diff --git a/library/data/list/basic.lean b/library/data/list/basic.lean index 0cbcb2c66..d2f2b5423 100644 --- a/library/data/list/basic.lean +++ b/library/data/list/basic.lean @@ -107,6 +107,10 @@ theorem concat_eq_append (a : T) : ∀ (l : list T), concat a l = l ++ [a] theorem concat_ne_nil [simp] (a : T) : ∀ (l : list T), concat a l ≠ [] := by intro l; induction l; repeat contradiction +theorem length_concat [simp] (a : T) : ∀ (l : list T), length (concat a l) = length l + 1 +| [] := rfl +| (x::xs) := by rewrite [concat_cons, *length_cons, length_concat] + /- last -/ definition last : Π l : list T, l ≠ [] → T @@ -175,6 +179,10 @@ calc concat x l = concat x (reverse (reverse l)) : reverse_reverse ... = reverse (x :: reverse l) : rfl +theorem length_reverse : ∀ (l : list T), length (reverse l) = length l +| [] := rfl +| (x::xs) := begin unfold reverse, rewrite [length_concat, length_cons, length_reverse] end + /- head and tail -/ definition head [h : inhabited T] : list T → T diff --git a/library/data/vec.lean b/library/data/vec.lean index 9f5313d85..682ba6a82 100644 --- a/library/data/vec.lean +++ b/library/data/vec.lean @@ -5,7 +5,7 @@ Author: Leonardo de Moura vectors as list subtype -/ -import logic data.list data.subtype +import logic data.list data.subtype data.fin open nat list subtype function definition vec [reducible] (A : Type) (n : nat) := {l : list A | length l = n} @@ -13,6 +13,9 @@ definition vec [reducible] (A : Type) (n : nat) := {l : list A | length l = n} namespace vec variables {A B C : Type} + theorem induction_on [recursor 4] {P : ∀ {n}, vec A n → Prop} : ∀ {n} (v : vec A n), (∀ (l : list A) {n : nat} (h : length l = n), P (tag l h)) → P v + | n (tag l h) H := @H l n h + definition nil : vec A 0 := tag [] rfl @@ -28,6 +31,78 @@ namespace vec | 0 := inhabited.mk nil | (succ n) := inhabited.mk (inhabited.value h :: inhabited.value (is_inhabited n)) + protected definition has_decidable_eq [instance] [h : decidable_eq A] : ∀ (n : nat), decidable_eq (vec A n) := + _ + + definition of_list (l : list A) : vec A (list.length l) := + tag l rfl + + definition to_list {n : nat} : vec A n → list A + | (tag l h) := l + + theorem to_list_of_list (l : list A) : to_list (of_list l) = l := + rfl + + theorem to_list_nil : to_list nil = ([] : list A) := + rfl + + theorem length_to_list {n : nat} : ∀ (v : vec A n), list.length (to_list v) = n + | (tag l h) := h + + theorem heq_of_list_eq {n m} : ∀ {v₁ : vec A n} {v₂ : vec A m}, to_list v₁ = to_list v₂ → n = m → v₁ == v₂ + | (tag l₁ h₁) (tag l₂ h₂) e₁ e₂ := begin + clear heq_of_list_eq, + subst e₂, subst h₁, + unfold to_list at e₁, + subst l₁ + end + + theorem list_eq_of_heq {n m} {v₁ : vec A n} {v₂ : vec A m} : v₁ == v₂ → n = m → to_list v₁ = to_list v₂ := + begin + intro h₁ h₂, revert v₁ v₂ h₁, + subst n, intro v₁ v₂ h₁, rewrite [heq.to_eq h₁] + end + + theorem of_list_to_list {n : nat} (v : vec A n) : of_list (to_list v) == v := + begin + apply heq_of_list_eq, rewrite to_list_of_list, rewrite length_to_list + end + + definition append {n m : nat} : vec A n → vec A m → vec A (n + m) + | (tag l₁ h₁) (tag l₂ h₂) := tag (list.append l₁ l₂) (by rewrite [length_append, h₁, h₂]) + + infix ++ := append + + open eq.ops + + lemma push_eq_rec : ∀ {n m : nat} {l : list A} (h₁ : n = m) (h₂ : length l = n), h₁ ▹ (tag l h₂) = tag l (h₁ ▹ h₂) + | n n l (eq.refl n) h₂ := rfl + + theorem append_nil_right {n : nat} (v : vec A n) : v ++ nil = v := + induction_on v (λ l n h, by unfold [vec.append, vec.nil]; congruence; apply list.append_nil_right) + + theorem append_nil_left {n : nat} (v : vec A n) : !zero_add ▹ (nil ++ v) = v := + induction_on v (λ l n h, begin unfold [vec.append, vec.nil], rewrite [push_eq_rec] end) + + theorem append_nil_left_heq {n : nat} (v : vec A n) : nil ++ v == v := + heq_of_eq_rec_left !zero_add (append_nil_left v) + + theorem append.assoc {n₁ n₂ n₃} : ∀ (v₁ : vec A n₁) (v₂ : vec A n₂) (v₃ : vec A n₃), !add.assoc ▹ ((v₁ ++ v₂) ++ v₃) = v₁ ++ (v₂ ++ v₃) + | (tag l₁ h₁) (tag l₂ h₂) (tag l₃ h₃) := begin + unfold vec.append, rewrite push_eq_rec, + congruence, + apply list.append.assoc + end + + theorem append.assoc_heq {n₁ n₂ n₃} (v₁ : vec A n₁) (v₂ : vec A n₂) (v₃ : vec A n₃) : (v₁ ++ v₂) ++ v₃ == v₁ ++ (v₂ ++ v₃) := + heq_of_eq_rec_left !add.assoc (append.assoc v₁ v₂ v₃) + + definition reverse {n : nat} : vec A n → vec A n + | (tag l h) := tag (list.reverse l) (by rewrite [length_reverse, h]) + + theorem reverse_reverse {n : nat} (v : vec A n) : reverse (reverse v) = v := + induction_on v (λ l n h, begin unfold reverse, congruence, apply list.reverse_reverse end) + theorem vec0_eq_nil : ∀ (v : vec A 0), v = nil | (tag [] h) := rfl | (tag (a::l) h) := by contradiction @@ -61,6 +136,24 @@ namespace vec definition mem {n : nat} (a : A) (v : vec A n) : Prop := a ∈ elt_of v + notation e ∈ s := mem e s + notation e ∉ s := ¬ e ∈ s + + theorem not_mem_nil (a : A) : a ∉ nil := + list.not_mem_nil a + + theorem mem_cons [simp] {n : nat} (a : A) (v : vec A n) : a ∈ a :: v := + induction_on v (λ l n h, !list.mem_cons) + + theorem mem_cons_of_mem {n : nat} (y : A) {x : A} {v : vec A n} : x ∈ v → x ∈ y :: v := + induction_on v (λ l n h₁ h₂, list.mem_cons_of_mem y h₂) + + theorem eq_or_mem_of_mem_cons {n : nat} {x y : A} {v : vec A n} : x ∈ y::v → x = y ∨ x ∈ v := + induction_on v (λ l n h₁ h₂, eq_or_mem_of_mem_cons h₂) + + theorem mem_singleton {n : nat} {x a : A} : x ∈ (a::nil : vec A 1) → x = a := + assume h, list.mem_singleton h + definition last {n : nat} : vec A (succ n) → A | (tag l h) := list.last l (ne_nil_of_length_eq_succ h) @@ -79,5 +172,4 @@ namespace vec theorem map_map {n : nat} (g : B → C) (f : A → B) (v : vec A n) : map g (map f v) = map (g ∘ f) v := begin cases v, rewrite *map_tag, apply subtype.eq, apply list.map_map end - end vec