feat(library/tactic/rewrite_tactic): elaborate rewrite rule using unifier

This commit is contained in:
Leonardo de Moura 2015-02-04 13:51:32 -08:00
parent 49323ab598
commit 09818adf90

View file

@ -15,9 +15,13 @@ Author: Leonardo de Moura
#include "library/util.h"
#include "library/match.h"
#include "library/projection.h"
#include "library/local_context.h"
#include "library/unifier.h"
#include "library/util.h"
#include "library/generic_exception.h"
#include "library/tactic/rewrite_tactic.h"
#include "library/tactic/expr_to_tactic.h"
#include "library/tactic/class_instance_synth.h"
// #define TRACE_MATCH_PLUGIN
@ -339,6 +343,7 @@ class rewrite_fn {
type_checker_ptr m_tc;
rewrite_match_plugin m_mplugin;
goal m_g;
local_context m_ctx;
substitution m_subst;
expr m_expr_loc; // auxiliary expression used for error localization
@ -353,6 +358,13 @@ class rewrite_fn {
throw_generic_exception(strm, m_expr_loc);
}
void update_goal(goal const & g) {
m_g = g;
buffer<expr> hyps;
g.get_hyps(hyps);
m_ctx = local_context(to_list(hyps));
}
expr mk_meta(expr const & type) {
return m_g.mk_meta(m_ngen.next(), type);
}
@ -473,10 +485,87 @@ class rewrite_fn {
e = none_expr();
}
optional<expr> find_target(expr const & e, expr const & pattern) {
optional<expr> found;
pair<expr, constraint> mk_class_instance_elaborator(expr const & type) {
unifier_config cfg;
cfg.m_conservative = true;
bool use_local_instances = true;
bool is_strict = false;
return ::lean::mk_class_instance_elaborator(m_env, m_ios, m_ctx, m_ngen.next(), optional<name>(),
m_ps.relax_main_opaque(), use_local_instances, is_strict,
some_expr(type), m_expr_loc.get_tag(), cfg, nullptr);
}
// rule, new_t
typedef optional<pair<expr, expr>> unify_result;
unify_result unify_target(expr const & t, expr const & pre_elem) {
try {
expr rule = get_rewrite_rule(pre_elem);
auto rcs = m_elab(m_g, m_ngen.mk_child(), rule, false);
rule = rcs.first;
buffer<constraint> cs;
to_buffer(rcs.second, cs);
constraint_seq cs_seq;
expr rule_type = m_tc->whnf(m_tc->infer(rule, cs_seq), cs_seq);
while (is_pi(rule_type)) {
expr meta;
if (binding_info(rule_type).is_inst_implicit()) {
auto mc = mk_class_instance_elaborator(binding_domain(rule_type));
meta = mc.first;
cs_seq += mc.second;
} else {
meta = mk_meta(binding_domain(rule_type));
}
rule_type = m_tc->whnf(instantiate(binding_body(rule_type), meta), cs_seq);
rule = mk_app(rule, meta);
}
lean_assert(is_eq(rule_type));
bool symm = get_rewrite_info(pre_elem).symm();
expr src;
if (symm)
src = app_arg(rule_type);
else
src = app_arg(app_fn(rule_type));
if (!m_tc->is_def_eq(t, src, justification(), cs_seq))
return unify_result();
cs_seq.linearize(cs);
unifier_config cfg;
cfg.m_conservative = false;
unify_result_seq rseq = unify(m_env, cs.size(), cs.data(), m_ngen.mk_child(), m_subst, cfg);
if (auto p = rseq.pull()) {
substitution new_subst = p->first.first;
constraints new_postponed = p->first.second;
if (new_postponed)
return unify_result(); // all constraints must be solved
rule = new_subst.instantiate_all(rule);
rule_type = new_subst.instantiate_all(rule_type);
if (has_expr_metavar_strict(rule) || has_expr_metavar_strict(rule_type))
return unify_result(); // rule was not completely instantiate.
m_subst = new_subst;
expr lhs = app_arg(app_fn(rule_type));
expr rhs = app_arg(rule_type);
if (symm) {
rule = mk_symm(*m_tc, rule);
return unify_result(rule, lhs);
} else {
return unify_result(rule, rhs);
}
}
} catch (exception&) {}
return unify_result();
}
// target, rule, new_target : represents the rewrite rule : target = new_target
typedef optional<std::tuple<expr, expr, expr>> find_result;
// Search for \c pattern in \c e. If \c t is a match, then try to unify the type of the rule
// in the rewrite step \c pre_elem with \c t.
// When successful, this method returns the target \c t, the fully elaborated rule \c r,
// and the new value \c new_t (i.e., the expression that will replace \c t).
find_result find_target(expr const & e, expr const & pattern, expr const & pre_elem) {
find_result result;
for_each(e, [&](expr const & t, unsigned) {
if (found)
if (result)
return false; // stop search
if (closed(t)) {
lean_assert(std::all_of(m_esubst.begin(), m_esubst.end(), [&](optional<expr> const & e) { return !e; }));
@ -485,52 +574,52 @@ class rewrite_fn {
if (assigned)
reset_subst();
if (r) {
found = t;
if (auto p = unify_target(t, pre_elem)) {
result = std::make_tuple(t, p->first, p->second);
return false;
}
}
}
return true;
});
return found;
return result;
}
bool process_rewrite_hypothesis(expr const & hyp, expr const & elem, expr const & pattern) {
bool process_rewrite_hypothesis(expr const & hyp, expr const & elem, expr const & pre_elem, expr const & pattern) {
// TODO(Leo)
return false;
}
bool process_rewrite_goal(expr const & elem, expr const & pattern) {
bool process_rewrite_goal(expr const & elem, expr const & pre_elem, expr const & pattern) {
expr goal_type = m_g.get_type();
if (auto it = find_target(goal_type, pattern)) {
regular(m_env, m_ios) << "found: " << *it << "\n";
if (auto it = find_target(goal_type, pattern, pre_elem)) {
regular(m_env, m_ios) << "FOUND\n" << std::get<0>(*it) << "\n==\n" << std::get<1>(*it) << "\n==>\n" << std::get<2>(*it) << "\n";
// TODO(Leo)
return false;
} else {
return false;
}
return false;
}
bool process_rewrite_single_step(expr const & elem, expr const & pattern) {
bool process_rewrite_single_step(expr const & elem, expr const & pre_elem, expr const & pattern) {
check_system("rewrite tactic");
rewrite_info const & info = get_rewrite_info(elem);
location const & loc = info.get_location();
if (loc.is_goal_only())
return process_rewrite_goal(elem, pattern);
return process_rewrite_goal(elem, pre_elem, pattern);
bool progress = false;
buffer<expr> hyps;
m_g.get_hyps(hyps);
for (expr const & h : hyps) {
if (!loc.includes_hypothesis(local_pp_name(h)))
continue;
if (process_rewrite_hypothesis(h, elem, pattern))
if (process_rewrite_hypothesis(h, elem, pre_elem, pattern))
progress = true;
}
if (loc.includes_goal() && process_rewrite_goal(elem, pattern))
if (loc.includes_goal() && process_rewrite_goal(elem, pre_elem, pattern))
progress = true;
return progress;
}
bool process_rewrite_step(expr const & elem) {
bool process_rewrite_step(expr const & elem, expr const & pre_elem) {
lean_assert(is_rewrite_step(elem));
expr pattern = get_pattern(elem);
regular(m_env, m_ios) << "pattern: " << pattern << "\n";
@ -538,31 +627,31 @@ class rewrite_fn {
unsigned num;
switch (info.get_multiplicity()) {
case rewrite_info::Once:
return process_rewrite_single_step(elem, pattern);
return process_rewrite_single_step(elem, pre_elem, pattern);
case rewrite_info::AtMostN:
num = info.num();
for (unsigned i = 0; i < num; i++) {
if (!process_rewrite_single_step(elem, pattern))
if (!process_rewrite_single_step(elem, pre_elem, pattern))
return true;
}
return true;
case rewrite_info::ExactlyN:
num = info.num();
for (unsigned i = 0; i < num; i++) {
if (!process_rewrite_single_step(elem, pattern))
if (!process_rewrite_single_step(elem, pre_elem, pattern))
return false;
}
return true;
case rewrite_info::ZeroOrMore:
while (true) {
if (!process_rewrite_single_step(elem, pattern))
if (!process_rewrite_single_step(elem, pre_elem, pattern))
return true;
}
case rewrite_info::OneOrMore:
if (!process_rewrite_single_step(elem, pattern))
if (!process_rewrite_single_step(elem, pre_elem, pattern))
return false;
while (true) {
if (!process_rewrite_single_step(elem, pattern))
if (!process_rewrite_single_step(elem, pre_elem, pattern))
return true;
}
}
@ -571,11 +660,11 @@ class rewrite_fn {
// Process the given rewrite element/step. This method destructively update
// m_g, m_subst, m_ngen. It returns true if it succeeded and false otherwise.
bool process_step(expr const & elem) {
bool process_step(expr const & elem, expr const & pre_elem) {
if (is_rewrite_unfold_step(elem)) {
return process_unfold_step(elem);
} else {
return process_rewrite_step(elem);
return process_rewrite_step(elem, pre_elem);
}
}
@ -586,7 +675,7 @@ public:
m_mplugin(m_ios, *m_tc) {
goals const & gs = m_ps.get_goals();
lean_assert(gs);
m_g = head(gs);
update_goal(head(gs));
m_subst = m_ps.get_subst();
}
@ -598,7 +687,7 @@ public:
lean_assert(elems.size() == new_elems.size());
for (unsigned i = 0; i < new_elems.size(); i++) {
flet<expr> set1(m_expr_loc, elems[i]);
if (!process_step(new_elems[i])) {
if (!process_step(new_elems[i], elems[i])) {
return proof_state_seq();
}
}