feat(category.limits): prove that being complete is a mere proposition for categories
This commit is contained in:
parent
51edd0ad1d
commit
099bd95ebd
3 changed files with 105 additions and 4 deletions
|
@ -6,9 +6,9 @@ Authors: Floris van Doorn
|
|||
Cones
|
||||
-/
|
||||
|
||||
import ..nat_trans
|
||||
import ..nat_trans ..category
|
||||
|
||||
open functor nat_trans eq equiv is_trunc
|
||||
open functor nat_trans eq equiv is_trunc is_equiv iso sigma sigma.ops pi
|
||||
|
||||
namespace category
|
||||
|
||||
|
@ -37,6 +37,20 @@ namespace category
|
|||
: is_hprop (f = g) :=
|
||||
_
|
||||
|
||||
definition cone_obj_eq (p : cone_obj.c x = cone_obj.c y)
|
||||
(q : Πi, cone_obj.η x i = cone_obj.η y i ∘ hom_of_eq p) : x = y :=
|
||||
begin
|
||||
induction x, induction y, esimp at *, induction p, apply ap (cone_obj.mk c),
|
||||
apply nat_trans_eq, intro i, exact q i ⬝ !id_right
|
||||
end
|
||||
|
||||
theorem c_cone_obj_eq (p : cone_obj.c x = cone_obj.c y)
|
||||
(q : Πi, cone_obj.η x i = cone_obj.η y i ∘ hom_of_eq p) : ap cone_obj.c (cone_obj_eq p q) = p :=
|
||||
begin
|
||||
induction x, induction y, esimp at *, induction p,
|
||||
esimp [cone_obj_eq], rewrite [-ap_compose,↑function.compose,ap_constant]
|
||||
end
|
||||
|
||||
theorem cone_hom_eq {f f' : cone_hom x y} (q : cone_hom.f f = cone_hom.f f') : f = f' :=
|
||||
begin
|
||||
induction f, induction f', esimp at *, induction q, apply ap (cone_hom.mk f),
|
||||
|
@ -70,4 +84,81 @@ namespace category
|
|||
definition cone [constructor] : Precategory :=
|
||||
precategory.Mk (precategory_cone F)
|
||||
|
||||
variable {F}
|
||||
definition cone_iso_pr1 (h : x ≅ y) : cone_obj.c x ≅ cone_obj.c y :=
|
||||
iso.MK
|
||||
(cone_hom.f (to_hom h))
|
||||
(cone_hom.f (to_inv h))
|
||||
(ap cone_hom.f (to_left_inverse h))
|
||||
(ap cone_hom.f (to_right_inverse h))
|
||||
|
||||
|
||||
definition cone_iso.mk (f : cone_obj.c x ≅ cone_obj.c y)
|
||||
(p : Πi, cone_obj.η y i ∘ to_hom f = cone_obj.η x i) : x ≅ y :=
|
||||
begin
|
||||
fapply iso.MK,
|
||||
{ exact !cone_hom.mk p},
|
||||
{ fapply cone_hom.mk,
|
||||
{ exact to_inv f},
|
||||
{ intro i, apply comp_inverse_eq_of_eq_comp, exact (p i)⁻¹}},
|
||||
{ apply cone_hom_eq, esimp, apply left_inverse},
|
||||
{ apply cone_hom_eq, esimp, apply right_inverse},
|
||||
end
|
||||
|
||||
variables (x y)
|
||||
definition cone_iso_equiv [constructor] : (x ≅ y) ≃ Σ(f : cone_obj.c x ≅ cone_obj.c y),
|
||||
Πi, cone_obj.η y i ∘ to_hom f = cone_obj.η x i :=
|
||||
begin
|
||||
fapply equiv.MK,
|
||||
{ intro h, exact ⟨cone_iso_pr1 h, cone_hom.p (to_hom h)⟩},
|
||||
{ intro v, exact cone_iso.mk v.1 v.2},
|
||||
{ intro v, induction v with f p, fapply sigma_eq: esimp,
|
||||
{ apply iso_eq, reflexivity},
|
||||
{ apply is_hprop.elimo, apply is_trunc_pi, intro i, apply is_hprop_hom_eq}},
|
||||
{ intro h, esimp, apply iso_eq, apply cone_hom_eq, reflexivity},
|
||||
end
|
||||
|
||||
--set_option pp.implicit true
|
||||
definition cone_eq_equiv : (x = y) ≃ Σ(f : cone_obj.c x = cone_obj.c y),
|
||||
Πi, cone_obj.η y i ∘ hom_of_eq f = cone_obj.η x i :=
|
||||
begin
|
||||
fapply equiv.MK,
|
||||
{ intro r, fapply sigma.mk, exact ap cone_obj.c r, induction r, intro i, apply id_right},
|
||||
{ intro v, induction v with p q, induction x with c η, induction y with c' η', esimp at *,
|
||||
apply cone_obj_eq p, esimp, intro i, exact (q i)⁻¹},
|
||||
{ intro v, induction v with p q, induction x with c η, induction y with c' η', esimp at *,
|
||||
induction p, esimp, fapply sigma_eq: esimp,
|
||||
{ apply c_cone_obj_eq},
|
||||
{ apply is_hprop.elimo, apply is_trunc_pi, intro i, apply is_hprop_hom_eq}},
|
||||
{ intro r, induction r, esimp, induction x, esimp, apply ap02, apply is_hprop.elim},
|
||||
end
|
||||
|
||||
section is_univalent
|
||||
|
||||
definition is_univalent_cone {I : Precategory} {C : Category} (F : I ⇒ C)
|
||||
: is_univalent (cone F) :=
|
||||
begin
|
||||
intro x y,
|
||||
fapply is_equiv_of_equiv_of_homotopy,
|
||||
{ exact calc
|
||||
(x = y) ≃ (Σ(f : cone_obj.c x = cone_obj.c y), Πi, cone_obj.η y i ∘ hom_of_eq f = cone_obj.η x i)
|
||||
: cone_eq_equiv
|
||||
... ≃ (Σ(f : cone_obj.c x ≅ cone_obj.c y), Πi, cone_obj.η y i ∘ to_hom f = cone_obj.η x i)
|
||||
: sigma_equiv_sigma !eq_equiv_iso (λa, !equiv.refl)
|
||||
... ≃ (x ≅ y) : cone_iso_equiv },
|
||||
{ intro p, induction p, esimp [equiv.trans,equiv.symm], esimp [sigma_functor],
|
||||
apply iso_eq, reflexivity}
|
||||
end
|
||||
|
||||
definition category_cone [instance] [constructor] {I : Precategory} {C : Category} (F : I ⇒ C)
|
||||
: category (cone_obj F) :=
|
||||
category.mk _ (is_univalent_cone F)
|
||||
|
||||
definition Category_cone [constructor] {I : Precategory} {C : Category} (F : I ⇒ C)
|
||||
: Category :=
|
||||
Category.mk _ (category_cone F)
|
||||
|
||||
end is_univalent
|
||||
|
||||
|
||||
end category
|
||||
|
|
|
@ -99,7 +99,7 @@ namespace category
|
|||
local attribute Category.to.precategory [unfold 1]
|
||||
local attribute category.to_precategory [unfold 2]
|
||||
|
||||
definition is_complete_cone.{u v w} [constructor]
|
||||
definition is_complete_set_cone.{u v w} [constructor]
|
||||
(I : Precategory.{v w}) (F : I ⇒ set.{max u v w}) : cone_obj F :=
|
||||
begin
|
||||
fapply cone_obj.mk,
|
||||
|
@ -120,7 +120,7 @@ namespace category
|
|||
definition is_complete_set.{u v w} : is_complete.{(max u v w)+1 (max u v w) v w} set :=
|
||||
begin
|
||||
intro I F, fapply has_terminal_object.mk,
|
||||
{ exact is_complete_cone.{u v w} I F},
|
||||
{ exact is_complete_set_cone.{u v w} I F},
|
||||
{ intro c, esimp at *, induction c with X η, induction η with η p, esimp at *,
|
||||
fapply is_contr.mk,
|
||||
{ fapply cone_hom.mk,
|
||||
|
|
|
@ -75,6 +75,16 @@ namespace category
|
|||
definition has_limits_of_shape_of_is_complete [instance] [H : is_complete D] (I : Precategory)
|
||||
: has_limits_of_shape D I := H I
|
||||
|
||||
section
|
||||
open pi
|
||||
theorem is_hprop_has_limits_of_shape [instance] (D : Category) (I : Precategory)
|
||||
: is_hprop (has_limits_of_shape D I) :=
|
||||
by apply is_trunc_pi; intro F; exact is_hprop_has_terminal_object (Category_cone F)
|
||||
|
||||
local attribute is_complete [reducible]
|
||||
theorem is_hprop_is_complete [instance] (D : Category) : is_hprop (is_complete D) := _
|
||||
end
|
||||
|
||||
variables {I D}
|
||||
definition has_terminal_object_cone [H : has_limits_of_shape D I]
|
||||
(F : I ⇒ D) : has_terminal_object (cone F) := H F
|
||||
|
|
Loading…
Reference in a new issue