feat(algebra/category/): minor additions, start on adjunction
This commit is contained in:
parent
57bee2a659
commit
0a58e3d1ae
4 changed files with 97 additions and 18 deletions
31
library/algebra/category/adjoint.lean
Normal file
31
library/algebra/category/adjoint.lean
Normal file
|
@ -0,0 +1,31 @@
|
|||
-- Copyright (c) 2014 Floris van Doorn. All rights reserved.
|
||||
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||||
-- Author: Floris van Doorn
|
||||
|
||||
import .basic .constructions
|
||||
|
||||
open eq eq.ops category functor natural_transformation category.ops prod category.product
|
||||
|
||||
namespace adjoint
|
||||
--representable functor
|
||||
|
||||
definition foo {obC : Type} (C : category obC) : C ×c C ⇒ C ×c C := functor.id
|
||||
|
||||
definition Hom {obC : Type} (C : category obC) : Cᵒᵖ ×c C ⇒ type :=
|
||||
@functor.mk _ _ _ _ (λ a, hom (pr1 a) (pr2 a))
|
||||
(λ a b f h, pr2 f ∘ h ∘ pr1 f)
|
||||
(λ a, funext (λh, !id_left ⬝ !id_right))
|
||||
(λ a b c g f, funext (λh,
|
||||
show (pr2 g ∘ pr2 f) ∘ h ∘ (pr1 f ∘ pr1 g) = pr2 g ∘ (pr2 f ∘ h ∘ pr1 f) ∘ pr1 g, from sorry))
|
||||
--I'm lazy, waiting for automation to fill this
|
||||
|
||||
section
|
||||
parameters {obC obD : Type} (C : category obC) {D : category obD}
|
||||
|
||||
definition adjoint (F : C ⇒ D) (G : D ⇒ C) :=
|
||||
natural_transformation (Hom D ∘f sorry)
|
||||
--(Hom C ∘f sorry)
|
||||
--product.prod_functor (opposite.opposite_functor F) (functor.ID D)
|
||||
|
||||
end
|
||||
end adjoint
|
|
@ -32,7 +32,7 @@ namespace category
|
|||
definition ID [reducible] : Π (a : ob), hom a a := @id
|
||||
|
||||
infixr `∘`:60 := compose
|
||||
infixl `⟶`:25 := hom -- input ⟶ using \-->
|
||||
infixl `⟶`:25 := hom -- input ⟶ using \--> (this is a different arrow than \-> (→))
|
||||
|
||||
variables {h : hom c d} {g : hom b c} {f : hom a b} {i : hom a a}
|
||||
|
||||
|
@ -109,11 +109,11 @@ namespace functor
|
|||
G (F (g ∘ f)) = G (F g ∘ F f) : {respect_comp F g f}
|
||||
... = G (F g) ∘ G (F f) : respect_comp G (F g) (F f))
|
||||
|
||||
infixr `∘∘`:60 := compose
|
||||
infixr `∘f`:60 := compose
|
||||
|
||||
protected theorem assoc {obA obB obC obD : Type} {A : category obA} {B : category obB}
|
||||
{C : category obC} {D : category obD} (H : C ⇒ D) (G : B ⇒ C) (F : A ⇒ B) :
|
||||
H ∘∘ (G ∘∘ F) = (H ∘∘ G) ∘∘ F :=
|
||||
H ∘f (G ∘f F) = (H ∘f G) ∘f F :=
|
||||
rfl
|
||||
|
||||
-- later check whether we want implicit or explicit arguments here. For the moment, define both
|
||||
|
@ -123,8 +123,8 @@ namespace functor
|
|||
protected definition Id {C : Category} : Functor C C := Functor.mk id
|
||||
protected definition iD (C : Category) : Functor C C := Functor.mk id
|
||||
|
||||
protected theorem id_left (F : C ⇒ D) : id ∘∘ F = F := rec (λ obF homF idF compF, rfl) F
|
||||
protected theorem id_right (F : C ⇒ D) : F ∘∘ id = F := rec (λ obF homF idF compF, rfl) F
|
||||
protected theorem id_left (F : C ⇒ D) : id ∘f F = F := rec (λ obF homF idF compF, rfl) F
|
||||
protected theorem id_right (F : C ⇒ D) : F ∘f id = F := rec (λ obF homF idF compF, rfl) F
|
||||
|
||||
end basic_functor
|
||||
|
||||
|
@ -138,17 +138,17 @@ namespace functor
|
|||
Functor.mk (compose (Functor_functor G) (Functor_functor F))
|
||||
|
||||
-- namespace Functor
|
||||
infixr `∘∘`:60 := Compose
|
||||
infixr `∘F`:60 := Compose
|
||||
-- end Functor
|
||||
|
||||
protected definition Assoc (H : Functor C₃ C₄) (G : Functor C₂ C₃) (F : Functor C₁ C₂)
|
||||
: H ∘∘ (G ∘∘ F) = (H ∘∘ G) ∘∘ F :=
|
||||
: H ∘F (G ∘F F) = (H ∘F G) ∘F F :=
|
||||
rfl
|
||||
|
||||
protected theorem Id_left (F : Functor C₁ C₂) : Id ∘∘ F = F :=
|
||||
protected theorem Id_left (F : Functor C₁ C₂) : Id ∘F F = F :=
|
||||
Functor.rec (λ f, subst !id_left rfl) F
|
||||
|
||||
protected theorem Id_right {F : Functor C₁ C₂} : F ∘∘ Id = F :=
|
||||
protected theorem Id_right {F : Functor C₁ C₂} : F ∘F Id = F :=
|
||||
Functor.rec (λ f, subst !id_right rfl) F
|
||||
end Functor
|
||||
|
||||
|
|
|
@ -21,6 +21,7 @@ namespace category
|
|||
(λ a b f, !unit.equal)
|
||||
end
|
||||
|
||||
namespace opposite
|
||||
section
|
||||
variables {ob : Type} {C : category ob} {a b c : ob}
|
||||
definition opposite (C : category ob) : category ob :=
|
||||
|
@ -43,6 +44,7 @@ namespace category
|
|||
|
||||
definition Opposite (C : Category) : Category :=
|
||||
Category.mk (objects C) (opposite (category_instance C))
|
||||
end opposite
|
||||
|
||||
section
|
||||
definition type_category : category Type :=
|
||||
|
@ -93,9 +95,10 @@ namespace category
|
|||
(λ a b f, !functor.Id_right)
|
||||
end cat_of_cat
|
||||
|
||||
section product
|
||||
namespace product
|
||||
section
|
||||
open prod
|
||||
definition product_category {obC obD : Type} (C : category obC) (D : category obD)
|
||||
definition prod_category {obC obD : Type} (C : category obC) (D : category obD)
|
||||
: category (obC × obD) :=
|
||||
mk (λa b, hom (pr1 a) (pr1 b) × hom (pr2 a) (pr2 b))
|
||||
(λ a b c g f, (pr1 g ∘ pr1 f , pr2 g ∘ pr2 f) )
|
||||
|
@ -103,16 +106,47 @@ namespace category
|
|||
(λ a b c d h g f, pair_eq !assoc !assoc )
|
||||
(λ a b f, prod.equal !id_left !id_left )
|
||||
(λ a b f, prod.equal !id_right !id_right)
|
||||
|
||||
end
|
||||
end product
|
||||
|
||||
namespace ops
|
||||
notation `Cat` := category_of_categories
|
||||
notation `type` := type_category
|
||||
notation 1 := category_one
|
||||
postfix `ᵒᵖ`:max := opposite
|
||||
infixr `×` := product_category
|
||||
instance category_of_categories type_category category_one product_category
|
||||
postfix `ᵒᵖ`:max := opposite.opposite
|
||||
infixr `×c`:30 := product.prod_category
|
||||
instance category_of_categories type_category category_one product.prod_category
|
||||
end ops
|
||||
open ops
|
||||
namespace opposite
|
||||
section
|
||||
open ops functor
|
||||
--set_option pp.implicit true
|
||||
definition opposite_functor {obC obD : Type} {C : category obC} {D : category obD} (F : C ⇒ D)
|
||||
: Cᵒᵖ ⇒ Dᵒᵖ :=
|
||||
@functor.mk obC obD (Cᵒᵖ) (Dᵒᵖ)
|
||||
(λ a, F a)
|
||||
(λ a b f, F f)
|
||||
(λ a, !respect_id)
|
||||
(λ a b c g f, !respect_comp)
|
||||
end
|
||||
end opposite
|
||||
|
||||
namespace product
|
||||
section
|
||||
open ops functor
|
||||
definition prod_functor {obC obC' obD obD' : Type} {C : category obC} {C' : category obC'}
|
||||
{D : category obD} {D' : category obD'} (F : C ⇒ D) (G : C' ⇒ D') : C ×c C' ⇒ D ×c D' :=
|
||||
functor.mk (λ a, pair (F (pr1 a)) (G (pr2 a)))
|
||||
(λ a b f, pair (F (pr1 f)) (G (pr2 f)))
|
||||
(λ a, pair_eq !respect_id !respect_id)
|
||||
(λ a b c g f, pair_eq !respect_comp !respect_comp)
|
||||
end
|
||||
end product
|
||||
|
||||
namespace ops
|
||||
infixr `×f`:30 := product.prod_functor
|
||||
infixr `ᵒᵖᶠ`:max := opposite.opposite_functor
|
||||
end ops
|
||||
|
||||
section functor_category
|
||||
|
|
|
@ -4,13 +4,27 @@
|
|||
|
||||
import .basic .constructions
|
||||
|
||||
open eq eq.ops category functor category.ops
|
||||
open eq eq.ops category functor category.ops prod
|
||||
|
||||
namespace yoneda
|
||||
--representable functor
|
||||
section
|
||||
parameters {ob : Type} {C : category ob}
|
||||
-- definition Hom : Cᵒᵖ × C ⇒ type :=
|
||||
-- sorry
|
||||
set_option pp.universes true
|
||||
check @type_category
|
||||
section
|
||||
parameters {a a' b b' : ob} (f : @hom ob C a' a) (g : @hom ob C b b')
|
||||
-- definition Hom_fun_fun :
|
||||
end
|
||||
definition Hom : Cᵒᵖ ×c C ⇒ type :=
|
||||
@functor.mk _ _ _ _ (λ a, hom (pr1 a) (pr2 a))
|
||||
(λ a b f h, pr2 f ∘ h ∘ pr1 f)
|
||||
(λ a, funext (λh, !id_left ⬝ !id_right))
|
||||
(λ a b c g f, funext (λh,
|
||||
show (pr2 g ∘ pr2 f) ∘ h ∘ (pr1 f ∘ pr1 g) = pr2 g ∘ (pr2 f ∘ h ∘ pr1 f) ∘ pr1 g, from sorry))
|
||||
--I'm lazy, waiting for automation to fill this
|
||||
|
||||
|
||||
|
||||
end
|
||||
end yoneda
|
||||
|
|
Loading…
Reference in a new issue