fix(library/elaborator): missing condition

The elaborator was missing solutions because of the missing condition at is_simple_ho_match.

This commit also adds a new test that exposes the problem.

Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
Leonardo de Moura 2013-12-16 17:13:31 -08:00
parent f09fd0fc04
commit 09b51a0fb7
3 changed files with 42 additions and 1 deletions

View file

@ -739,7 +739,7 @@ class elaborator::imp {
\brief See \c process_simple_ho_match
*/
bool is_simple_ho_match(context const & ctx, expr const & a, expr const & b, bool is_lhs, unification_constraint const & c) {
return is_meta_app(a) && are_args_vars(ctx, a) && closed(b) &&
return is_meta_app(a) && !has_local_context(arg(a, 0)) && are_args_vars(ctx, a) && closed(b) &&
(is_eq(c) || (is_lhs && !is_actual_upper(b)) || (!is_lhs && !is_actual_lower(b)));
}

16
tests/lean/exists4.lean Normal file
View file

@ -0,0 +1,16 @@
Variable N : Type
Variables a b c : N
Variables P : N -> N -> N -> Bool
Axiom H3 : P a b c
Theorem T1 : exists x y z : N, P x y z := ExistsIntro::explicit N (fun x : N, exists y z : N, P x y z) a
(ExistsIntro::explicit N _ b
(ExistsIntro::explicit N (fun z : N, P a b z) c H3))
Theorem T2 : exists x y z : N, P x y z := ExistsIntro a (ExistsIntro b (ExistsIntro c H3))
Theorem T3 : exists x y z : N, P x y z := ExistsIntro _ (ExistsIntro _ (ExistsIntro _ H3))
Theorem T4 (H : P a a b) : exists x y z, P x y z := ExistsIntro _ (ExistsIntro _ (ExistsIntro _ H))
Show Environment 4

View file

@ -0,0 +1,25 @@
Set: pp::colors
Set: pp::unicode
Assumed: N
Assumed: a
Assumed: b
Assumed: c
Assumed: P
Assumed: H3
Proved: T1
Proved: T2
Proved: T3
Proved: T4
Theorem T1 : ∃ x y z : N, P x y z :=
ExistsIntro::explicit
N
(λ x : N, ∃ y z : N, P x y z)
a
(ExistsIntro::explicit
N
(λ x : N, if ((λ x::1 : N, if (P a x x::1) ⊥ ) == (λ x : N, )) ⊥ )
b
(ExistsIntro::explicit N (λ z : N, P a b z) c H3))
Theorem T2 : ∃ x y z : N, P x y z := ExistsIntro a (ExistsIntro b (ExistsIntro c H3))
Theorem T3 : ∃ x y z : N, P x y z := ExistsIntro a (ExistsIntro b (ExistsIntro c H3))
Theorem T4 (H : P a a b) : ∃ x y z : N, P x y z := ExistsIntro a (ExistsIntro a (ExistsIntro b H))