feat(algebra/category/): minor additions, start on adjunction

This commit is contained in:
Floris van Doorn 2014-10-09 01:57:41 -04:00 committed by Leonardo de Moura
parent 57bee2a659
commit 0a58e3d1ae
4 changed files with 97 additions and 18 deletions

View file

@ -0,0 +1,31 @@
-- Copyright (c) 2014 Floris van Doorn. All rights reserved.
-- Released under Apache 2.0 license as described in the file LICENSE.
-- Author: Floris van Doorn
import .basic .constructions
open eq eq.ops category functor natural_transformation category.ops prod category.product
namespace adjoint
--representable functor
definition foo {obC : Type} (C : category obC) : C ×c C ⇒ C ×c C := functor.id
definition Hom {obC : Type} (C : category obC) : Cᵒᵖ ×c C ⇒ type :=
@functor.mk _ _ _ _ (λ a, hom (pr1 a) (pr2 a))
(λ a b f h, pr2 f ∘ h ∘ pr1 f)
(λ a, funext (λh, !id_left ⬝ !id_right))
(λ a b c g f, funext (λh,
show (pr2 g ∘ pr2 f) ∘ h ∘ (pr1 f ∘ pr1 g) = pr2 g ∘ (pr2 f ∘ h ∘ pr1 f) ∘ pr1 g, from sorry))
--I'm lazy, waiting for automation to fill this
section
parameters {obC obD : Type} (C : category obC) {D : category obD}
definition adjoint (F : C ⇒ D) (G : D ⇒ C) :=
natural_transformation (Hom D ∘f sorry)
--(Hom C ∘f sorry)
--product.prod_functor (opposite.opposite_functor F) (functor.ID D)
end
end adjoint

View file

@ -32,7 +32,7 @@ namespace category
definition ID [reducible] : Π (a : ob), hom a a := @id definition ID [reducible] : Π (a : ob), hom a a := @id
infixr `∘`:60 := compose infixr `∘`:60 := compose
infixl `⟶`:25 := hom -- input ⟶ using \--> infixl `⟶`:25 := hom -- input ⟶ using \--> (this is a different arrow than \-> (→))
variables {h : hom c d} {g : hom b c} {f : hom a b} {i : hom a a} variables {h : hom c d} {g : hom b c} {f : hom a b} {i : hom a a}
@ -109,11 +109,11 @@ namespace functor
G (F (g ∘ f)) = G (F g ∘ F f) : {respect_comp F g f} G (F (g ∘ f)) = G (F g ∘ F f) : {respect_comp F g f}
... = G (F g) ∘ G (F f) : respect_comp G (F g) (F f)) ... = G (F g) ∘ G (F f) : respect_comp G (F g) (F f))
infixr `∘`:60 := compose infixr `∘f`:60 := compose
protected theorem assoc {obA obB obC obD : Type} {A : category obA} {B : category obB} protected theorem assoc {obA obB obC obD : Type} {A : category obA} {B : category obB}
{C : category obC} {D : category obD} (H : C ⇒ D) (G : B ⇒ C) (F : A ⇒ B) : {C : category obC} {D : category obD} (H : C ⇒ D) (G : B ⇒ C) (F : A ⇒ B) :
H ∘∘ (G ∘∘ F) = (H ∘∘ G) ∘∘ F := H ∘f (G ∘f F) = (H ∘f G) ∘f F :=
rfl rfl
-- later check whether we want implicit or explicit arguments here. For the moment, define both -- later check whether we want implicit or explicit arguments here. For the moment, define both
@ -123,8 +123,8 @@ namespace functor
protected definition Id {C : Category} : Functor C C := Functor.mk id protected definition Id {C : Category} : Functor C C := Functor.mk id
protected definition iD (C : Category) : Functor C C := Functor.mk id protected definition iD (C : Category) : Functor C C := Functor.mk id
protected theorem id_left (F : C ⇒ D) : id ∘ F = F := rec (λ obF homF idF compF, rfl) F protected theorem id_left (F : C ⇒ D) : id ∘f F = F := rec (λ obF homF idF compF, rfl) F
protected theorem id_right (F : C ⇒ D) : F ∘ id = F := rec (λ obF homF idF compF, rfl) F protected theorem id_right (F : C ⇒ D) : F ∘f id = F := rec (λ obF homF idF compF, rfl) F
end basic_functor end basic_functor
@ -138,17 +138,17 @@ namespace functor
Functor.mk (compose (Functor_functor G) (Functor_functor F)) Functor.mk (compose (Functor_functor G) (Functor_functor F))
-- namespace Functor -- namespace Functor
infixr `∘`:60 := Compose infixr `∘F`:60 := Compose
-- end Functor -- end Functor
protected definition Assoc (H : Functor C₃ C₄) (G : Functor C₂ C₃) (F : Functor C₁ C₂) protected definition Assoc (H : Functor C₃ C₄) (G : Functor C₂ C₃) (F : Functor C₁ C₂)
: H ∘∘ (G ∘∘ F) = (H ∘∘ G) ∘∘ F := : H ∘F (G ∘F F) = (H ∘F G) ∘F F :=
rfl rfl
protected theorem Id_left (F : Functor C₁ C₂) : Id ∘ F = F := protected theorem Id_left (F : Functor C₁ C₂) : Id ∘F F = F :=
Functor.rec (λ f, subst !id_left rfl) F Functor.rec (λ f, subst !id_left rfl) F
protected theorem Id_right {F : Functor C₁ C₂} : F ∘ Id = F := protected theorem Id_right {F : Functor C₁ C₂} : F ∘F Id = F :=
Functor.rec (λ f, subst !id_right rfl) F Functor.rec (λ f, subst !id_right rfl) F
end Functor end Functor

View file

@ -21,6 +21,7 @@ namespace category
(λ a b f, !unit.equal) (λ a b f, !unit.equal)
end end
namespace opposite
section section
variables {ob : Type} {C : category ob} {a b c : ob} variables {ob : Type} {C : category ob} {a b c : ob}
definition opposite (C : category ob) : category ob := definition opposite (C : category ob) : category ob :=
@ -43,6 +44,7 @@ namespace category
definition Opposite (C : Category) : Category := definition Opposite (C : Category) : Category :=
Category.mk (objects C) (opposite (category_instance C)) Category.mk (objects C) (opposite (category_instance C))
end opposite
section section
definition type_category : category Type := definition type_category : category Type :=
@ -93,9 +95,10 @@ namespace category
(λ a b f, !functor.Id_right) (λ a b f, !functor.Id_right)
end cat_of_cat end cat_of_cat
section product namespace product
section
open prod open prod
definition product_category {obC obD : Type} (C : category obC) (D : category obD) definition prod_category {obC obD : Type} (C : category obC) (D : category obD)
: category (obC × obD) := : category (obC × obD) :=
mk (λa b, hom (pr1 a) (pr1 b) × hom (pr2 a) (pr2 b)) mk (λa b, hom (pr1 a) (pr1 b) × hom (pr2 a) (pr2 b))
(λ a b c g f, (pr1 g ∘ pr1 f , pr2 g ∘ pr2 f) ) (λ a b c g f, (pr1 g ∘ pr1 f , pr2 g ∘ pr2 f) )
@ -103,16 +106,47 @@ namespace category
(λ a b c d h g f, pair_eq !assoc !assoc ) (λ a b c d h g f, pair_eq !assoc !assoc )
(λ a b f, prod.equal !id_left !id_left ) (λ a b f, prod.equal !id_left !id_left )
(λ a b f, prod.equal !id_right !id_right) (λ a b f, prod.equal !id_right !id_right)
end
end product end product
namespace ops namespace ops
notation `Cat` := category_of_categories notation `Cat` := category_of_categories
notation `type` := type_category notation `type` := type_category
notation 1 := category_one notation 1 := category_one
postfix `ᵒᵖ`:max := opposite postfix `ᵒᵖ`:max := opposite.opposite
infixr `×` := product_category infixr `×c`:30 := product.prod_category
instance category_of_categories type_category category_one product_category instance category_of_categories type_category category_one product.prod_category
end ops
open ops
namespace opposite
section
open ops functor
--set_option pp.implicit true
definition opposite_functor {obC obD : Type} {C : category obC} {D : category obD} (F : C ⇒ D)
: Cᵒᵖ ⇒ Dᵒᵖ :=
@functor.mk obC obD (Cᵒᵖ) (Dᵒᵖ)
(λ a, F a)
(λ a b f, F f)
(λ a, !respect_id)
(λ a b c g f, !respect_comp)
end
end opposite
namespace product
section
open ops functor
definition prod_functor {obC obC' obD obD' : Type} {C : category obC} {C' : category obC'}
{D : category obD} {D' : category obD'} (F : C ⇒ D) (G : C' ⇒ D') : C ×c C' ⇒ D ×c D' :=
functor.mk (λ a, pair (F (pr1 a)) (G (pr2 a)))
(λ a b f, pair (F (pr1 f)) (G (pr2 f)))
(λ a, pair_eq !respect_id !respect_id)
(λ a b c g f, pair_eq !respect_comp !respect_comp)
end
end product
namespace ops
infixr `×f`:30 := product.prod_functor
infixr `ᵒᵖᶠ`:max := opposite.opposite_functor
end ops end ops
section functor_category section functor_category

View file

@ -4,13 +4,27 @@
import .basic .constructions import .basic .constructions
open eq eq.ops category functor category.ops open eq eq.ops category functor category.ops prod
namespace yoneda namespace yoneda
--representable functor --representable functor
section section
parameters {ob : Type} {C : category ob} parameters {ob : Type} {C : category ob}
-- definition Hom : Cᵒᵖ × C ⇒ type := set_option pp.universes true
-- sorry check @type_category
section
parameters {a a' b b' : ob} (f : @hom ob C a' a) (g : @hom ob C b b')
-- definition Hom_fun_fun :
end
definition Hom : Cᵒᵖ ×c C ⇒ type :=
@functor.mk _ _ _ _ (λ a, hom (pr1 a) (pr2 a))
(λ a b f h, pr2 f ∘ h ∘ pr1 f)
(λ a, funext (λh, !id_left ⬝ !id_right))
(λ a b c g f, funext (λh,
show (pr2 g ∘ pr2 f) ∘ h ∘ (pr1 f ∘ pr1 g) = pr2 g ∘ (pr2 f ∘ h ∘ pr1 f) ∘ pr1 g, from sorry))
--I'm lazy, waiting for automation to fill this
end end
end yoneda end yoneda