feat(library/data/vector): add helper lemmas for proving v == w when v and w are vectors
This commit is contained in:
parent
a99c44b644
commit
0a8bab14ee
1 changed files with 74 additions and 31 deletions
|
@ -128,25 +128,13 @@ namespace vector
|
||||||
| 0 m [] w := w
|
| 0 m [] w := w
|
||||||
| (succ n) m (a::v) w := a :: (append v w)
|
| (succ n) m (a::v) w := a :: (append v w)
|
||||||
|
|
||||||
theorem nil_append {n : nat} (v : vector A n) : append [] v = v :=
|
theorem append_nil_left {n : nat} (v : vector A n) : append [] v = v :=
|
||||||
rfl
|
rfl
|
||||||
|
|
||||||
theorem append_cons {n m : nat} (h : A) (t : vector A n) (v : vector A m) :
|
theorem append_cons {n m : nat} (h : A) (t : vector A n) (v : vector A m) :
|
||||||
append (h::t) v = h :: (append t v) :=
|
append (h::t) v = h :: (append t v) :=
|
||||||
rfl
|
rfl
|
||||||
|
|
||||||
theorem append_nil : Π {n : nat} (v : vector A n), append v [] == v
|
|
||||||
| 0 [] := !heq.refl
|
|
||||||
| (n+1) (h::t) :=
|
|
||||||
begin
|
|
||||||
change (h :: append t [] == h :: t),
|
|
||||||
have H₁ : append t [] == t, from append_nil t,
|
|
||||||
revert H₁, generalize (append t []),
|
|
||||||
rewrite [-add_eq_addl, add_zero],
|
|
||||||
intro w H₁,
|
|
||||||
rewrite [heq.to_eq H₁]
|
|
||||||
end
|
|
||||||
|
|
||||||
theorem map_append (f : A → B) : ∀ {n m : nat} (v : vector A n) (w : vector A m), map f (append v w) = append (map f v) (map f w)
|
theorem map_append (f : A → B) : ∀ {n m : nat} (v : vector A n) (w : vector A m), map f (append v w) = append (map f v) (map f w)
|
||||||
| 0 m [] w := rfl
|
| 0 m [] w := rfl
|
||||||
| (n+1) m (h :: t) w :=
|
| (n+1) m (h :: t) w :=
|
||||||
|
@ -234,15 +222,15 @@ namespace vector
|
||||||
|
|
||||||
/- list <-> vector -/
|
/- list <-> vector -/
|
||||||
|
|
||||||
definition of_list {A : Type} : Π (l : list A), vector A (list.length l)
|
definition of_list : Π (l : list A), vector A (list.length l)
|
||||||
| list.nil := []
|
| list.nil := []
|
||||||
| (list.cons a l) := a :: (of_list l)
|
| (list.cons a l) := a :: (of_list l)
|
||||||
|
|
||||||
definition to_list {A : Type} : Π {n : nat}, vector A n → list A
|
definition to_list : Π {n : nat}, vector A n → list A
|
||||||
| 0 [] := list.nil
|
| 0 [] := list.nil
|
||||||
| (n+1) (a :: vs) := list.cons a (to_list vs)
|
| (n+1) (a :: vs) := list.cons a (to_list vs)
|
||||||
|
|
||||||
theorem to_list_of_list {A : Type} : ∀ (l : list A), to_list (of_list l) = l
|
theorem to_list_of_list : ∀ (l : list A), to_list (of_list l) = l
|
||||||
| list.nil := rfl
|
| list.nil := rfl
|
||||||
| (list.cons a l) :=
|
| (list.cons a l) :=
|
||||||
begin
|
begin
|
||||||
|
@ -250,7 +238,10 @@ namespace vector
|
||||||
rewrite to_list_of_list
|
rewrite to_list_of_list
|
||||||
end
|
end
|
||||||
|
|
||||||
theorem length_to_list {A : Type} : ∀ {n : nat} (v : vector A n), list.length (to_list v) = n
|
theorem to_list_nil : to_list [] = (list.nil : list A) :=
|
||||||
|
rfl
|
||||||
|
|
||||||
|
theorem length_to_list : ∀ {n : nat} (v : vector A n), list.length (to_list v) = n
|
||||||
| 0 [] := rfl
|
| 0 [] := rfl
|
||||||
| (n+1) (a :: vs) :=
|
| (n+1) (a :: vs) :=
|
||||||
begin
|
begin
|
||||||
|
@ -258,20 +249,72 @@ namespace vector
|
||||||
rewrite length_to_list
|
rewrite length_to_list
|
||||||
end
|
end
|
||||||
|
|
||||||
theorem of_list_to_list {A : Type} : ∀ {n : nat} (v : vector A n), of_list (to_list v) == v
|
theorem heq_of_list_eq : ∀ {n m} {v₁ : vector A n} {v₂ : vector A m}, to_list v₁ = to_list v₂ → n = m → v₁ == v₂
|
||||||
| 0 [] := by reflexivity
|
| 0 0 [] [] h₁ h₂ := !heq.refl
|
||||||
| (n+1) (a :: vs) :=
|
| 0 (m+1) [] (y::ys) h₁ h₂ := by contradiction
|
||||||
|
| (n+1) 0 (x::xs) [] h₁ h₂ := by contradiction
|
||||||
|
| (n+1) (m+1) (x::xs) (y::ys) h₁ h₂ :=
|
||||||
|
assert e₁ : n = m, from succ.inj h₂,
|
||||||
|
assert e₂ : x = y, begin unfold to_list at h₁, injection h₁, assumption end,
|
||||||
|
have to_list xs = to_list ys, begin unfold to_list at h₁, injection h₁, assumption end,
|
||||||
|
assert xs == ys, from heq_of_list_eq this e₁,
|
||||||
|
assert y :: xs == y :: ys, begin clear heq_of_list_eq h₁ h₂, revert xs ys this, induction e₁, intro xs ys h, rewrite [heq.to_eq h] end,
|
||||||
|
show x :: xs == y :: ys, by rewrite e₂; exact this
|
||||||
|
|
||||||
|
theorem list_eq_of_heq {n m} {v₁ : vector A n} {v₂ : vector A m} : v₁ == v₂ → n = m → to_list v₁ = to_list v₂ :=
|
||||||
begin
|
begin
|
||||||
change (a :: of_list (to_list vs) == a :: vs),
|
intro h₁ h₂, revert v₁ v₂ h₁,
|
||||||
have H₁ : of_list (to_list vs) == vs, from of_list_to_list vs,
|
subst n, intro v₁ v₂ h₁, rewrite [heq.to_eq h₁]
|
||||||
revert H₁,
|
|
||||||
generalize (of_list (to_list vs)),
|
|
||||||
rewrite length_to_list at *,
|
|
||||||
intro vs', intro H,
|
|
||||||
have H₂ : vs' = vs, from heq.to_eq H,
|
|
||||||
substvars
|
|
||||||
end
|
end
|
||||||
|
|
||||||
|
theorem of_list_to_list {n : nat} (v : vector A n) : of_list (to_list v) == v :=
|
||||||
|
begin
|
||||||
|
apply heq_of_list_eq, rewrite to_list_of_list, rewrite length_to_list
|
||||||
|
end
|
||||||
|
|
||||||
|
theorem to_list_append : ∀ {n m : nat} (v₁ : vector A n) (v₂ : vector A m), to_list (append v₁ v₂) = list.append (to_list v₁) (to_list v₂)
|
||||||
|
| 0 m [] ys := rfl
|
||||||
|
| (succ n) m (x::xs) ys := begin unfold append, unfold to_list at {1,2}, krewrite [to_list_append xs ys] end
|
||||||
|
|
||||||
|
theorem to_list_map (f : A → B) : ∀ {n : nat} (v : vector A n), to_list (map f v) = list.map f (to_list v)
|
||||||
|
| 0 [] := rfl
|
||||||
|
| (succ n) (x::xs) := begin unfold [map, to_list], rewrite to_list_map end
|
||||||
|
|
||||||
|
theorem to_list_concat : ∀ {n : nat} (v : vector A n) (a : A), to_list (concat v a) = list.concat a (to_list v)
|
||||||
|
| 0 [] a := rfl
|
||||||
|
| (succ n) (x::xs) a := begin unfold [concat, to_list], rewrite to_list_concat end
|
||||||
|
|
||||||
|
theorem to_list_reverse : ∀ {n : nat} (v : vector A n), to_list (reverse v) = list.reverse (to_list v)
|
||||||
|
| 0 [] := rfl
|
||||||
|
| (succ n) (x::xs) := begin unfold [reverse], rewrite [to_list_concat, to_list_reverse] end
|
||||||
|
|
||||||
|
theorem append_nil_right {n : nat} (v : vector A n) : append v [] == v :=
|
||||||
|
begin
|
||||||
|
apply heq_of_list_eq,
|
||||||
|
rewrite [to_list_append, to_list_nil, list.append_nil_right],
|
||||||
|
rewrite [-add_eq_addl]
|
||||||
|
end
|
||||||
|
|
||||||
|
theorem append.assoc {n₁ n₂ n₃ : nat} (v₁ : vector A n₁) (v₂ : vector A n₂) (v₃ : vector A n₃) : append v₁ (append v₂ v₃) == append (append v₁ v₂) v₃ :=
|
||||||
|
begin
|
||||||
|
apply heq_of_list_eq,
|
||||||
|
rewrite [*to_list_append, list.append.assoc],
|
||||||
|
rewrite [-*add_eq_addl, add.assoc]
|
||||||
|
end
|
||||||
|
|
||||||
|
theorem reverse_append {n m : nat} (v : vector A n) (w : vector A m) : reverse (append v w) == append (reverse w) (reverse v) :=
|
||||||
|
begin
|
||||||
|
apply heq_of_list_eq,
|
||||||
|
rewrite [to_list_reverse, to_list_append, list.reverse_append, to_list_append, *to_list_reverse],
|
||||||
|
rewrite [-*add_eq_addl, add.comm]
|
||||||
|
end
|
||||||
|
|
||||||
|
theorem concat_eq_append {n : nat} (v : vector A n) (a : A) : concat v a == append v [a] :=
|
||||||
|
begin
|
||||||
|
apply heq_of_list_eq,
|
||||||
|
rewrite [to_list_concat, to_list_append, list.concat_eq_append],
|
||||||
|
rewrite [-add_eq_addl]
|
||||||
|
end
|
||||||
|
|
||||||
/- decidable equality -/
|
/- decidable equality -/
|
||||||
open decidable
|
open decidable
|
||||||
|
|
Loading…
Reference in a new issue