ a::l :=
|
||||
theorem sub_cons [simp] (a : T) (l : list T) : l ⊆ a::l :=
|
||||
λ b i, or.inr i
|
||||
|
||||
theorem sub_of_cons_sub {a : T} {l₁ l₂ : list T} : a::l₁ ⊆ l₂ → l₁ ⊆ l₂ :=
|
||||
|
@ -366,10 +366,10 @@ theorem cons_sub_cons {l₁ l₂ : list T} (a : T) (s : l₁ ⊆ l₂) : (a::l
|
|||
(λ e : b = a, or.inl e)
|
||||
(λ i : b ∈ l₁, or.inr (s i))
|
||||
|
||||
theorem sub_append_left [rewrite] (l₁ l₂ : list T) : l₁ ⊆ l₁++l₂ :=
|
||||
theorem sub_append_left [simp] (l₁ l₂ : list T) : l₁ ⊆ l₁++l₂ :=
|
||||
λ b i, iff.mpr (mem_append_iff b l₁ l₂) (or.inl i)
|
||||
|
||||
theorem sub_append_right [rewrite] (l₁ l₂ : list T) : l₂ ⊆ l₁++l₂ :=
|
||||
theorem sub_append_right [simp] (l₁ l₂ : list T) : l₂ ⊆ l₁++l₂ :=
|
||||
λ b i, iff.mpr (mem_append_iff b l₁ l₂) (or.inr i)
|
||||
|
||||
theorem sub_cons_of_sub (a : T) {l₁ l₂ : list T} : l₁ ⊆ l₂ → l₁ ⊆ (a::l₂) :=
|
||||
|
@ -405,7 +405,7 @@ definition find : T → list T → nat
|
|||
| a [] := 0
|
||||
| a (b :: l) := if a = b then 0 else succ (find a l)
|
||||
|
||||
theorem find_nil [rewrite] (x : T) : find x [] = 0
|
||||
theorem find_nil [simp] (x : T) : find x [] = 0
|
||||
|
||||
theorem find_cons (x y : T) (l : list T) : find x (y::l) = if x = y then 0 else succ (find x l)
|
||||
|
||||
|
@ -467,9 +467,9 @@ definition nth : list T → nat → option T
|
|||
| (a :: l) 0 := some a
|
||||
| (a :: l) (n+1) := nth l n
|
||||
|
||||
theorem nth_zero [rewrite] (a : T) (l : list T) : nth (a :: l) 0 = some a
|
||||
theorem nth_zero [simp] (a : T) (l : list T) : nth (a :: l) 0 = some a
|
||||
|
||||
theorem nth_succ [rewrite] (a : T) (l : list T) (n : nat) : nth (a::l) (succ n) = nth l n
|
||||
theorem nth_succ [simp] (a : T) (l : list T) (n : nat) : nth (a::l) (succ n) = nth l n
|
||||
|
||||
theorem nth_eq_some : ∀ {l : list T} {n : nat}, n < length l → Σ a : T, nth l n = some a
|
||||
| [] n h := absurd h !not_lt_zero
|
||||
|
|
|
@ -49,10 +49,10 @@ by contradiction
|
|||
|
||||
-- add_rewrite succ_ne_zero
|
||||
|
||||
theorem pred_zero [rewrite] : pred 0 = 0 :=
|
||||
theorem pred_zero [simp] : pred 0 = 0 :=
|
||||
rfl
|
||||
|
||||
theorem pred_succ [rewrite] (n : ℕ) : pred (succ n) = n :=
|
||||
theorem pred_succ [simp] (n : ℕ) : pred (succ n) = n :=
|
||||
rfl
|
||||
|
||||
theorem eq_zero_or_eq_succ_pred (n : ℕ) : n = 0 ∨ n = succ (pred n) :=
|
||||
|
@ -103,13 +103,13 @@ general m
|
|||
|
||||
/- addition -/
|
||||
|
||||
theorem add_zero [rewrite] (n : ℕ) : n + 0 = n :=
|
||||
theorem add_zero [simp] (n : ℕ) : n + 0 = n :=
|
||||
rfl
|
||||
|
||||
theorem add_succ [rewrite] (n m : ℕ) : n + succ m = succ (n + m) :=
|
||||
theorem add_succ [simp] (n m : ℕ) : n + succ m = succ (n + m) :=
|
||||
rfl
|
||||
|
||||
theorem zero_add [rewrite] (n : ℕ) : 0 + n = n :=
|
||||
theorem zero_add [simp] (n : ℕ) : 0 + n = n :=
|
||||
nat.induction_on n
|
||||
!add_zero
|
||||
(take m IH, show 0 + succ m = succ m, from
|
||||
|
@ -117,7 +117,7 @@ nat.induction_on n
|
|||
0 + succ m = succ (0 + m) : add_succ
|
||||
... = succ m : IH)
|
||||
|
||||
theorem succ_add [rewrite] (n m : ℕ) : (succ n) + m = succ (n + m) :=
|
||||
theorem succ_add [simp] (n m : ℕ) : (succ n) + m = succ (n + m) :=
|
||||
nat.induction_on m
|
||||
(!add_zero ▸ !add_zero)
|
||||
(take k IH, calc
|
||||
|
@ -125,7 +125,7 @@ nat.induction_on m
|
|||
... = succ (succ (n + k)) : IH
|
||||
... = succ (n + succ k) : add_succ)
|
||||
|
||||
theorem add.comm [rewrite] (n m : ℕ) : n + m = m + n :=
|
||||
theorem add.comm [simp] (n m : ℕ) : n + m = m + n :=
|
||||
nat.induction_on m
|
||||
(!add_zero ⬝ !zero_add⁻¹)
|
||||
(take k IH, calc
|
||||
|
@ -136,7 +136,7 @@ nat.induction_on m
|
|||
theorem succ_add_eq_succ_add (n m : ℕ) : succ n + m = n + succ m :=
|
||||
!succ_add ⬝ !add_succ⁻¹
|
||||
|
||||
theorem add.assoc [rewrite] (n m k : ℕ) : (n + m) + k = n + (m + k) :=
|
||||
theorem add.assoc [simp] (n m k : ℕ) : (n + m) + k = n + (m + k) :=
|
||||
nat.induction_on k
|
||||
(!add_zero ▸ !add_zero)
|
||||
(take l IH,
|
||||
|
@ -146,7 +146,7 @@ nat.induction_on k
|
|||
... = n + succ (m + l) : add_succ
|
||||
... = n + (m + succ l) : add_succ)
|
||||
|
||||
theorem add.left_comm [rewrite] (n m k : ℕ) : n + (m + k) = m + (n + k) :=
|
||||
theorem add.left_comm [simp] (n m k : ℕ) : n + (m + k) = m + (n + k) :=
|
||||
left_comm add.comm add.assoc n m k
|
||||
|
||||
theorem add.right_comm (n m k : ℕ) : n + m + k = n + k + m :=
|
||||
|
@ -186,7 +186,7 @@ eq_zero_of_add_eq_zero_right (!add.comm ⬝ H)
|
|||
theorem eq_zero_and_eq_zero_of_add_eq_zero {n m : ℕ} (H : n + m = 0) : n = 0 ∧ m = 0 :=
|
||||
and.intro (eq_zero_of_add_eq_zero_right H) (eq_zero_of_add_eq_zero_left H)
|
||||
|
||||
theorem add_one [rewrite] (n : ℕ) : n + 1 = succ n :=
|
||||
theorem add_one [simp] (n : ℕ) : n + 1 = succ n :=
|
||||
!add_zero ▸ !add_succ
|
||||
|
||||
theorem one_add (n : ℕ) : 1 + n = succ n :=
|
||||
|
@ -194,20 +194,20 @@ theorem one_add (n : ℕ) : 1 + n = succ n :=
|
|||
|
||||
/- multiplication -/
|
||||
|
||||
theorem mul_zero [rewrite] (n : ℕ) : n * 0 = 0 :=
|
||||
theorem mul_zero [simp] (n : ℕ) : n * 0 = 0 :=
|
||||
rfl
|
||||
|
||||
theorem mul_succ [rewrite] (n m : ℕ) : n * succ m = n * m + n :=
|
||||
theorem mul_succ [simp] (n m : ℕ) : n * succ m = n * m + n :=
|
||||
rfl
|
||||
|
||||
-- commutativity, distributivity, associativity, identity
|
||||
|
||||
theorem zero_mul [rewrite] (n : ℕ) : 0 * n = 0 :=
|
||||
theorem zero_mul [simp] (n : ℕ) : 0 * n = 0 :=
|
||||
nat.induction_on n
|
||||
!mul_zero
|
||||
(take m IH, !mul_succ ⬝ !add_zero ⬝ IH)
|
||||
|
||||
theorem succ_mul [rewrite] (n m : ℕ) : (succ n) * m = (n * m) + m :=
|
||||
theorem succ_mul [simp] (n m : ℕ) : (succ n) * m = (n * m) + m :=
|
||||
nat.induction_on m
|
||||
(!mul_zero ⬝ !mul_zero⁻¹ ⬝ !add_zero⁻¹)
|
||||
(take k IH, calc
|
||||
|
@ -219,7 +219,7 @@ nat.induction_on m
|
|||
... = n * k + n + succ k : add.assoc
|
||||
... = n * succ k + succ k : mul_succ)
|
||||
|
||||
theorem mul.comm [rewrite] (n m : ℕ) : n * m = m * n :=
|
||||
theorem mul.comm [simp] (n m : ℕ) : n * m = m * n :=
|
||||
nat.induction_on m
|
||||
(!mul_zero ⬝ !zero_mul⁻¹)
|
||||
(take k IH, calc
|
||||
|
@ -250,7 +250,7 @@ calc
|
|||
... = n * m + k * n : mul.comm
|
||||
... = n * m + n * k : mul.comm
|
||||
|
||||
theorem mul.assoc [rewrite] (n m k : ℕ) : (n * m) * k = n * (m * k) :=
|
||||
theorem mul.assoc [simp] (n m k : ℕ) : (n * m) * k = n * (m * k) :=
|
||||
nat.induction_on k
|
||||
(calc
|
||||
(n * m) * 0 = n * (m * 0) : mul_zero)
|
||||
|
@ -261,13 +261,13 @@ nat.induction_on k
|
|||
... = n * (m * l + m) : mul.left_distrib
|
||||
... = n * (m * succ l) : mul_succ)
|
||||
|
||||
theorem mul_one [rewrite] (n : ℕ) : n * 1 = n :=
|
||||
theorem mul_one [simp] (n : ℕ) : n * 1 = n :=
|
||||
calc
|
||||
n * 1 = n * 0 + n : mul_succ
|
||||
... = 0 + n : mul_zero
|
||||
... = n : zero_add
|
||||
|
||||
theorem one_mul [rewrite] (n : ℕ) : 1 * n = n :=
|
||||
theorem one_mul [simp] (n : ℕ) : 1 * n = n :=
|
||||
calc
|
||||
1 * n = n * 1 : mul.comm
|
||||
... = n : mul_one
|
||||
|
|
|
@ -118,7 +118,7 @@ theorem mul_lt_mul_of_pos_right {n m k : ℕ} (H : n < m) (Hk : k > 0) : n * k <
|
|||
definition max (a b : ℕ) : ℕ := if a < b then b else a
|
||||
definition min (a b : ℕ) : ℕ := if a < b then a else b
|
||||
|
||||
theorem max_self [rewrite] (a : ℕ) : max a a = a :=
|
||||
theorem max_self [simp] (a : ℕ) : max a a = a :=
|
||||
eq.rec_on !if_t_t rfl
|
||||
|
||||
theorem max_le {n m k : ℕ} (H₁ : n ≤ k) (H₂ : m ≤ k) : max n m ≤ k :=
|
||||
|
@ -465,32 +465,32 @@ dvd.elim H
|
|||
/- min and max -/
|
||||
open decidable
|
||||
|
||||
theorem le_max_left_iff_true [rewrite] (a b : ℕ) : a ≤ max a b ↔ true :=
|
||||
theorem le_max_left_iff_true [simp] (a b : ℕ) : a ≤ max a b ↔ true :=
|
||||
iff_true_intro (le_max_left a b)
|
||||
|
||||
theorem le_max_right_iff_true [rewrite] (a b : ℕ) : b ≤ max a b ↔ true :=
|
||||
theorem le_max_right_iff_true [simp] (a b : ℕ) : b ≤ max a b ↔ true :=
|
||||
iff_true_intro (le_max_right a b)
|
||||
|
||||
theorem min_zero [rewrite] (a : ℕ) : min a 0 = 0 :=
|
||||
theorem min_zero [simp] (a : ℕ) : min a 0 = 0 :=
|
||||
by rewrite [min_eq_right !zero_le]
|
||||
|
||||
theorem zero_min [rewrite] (a : ℕ) : min 0 a = 0 :=
|
||||
theorem zero_min [simp] (a : ℕ) : min 0 a = 0 :=
|
||||
by rewrite [min_eq_left !zero_le]
|
||||
|
||||
theorem max_zero [rewrite] (a : ℕ) : max a 0 = a :=
|
||||
theorem max_zero [simp] (a : ℕ) : max a 0 = a :=
|
||||
by rewrite [max_eq_left !zero_le]
|
||||
|
||||
theorem zero_max [rewrite] (a : ℕ) : max 0 a = a :=
|
||||
theorem zero_max [simp] (a : ℕ) : max 0 a = a :=
|
||||
by rewrite [max_eq_right !zero_le]
|
||||
|
||||
theorem min_succ_succ [rewrite] (a b : ℕ) : min (succ a) (succ b) = succ (min a b) :=
|
||||
theorem min_succ_succ [simp] (a b : ℕ) : min (succ a) (succ b) = succ (min a b) :=
|
||||
by_cases
|
||||
(suppose a < b, by unfold min; rewrite [if_pos this, if_pos (succ_lt_succ this)])
|
||||
(suppose ¬ a < b,
|
||||
assert h : ¬ succ a < succ b, from assume h, absurd (lt_of_succ_lt_succ h) this,
|
||||
by unfold min; rewrite [if_neg this, if_neg h])
|
||||
|
||||
theorem max_succ_succ [rewrite] (a b : ℕ) : max (succ a) (succ b) = succ (max a b) :=
|
||||
theorem max_succ_succ [simp] (a b : ℕ) : max (succ a) (succ b) = succ (max a b) :=
|
||||
by_cases
|
||||
(suppose a < b, by unfold max; rewrite [if_pos this, if_pos (succ_lt_succ this)])
|
||||
(suppose ¬ a < b,
|
||||
|
|
|
@ -535,7 +535,7 @@ decidable.rec
|
|||
(λ Hnc : ¬c, eq.refl (@ite c (decidable.inr Hnc) A t e))
|
||||
H
|
||||
|
||||
theorem if_t_t [rewrite] (c : Prop) [H : decidable c] {A : Type} (t : A) : (if c then t else t) = t :=
|
||||
theorem if_t_t [simp] (c : Prop) [H : decidable c] {A : Type} (t : A) : (if c then t else t) = t :=
|
||||
decidable.rec
|
||||
(λ Hc : c, eq.refl (@ite c (decidable.inl Hc) A t t))
|
||||
(λ Hnc : ¬c, eq.refl (@ite c (decidable.inr Hnc) A t t))
|
||||
|
|
|
@ -62,10 +62,10 @@ namespace nat
|
|||
|
||||
theorem pred_le (n : ℕ) : pred n ≤ n := by cases n;all_goals (repeat constructor)
|
||||
|
||||
theorem le_succ_iff_true [rewrite] (n : ℕ) : n ≤ succ n ↔ true :=
|
||||
theorem le_succ_iff_true [simp] (n : ℕ) : n ≤ succ n ↔ true :=
|
||||
iff_true_intro (le_succ n)
|
||||
|
||||
theorem pred_le_iff_true [rewrite] (n : ℕ) : pred n ≤ n ↔ true :=
|
||||
theorem pred_le_iff_true [simp] (n : ℕ) : pred n ≤ n ↔ true :=
|
||||
iff_true_intro (pred_le n)
|
||||
|
||||
theorem le.trans [trans] {n m k : ℕ} (H1 : n ≤ m) (H2 : m ≤ k) : n ≤ k :=
|
||||
|
@ -92,13 +92,13 @@ namespace nat
|
|||
theorem not_succ_le_self {n : ℕ} : ¬succ n ≤ n :=
|
||||
by induction n with n IH;all_goals intros;cases a;apply IH;exact le_of_succ_le_succ a
|
||||
|
||||
theorem succ_le_self_iff_false [rewrite] (n : ℕ) : succ n ≤ n ↔ false :=
|
||||
theorem succ_le_self_iff_false [simp] (n : ℕ) : succ n ≤ n ↔ false :=
|
||||
iff_false_intro not_succ_le_self
|
||||
|
||||
theorem zero_le (n : ℕ) : 0 ≤ n :=
|
||||
by induction n with n IH;apply le.refl;exact le.step IH
|
||||
|
||||
theorem zero_le_iff_true [rewrite] (n : ℕ) : 0 ≤ n ↔ true :=
|
||||
theorem zero_le_iff_true [simp] (n : ℕ) : 0 ≤ n ↔ true :=
|
||||
iff_true_intro (zero_le n)
|
||||
|
||||
theorem lt.step {n m : ℕ} (H : n < m) : n < succ m :=
|
||||
|
@ -107,7 +107,7 @@ namespace nat
|
|||
theorem zero_lt_succ (n : ℕ) : 0 < succ n :=
|
||||
by induction n with n IH;apply le.refl;exact le.step IH
|
||||
|
||||
theorem zero_lt_succ_iff_true [rewrite] (n : ℕ) : 0 < succ n ↔ true :=
|
||||
theorem zero_lt_succ_iff_true [simp] (n : ℕ) : 0 < succ n ↔ true :=
|
||||
iff_true_intro (zero_lt_succ n)
|
||||
|
||||
theorem lt.trans [trans] {n m k : ℕ} (H1 : n < m) (H2 : m < k) : n < k :=
|
||||
|
@ -136,12 +136,12 @@ namespace nat
|
|||
|
||||
theorem lt.irrefl (n : ℕ) : ¬n < n := not_succ_le_self
|
||||
|
||||
theorem lt_self_iff_false [rewrite] (n : ℕ) : n < n ↔ false :=
|
||||
theorem lt_self_iff_false [simp] (n : ℕ) : n < n ↔ false :=
|
||||
iff_false_intro (lt.irrefl n)
|
||||
|
||||
theorem self_lt_succ (n : ℕ) : n < succ n := !le.refl
|
||||
|
||||
theorem self_lt_succ_iff_true [rewrite] (n : ℕ) : n < succ n ↔ true :=
|
||||
theorem self_lt_succ_iff_true [simp] (n : ℕ) : n < succ n ↔ true :=
|
||||
iff_true_intro (self_lt_succ n)
|
||||
|
||||
theorem lt.base (n : ℕ) : n < succ n := !le.refl
|
||||
|
@ -181,7 +181,7 @@ namespace nat
|
|||
theorem not_lt_zero (a : ℕ) : ¬ a < zero :=
|
||||
by intro H; cases H
|
||||
|
||||
theorem lt_zero_iff_false [rewrite] (a : ℕ) : a < zero ↔ false :=
|
||||
theorem lt_zero_iff_false [simp] (a : ℕ) : a < zero ↔ false :=
|
||||
iff_false_intro (not_lt_zero a)
|
||||
|
||||
-- less-than is well-founded
|
||||
|
@ -246,13 +246,13 @@ namespace nat
|
|||
|
||||
theorem succ_le_of_lt {a b : ℕ} (h : a < b) : succ a ≤ b := h
|
||||
|
||||
theorem succ_sub_succ_eq_sub [rewrite] (a b : ℕ) : succ a - succ b = a - b :=
|
||||
theorem succ_sub_succ_eq_sub [simp] (a b : ℕ) : succ a - succ b = a - b :=
|
||||
by induction b with b IH;reflexivity; apply congr (eq.refl pred) IH
|
||||
|
||||
theorem sub_eq_succ_sub_succ (a b : ℕ) : a - b = succ a - succ b :=
|
||||
eq.rec_on (succ_sub_succ_eq_sub a b) rfl
|
||||
|
||||
theorem zero_sub_eq_zero [rewrite] (a : ℕ) : zero - a = zero :=
|
||||
theorem zero_sub_eq_zero [simp] (a : ℕ) : zero - a = zero :=
|
||||
nat.rec_on a
|
||||
rfl
|
||||
(λ a₁ (ih : zero - a₁ = zero), congr (eq.refl pred) ih)
|
||||
|
@ -280,12 +280,12 @@ namespace nat
|
|||
(le.refl a)
|
||||
(λ b₁ ih, le.trans !pred_le ih)
|
||||
|
||||
theorem sub_le_iff_true [rewrite] (a b : ℕ) : a - b ≤ a ↔ true :=
|
||||
theorem sub_le_iff_true [simp] (a b : ℕ) : a - b ≤ a ↔ true :=
|
||||
iff_true_intro (sub_le a b)
|
||||
|
||||
theorem sub_lt_succ (a b : ℕ) : a - b < succ a :=
|
||||
lt_succ_of_le (sub_le a b)
|
||||
|
||||
theorem sub_lt_succ_iff_true [rewrite] (a b : ℕ) : a - b < succ a ↔ true :=
|
||||
theorem sub_lt_succ_iff_true [simp] (a b : ℕ) : a - b < succ a ↔ true :=
|
||||
iff_true_intro (sub_lt_succ a b)
|
||||
end nat
|
||||
|
|
|
@ -61,10 +61,10 @@ have Hnp : ¬a, from
|
|||
assume Hp : a, absurd (or.inl Hp) not_em,
|
||||
absurd (or.inr Hnp) not_em
|
||||
|
||||
theorem not_true [rewrite] : ¬ true ↔ false :=
|
||||
theorem not_true [simp] : ¬ true ↔ false :=
|
||||
iff.intro (assume H, H trivial) (assume H, false.elim H)
|
||||
|
||||
theorem not_false_iff [rewrite] : ¬ false ↔ true :=
|
||||
theorem not_false_iff [simp] : ¬ false ↔ true :=
|
||||
iff.intro (assume H, trivial) (assume H H1, H1)
|
||||
|
||||
theorem not_iff_not (H : a ↔ b) : ¬a ↔ ¬b :=
|
||||
|
@ -105,19 +105,19 @@ iff.intro
|
|||
obtain Ha Hb Hc, from H,
|
||||
and.intro (and.intro Ha Hb) Hc)
|
||||
|
||||
theorem and_true [rewrite] (a : Prop) : a ∧ true ↔ a :=
|
||||
theorem and_true [simp] (a : Prop) : a ∧ true ↔ a :=
|
||||
iff.intro (assume H, and.left H) (assume H, and.intro H trivial)
|
||||
|
||||
theorem true_and [rewrite] (a : Prop) : true ∧ a ↔ a :=
|
||||
theorem true_and [simp] (a : Prop) : true ∧ a ↔ a :=
|
||||
iff.intro (assume H, and.right H) (assume H, and.intro trivial H)
|
||||
|
||||
theorem and_false [rewrite] (a : Prop) : a ∧ false ↔ false :=
|
||||
theorem and_false [simp] (a : Prop) : a ∧ false ↔ false :=
|
||||
iff.intro (assume H, and.right H) (assume H, false.elim H)
|
||||
|
||||
theorem false_and [rewrite] (a : Prop) : false ∧ a ↔ false :=
|
||||
theorem false_and [simp] (a : Prop) : false ∧ a ↔ false :=
|
||||
iff.intro (assume H, and.left H) (assume H, false.elim H)
|
||||
|
||||
theorem and_self [rewrite] (a : Prop) : a ∧ a ↔ a :=
|
||||
theorem and_self [simp] (a : Prop) : a ∧ a ↔ a :=
|
||||
iff.intro (assume H, and.left H) (assume H, and.intro H H)
|
||||
|
||||
theorem and_imp_eq (a b c : Prop) : (a ∧ b → c) = (a → b → c) :=
|
||||
|
@ -190,18 +190,18 @@ iff.intro
|
|||
(assume Hb, or.inl (or.inr Hb))
|
||||
(assume Hc, or.inr Hc)))
|
||||
|
||||
theorem or_true [rewrite] (a : Prop) : a ∨ true ↔ true :=
|
||||
theorem or_true [simp] (a : Prop) : a ∨ true ↔ true :=
|
||||
iff.intro (assume H, trivial) (assume H, or.inr H)
|
||||
|
||||
theorem true_or [rewrite] (a : Prop) : true ∨ a ↔ true :=
|
||||
theorem true_or [simp] (a : Prop) : true ∨ a ↔ true :=
|
||||
iff.intro (assume H, trivial) (assume H, or.inl H)
|
||||
|
||||
theorem or_false [rewrite] (a : Prop) : a ∨ false ↔ a :=
|
||||
theorem or_false [simp] (a : Prop) : a ∨ false ↔ a :=
|
||||
iff.intro
|
||||
(assume H, or.elim H (assume H1 : a, H1) (assume H1 : false, false.elim H1))
|
||||
(assume H, or.inl H)
|
||||
|
||||
theorem false_or [rewrite] (a : Prop) : false ∨ a ↔ a :=
|
||||
theorem false_or [simp] (a : Prop) : false ∨ a ↔ a :=
|
||||
iff.intro
|
||||
(assume H, or.elim H (assume H1 : false, false.elim H1) (assume H1 : a, H1))
|
||||
(assume H, or.inr H)
|
||||
|
@ -249,22 +249,22 @@ propext (!or.comm) ▸ propext (!or.comm) ▸ propext (!or.comm) ▸ !or.distrib
|
|||
definition iff.def : (a ↔ b) = ((a → b) ∧ (b → a)) :=
|
||||
!eq.refl
|
||||
|
||||
theorem iff_true [rewrite] (a : Prop) : (a ↔ true) ↔ a :=
|
||||
theorem iff_true [simp] (a : Prop) : (a ↔ true) ↔ a :=
|
||||
iff.intro
|
||||
(assume H, iff.mpr H trivial)
|
||||
(assume H, iff.intro (assume H1, trivial) (assume H1, H))
|
||||
|
||||
theorem true_iff [rewrite] (a : Prop) : (true ↔ a) ↔ a :=
|
||||
theorem true_iff [simp] (a : Prop) : (true ↔ a) ↔ a :=
|
||||
iff.intro
|
||||
(assume H, iff.mp H trivial)
|
||||
(assume H, iff.intro (assume H1, H) (assume H1, trivial))
|
||||
|
||||
theorem iff_false [rewrite] (a : Prop) : (a ↔ false) ↔ ¬ a :=
|
||||
theorem iff_false [simp] (a : Prop) : (a ↔ false) ↔ ¬ a :=
|
||||
iff.intro
|
||||
(assume H, and.left H)
|
||||
(assume H, and.intro H (assume H1, false.elim H1))
|
||||
|
||||
theorem false_iff [rewrite] (a : Prop) : (false ↔ a) ↔ ¬ a :=
|
||||
theorem false_iff [simp] (a : Prop) : (false ↔ a) ↔ ¬ a :=
|
||||
iff.intro
|
||||
(assume H, and.right H)
|
||||
(assume H, and.intro (assume H1, false.elim H1) H)
|
||||
|
@ -272,7 +272,7 @@ iff.intro
|
|||
theorem iff_true_of_self (Ha : a) : a ↔ true :=
|
||||
iff.intro (assume H, trivial) (assume H, Ha)
|
||||
|
||||
theorem iff_self [rewrite] (a : Prop) : (a ↔ a) ↔ true :=
|
||||
theorem iff_self [simp] (a : Prop) : (a ↔ a) ↔ true :=
|
||||
iff_true_of_self !iff.refl
|
||||
|
||||
theorem forall_iff_forall {A : Type} {P Q : A → Prop} (H : ∀a, (P a ↔ Q a)) : (∀a, P a) ↔ ∀a, Q a :=
|
||||
|
@ -291,10 +291,10 @@ section
|
|||
|
||||
variables {A : Type} {c₁ c₂ : Prop}
|
||||
|
||||
definition if_true [rewrite] (t e : A) : (if true then t else e) = t :=
|
||||
definition if_true [simp] (t e : A) : (if true then t else e) = t :=
|
||||
if_pos trivial
|
||||
|
||||
definition if_false [rewrite] (t e : A) : (if false then t else e) = e :=
|
||||
definition if_false [simp] (t e : A) : (if false then t else e) = e :=
|
||||
if_neg not_false
|
||||
end
|
||||
|
||||
|
|
|
@ -123,7 +123,7 @@
|
|||
"\[irreducible\]" "\[semireducible\]" "\[quasireducible\]" "\[wf\]"
|
||||
"\[whnf\]" "\[multiple-instances\]" "\[none\]"
|
||||
"\[decls\]" "\[declarations\]" "\[coercions\]" "\[classes\]"
|
||||
"\[symm\]" "\[subst\]" "\[refl\]" "\[trans\]" "\[rewrite\]"
|
||||
"\[symm\]" "\[subst\]" "\[refl\]" "\[trans\]" "\[simp\]"
|
||||
"\[notations\]" "\[abbreviations\]" "\[begin-end-hints\]" "\[tactic-hints\]"
|
||||
"\[reduce-hints\]" "\[unfold-hints\]" "\[aliases\]" "\[eqv\]" "\[localrefinfo\]"))
|
||||
. 'font-lock-doc-face)
|
||||
|
@ -138,7 +138,7 @@
|
|||
"apply" "fapply" "eapply" "rename" "intro" "intros" "all_goals" "fold" "focus" "focus_at"
|
||||
"generalize" "generalizes" "clear" "clears" "revert" "reverts" "back" "beta" "done" "exact" "rexact"
|
||||
"refine" "repeat" "whnf" "rotate" "rotate_left" "rotate_right" "inversion" "cases" "rewrite"
|
||||
"xrewrite" "krewrite" "esimp" "unfold" "change" "check_expr" "contradiction"
|
||||
"xrewrite" "krewrite" "simp" "esimp" "unfold" "change" "check_expr" "contradiction"
|
||||
"exfalso" "split" "existsi" "constructor" "fconstructor" "left" "right" "injection" "congruence" "reflexivity"
|
||||
"symmetry" "transitivity" "state" "induction" "induction_using"
|
||||
"substvars" "now" "with_options"))
|
||||
|
|
|
@ -494,7 +494,7 @@ environment print_cmd(parser & p) {
|
|||
p.next();
|
||||
p.check_token_next(get_rbracket_tk(), "invalid 'print [recursor]', ']' expected");
|
||||
print_recursor_info(p);
|
||||
} else if (p.curr_is_token(get_rewrite_attr_tk())) {
|
||||
} else if (p.curr_is_token(get_simp_attr_tk())) {
|
||||
p.next();
|
||||
print_rewrite_sets(p);
|
||||
} else if (print_polymorphic(p)) {
|
||||
|
|
|
@ -39,7 +39,7 @@ decl_attributes::decl_attributes(bool is_abbrev, bool persistent):
|
|||
m_refl = false;
|
||||
m_subst = false;
|
||||
m_recursor = false;
|
||||
m_rewrite = false;
|
||||
m_simp = false;
|
||||
}
|
||||
|
||||
void decl_attributes::parse(buffer<name> const & ns, parser & p) {
|
||||
|
@ -135,9 +135,9 @@ void decl_attributes::parse(buffer<name> const & ns, parser & p) {
|
|||
} else if (p.curr_is_token(get_subst_tk())) {
|
||||
p.next();
|
||||
m_subst = true;
|
||||
} else if (p.curr_is_token(get_rewrite_attr_tk())) {
|
||||
} else if (p.curr_is_token(get_simp_attr_tk())) {
|
||||
p.next();
|
||||
m_rewrite = true;
|
||||
m_simp = true;
|
||||
} else if (p.curr_is_token(get_recursor_tk())) {
|
||||
p.next();
|
||||
if (!p.curr_is_token(get_rbracket_tk())) {
|
||||
|
@ -217,7 +217,7 @@ environment decl_attributes::apply(environment env, io_state const & ios, name c
|
|||
env = add_user_recursor(env, d, m_recursor_major_pos, m_persistent);
|
||||
if (m_is_class)
|
||||
env = add_class(env, d, m_persistent);
|
||||
if (m_rewrite)
|
||||
if (m_simp)
|
||||
env = add_rewrite_rule(env, d, m_persistent);
|
||||
if (m_has_multiple_instances)
|
||||
env = mark_multiple_instances(env, d, m_persistent);
|
||||
|
@ -229,7 +229,7 @@ void decl_attributes::write(serializer & s) const {
|
|||
<< m_is_reducible << m_is_irreducible << m_is_semireducible << m_is_quasireducible
|
||||
<< m_is_class << m_is_parsing_only << m_has_multiple_instances << m_unfold_full_hint
|
||||
<< m_constructor_hint << m_symm << m_trans << m_refl << m_subst << m_recursor
|
||||
<< m_rewrite << m_recursor_major_pos << m_priority;
|
||||
<< m_simp << m_recursor_major_pos << m_priority;
|
||||
write_list(s, m_unfold_hint);
|
||||
}
|
||||
|
||||
|
@ -238,7 +238,7 @@ void decl_attributes::read(deserializer & d) {
|
|||
>> m_is_reducible >> m_is_irreducible >> m_is_semireducible >> m_is_quasireducible
|
||||
>> m_is_class >> m_is_parsing_only >> m_has_multiple_instances >> m_unfold_full_hint
|
||||
>> m_constructor_hint >> m_symm >> m_trans >> m_refl >> m_subst >> m_recursor
|
||||
>> m_rewrite >> m_recursor_major_pos >> m_priority;
|
||||
>> m_simp >> m_recursor_major_pos >> m_priority;
|
||||
m_unfold_hint = read_list<unsigned>(d);
|
||||
}
|
||||
}
|
||||
|
|
|
@ -29,7 +29,7 @@ class decl_attributes {
|
|||
bool m_refl;
|
||||
bool m_subst;
|
||||
bool m_recursor;
|
||||
bool m_rewrite;
|
||||
bool m_simp;
|
||||
optional<unsigned> m_recursor_major_pos;
|
||||
optional<unsigned> m_priority;
|
||||
list<unsigned> m_unfold_hint;
|
||||
|
|
|
@ -108,7 +108,7 @@ void init_token_table(token_table & t) {
|
|||
"definition", "example", "coercion", "abbreviation",
|
||||
"variables", "parameter", "parameters", "constant", "constants", "[persistent]", "[visible]", "[instance]", "[trans-instance]",
|
||||
"[none]", "[class]", "[coercion]", "[reducible]", "[irreducible]", "[semireducible]", "[quasireducible]",
|
||||
"[rewrite]", "[parsing-only]", "[multiple-instances]", "[symm]", "[trans]", "[refl]", "[subst]", "[recursor",
|
||||
"[simp]", "[parsing-only]", "[multiple-instances]", "[symm]", "[trans]", "[refl]", "[subst]", "[recursor",
|
||||
"evaluate", "check", "eval", "[wf]", "[whnf]", "[priority", "[unfold-full]", "[unfold-hints]",
|
||||
"[constructor]", "[unfold", "print",
|
||||
"end", "namespace", "section", "prelude", "help",
|
||||
|
|
|
@ -114,7 +114,7 @@ static name const * g_symm_tk = nullptr;
|
|||
static name const * g_trans_tk = nullptr;
|
||||
static name const * g_refl_tk = nullptr;
|
||||
static name const * g_subst_tk = nullptr;
|
||||
static name const * g_rewrite_attr_tk = nullptr;
|
||||
static name const * g_simp_attr_tk = nullptr;
|
||||
static name const * g_recursor_tk = nullptr;
|
||||
static name const * g_attribute_tk = nullptr;
|
||||
static name const * g_with_tk = nullptr;
|
||||
|
@ -261,7 +261,7 @@ void initialize_tokens() {
|
|||
g_trans_tk = new name{"[trans]"};
|
||||
g_refl_tk = new name{"[refl]"};
|
||||
g_subst_tk = new name{"[subst]"};
|
||||
g_rewrite_attr_tk = new name{"[rewrite]"};
|
||||
g_simp_attr_tk = new name{"[simp]"};
|
||||
g_recursor_tk = new name{"[recursor"};
|
||||
g_attribute_tk = new name{"attribute"};
|
||||
g_with_tk = new name{"with"};
|
||||
|
@ -409,7 +409,7 @@ void finalize_tokens() {
|
|||
delete g_trans_tk;
|
||||
delete g_refl_tk;
|
||||
delete g_subst_tk;
|
||||
delete g_rewrite_attr_tk;
|
||||
delete g_simp_attr_tk;
|
||||
delete g_recursor_tk;
|
||||
delete g_attribute_tk;
|
||||
delete g_with_tk;
|
||||
|
@ -556,7 +556,7 @@ name const & get_symm_tk() { return *g_symm_tk; }
|
|||
name const & get_trans_tk() { return *g_trans_tk; }
|
||||
name const & get_refl_tk() { return *g_refl_tk; }
|
||||
name const & get_subst_tk() { return *g_subst_tk; }
|
||||
name const & get_rewrite_attr_tk() { return *g_rewrite_attr_tk; }
|
||||
name const & get_simp_attr_tk() { return *g_simp_attr_tk; }
|
||||
name const & get_recursor_tk() { return *g_recursor_tk; }
|
||||
name const & get_attribute_tk() { return *g_attribute_tk; }
|
||||
name const & get_with_tk() { return *g_with_tk; }
|
||||
|
|
|
@ -116,7 +116,7 @@ name const & get_symm_tk();
|
|||
name const & get_trans_tk();
|
||||
name const & get_refl_tk();
|
||||
name const & get_subst_tk();
|
||||
name const & get_rewrite_attr_tk();
|
||||
name const & get_simp_attr_tk();
|
||||
name const & get_recursor_tk();
|
||||
name const & get_attribute_tk();
|
||||
name const & get_with_tk();
|
||||
|
|
|
@ -109,7 +109,7 @@ symm [symm]
|
|||
trans [trans]
|
||||
refl [refl]
|
||||
subst [subst]
|
||||
rewrite_attr [rewrite]
|
||||
simp_attr [simp]
|
||||
recursor [recursor
|
||||
attribute attribute
|
||||
with with
|
||||
|
|
|
@ -114,7 +114,6 @@ expr mk_simp_tactic_expr(buffer<expr> const & ls, buffer<name> const & ns,
|
|||
if (pre_tac) {
|
||||
t = mk_app(mk_constant(get_option_some_name()), *pre_tac);
|
||||
} else {
|
||||
|
||||
t = mk_constant(get_option_none_name());
|
||||
}
|
||||
expr l = mk_location_expr(loc);
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
import data.nat
|
||||
|
||||
namespace foo
|
||||
attribute nat.add.assoc [rewrite]
|
||||
attribute nat.add.assoc [simp]
|
||||
print nat.add.assoc
|
||||
end foo
|
||||
|
||||
|
@ -9,8 +9,8 @@ print nat.add.assoc
|
|||
|
||||
namespace foo
|
||||
print nat.add.assoc
|
||||
attribute nat.add.comm [rewrite]
|
||||
attribute nat.add.comm [simp]
|
||||
open nat
|
||||
print "---------"
|
||||
print [rewrite]
|
||||
print [simp]
|
||||
end foo
|
||||
|
|
|
@ -6,7 +6,7 @@ constant g : nat → nat
|
|||
axiom foo : ∀ x, x > 0 → f x = 0 ∧ g x = 1
|
||||
axiom bla : ∀ x, g x = f x + 1
|
||||
|
||||
attribute foo [rewrite]
|
||||
attribute bla [rewrite]
|
||||
attribute foo [simp]
|
||||
attribute bla [simp]
|
||||
|
||||
print [rewrite]
|
||||
print [simp]
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
import data.nat
|
||||
|
||||
attribute nat.add.comm [rewrite]
|
||||
attribute nat.add.comm [simp]
|
||||
|
||||
print [rewrite]
|
||||
print [simp]
|
||||
|
|
Loading…
Reference in a new issue