feat(function): add unfold hints to function.[h]lean
This commit is contained in:
parent
20e62c9623
commit
0a8f4f6dab
2 changed files with 27 additions and 25 deletions
|
@ -17,41 +17,42 @@ namespace function
|
|||
|
||||
variables {A B C D E : Type}
|
||||
|
||||
definition compose [reducible] (f : B → C) (g : A → B) : A → C :=
|
||||
definition compose [reducible] [unfold-f] (f : B → C) (g : A → B) : A → C :=
|
||||
λx, f (g x)
|
||||
|
||||
definition compose_right [reducible] (f : B → B → B) (g : A → B) : B → A → B :=
|
||||
definition compose_right [reducible] [unfold-f] (f : B → B → B) (g : A → B) : B → A → B :=
|
||||
λ b a, f b (g a)
|
||||
|
||||
definition compose_left [reducible] (f : B → B → B) (g : A → B) : A → B → B :=
|
||||
definition compose_left [reducible] [unfold-f] (f : B → B → B) (g : A → B) : A → B → B :=
|
||||
λ a b, f (g a) b
|
||||
|
||||
definition id [reducible] (a : A) : A :=
|
||||
definition id [reducible] [unfold-f] (a : A) : A :=
|
||||
a
|
||||
|
||||
definition on_fun [reducible] (f : B → B → C) (g : A → B) : A → A → C :=
|
||||
definition on_fun [reducible] [unfold-f] (f : B → B → C) (g : A → B) : A → A → C :=
|
||||
λx y, f (g x) (g y)
|
||||
|
||||
definition combine [reducible] (f : A → B → C) (op : C → D → E) (g : A → B → D) : A → B → E :=
|
||||
definition combine [reducible] [unfold-f] (f : A → B → C) (op : C → D → E) (g : A → B → D)
|
||||
: A → B → E :=
|
||||
λx y, op (f x y) (g x y)
|
||||
|
||||
definition const [reducible] (B : Type) (a : A) : B → A :=
|
||||
definition const [reducible] [unfold-f] (B : Type) (a : A) : B → A :=
|
||||
λx, a
|
||||
|
||||
definition dcompose [reducible] {B : A → Type} {C : Π {x : A}, B x → Type}
|
||||
definition dcompose [reducible] [unfold-f] {B : A → Type} {C : Π {x : A}, B x → Type}
|
||||
(f : Π {x : A} (y : B x), C y) (g : Πx, B x) : Πx, C (g x) :=
|
||||
λx, f (g x)
|
||||
|
||||
definition flip [reducible] {C : A → B → Type} (f : Πx y, C x y) : Πy x, C x y :=
|
||||
definition flip [reducible] [unfold-f] {C : A → B → Type} (f : Πx y, C x y) : Πy x, C x y :=
|
||||
λy x, f x y
|
||||
|
||||
definition app [reducible] {B : A → Type} (f : Πx, B x) (x : A) : B x :=
|
||||
definition app [reducible] [unfold-f] {B : A → Type} (f : Πx, B x) (x : A) : B x :=
|
||||
f x
|
||||
|
||||
definition curry [reducible] : (A × B → C) → A → B → C :=
|
||||
definition curry [reducible] [unfold-f] : (A × B → C) → A → B → C :=
|
||||
λ f a b, f (a, b)
|
||||
|
||||
definition uncurry [reducible] : (A → B → C) → (A × B → C) :=
|
||||
definition uncurry [reducible] [unfold-c 5] : (A → B → C) → (A × B → C) :=
|
||||
λ f p, match p with (a, b) := f a b end
|
||||
|
||||
precedence `∘'`:60
|
||||
|
@ -68,4 +69,4 @@ notation f `-[` op `]-` g := combine f op g
|
|||
end function
|
||||
|
||||
-- copy reducible annotations to top-level
|
||||
export [reduce-hints] function
|
||||
export [reduce-hints] [unfold-hints] function
|
||||
|
|
|
@ -11,41 +11,42 @@ namespace function
|
|||
|
||||
variables {A : Type} {B : Type} {C : Type} {D : Type} {E : Type}
|
||||
|
||||
definition compose [reducible] (f : B → C) (g : A → B) : A → C :=
|
||||
definition compose [reducible] [unfold-f] (f : B → C) (g : A → B) : A → C :=
|
||||
λx, f (g x)
|
||||
|
||||
definition compose_right [reducible] (f : B → B → B) (g : A → B) : B → A → B :=
|
||||
definition compose_right [reducible] [unfold-f] (f : B → B → B) (g : A → B) : B → A → B :=
|
||||
λ b a, f b (g a)
|
||||
|
||||
definition compose_left [reducible] (f : B → B → B) (g : A → B) : A → B → B :=
|
||||
definition compose_left [reducible] [unfold-f] (f : B → B → B) (g : A → B) : A → B → B :=
|
||||
λ a b, f (g a) b
|
||||
|
||||
definition id [reducible] (a : A) : A :=
|
||||
definition id [reducible] [unfold-f] (a : A) : A :=
|
||||
a
|
||||
|
||||
definition on_fun [reducible] (f : B → B → C) (g : A → B) : A → A → C :=
|
||||
definition on_fun [reducible] [unfold-f] (f : B → B → C) (g : A → B) : A → A → C :=
|
||||
λx y, f (g x) (g y)
|
||||
|
||||
definition combine [reducible] (f : A → B → C) (op : C → D → E) (g : A → B → D) : A → B → E :=
|
||||
definition combine [reducible] [unfold-f] (f : A → B → C) (op : C → D → E) (g : A → B → D)
|
||||
: A → B → E :=
|
||||
λx y, op (f x y) (g x y)
|
||||
|
||||
definition const [reducible] (B : Type) (a : A) : B → A :=
|
||||
definition const [reducible] [unfold-f] (B : Type) (a : A) : B → A :=
|
||||
λx, a
|
||||
|
||||
definition dcompose [reducible] {B : A → Type} {C : Π {x : A}, B x → Type}
|
||||
definition dcompose [reducible] [unfold-f] {B : A → Type} {C : Π {x : A}, B x → Type}
|
||||
(f : Π {x : A} (y : B x), C y) (g : Πx, B x) : Πx, C (g x) :=
|
||||
λx, f (g x)
|
||||
|
||||
definition flip [reducible] {C : A → B → Type} (f : Πx y, C x y) : Πy x, C x y :=
|
||||
definition flip [reducible] [unfold-f] {C : A → B → Type} (f : Πx y, C x y) : Πy x, C x y :=
|
||||
λy x, f x y
|
||||
|
||||
definition app [reducible] {B : A → Type} (f : Πx, B x) (x : A) : B x :=
|
||||
f x
|
||||
|
||||
definition curry [reducible] : (A × B → C) → A → B → C :=
|
||||
definition curry [reducible] [unfold-f] : (A × B → C) → A → B → C :=
|
||||
λ f a b, f (a, b)
|
||||
|
||||
definition uncurry [reducible] : (A → B → C) → (A × B → C) :=
|
||||
definition uncurry [reducible] [unfold-c 5] : (A → B → C) → (A × B → C) :=
|
||||
λ f p, match p with (a, b) := f a b end
|
||||
|
||||
theorem curry_uncurry (f : A → B → C) : curry (uncurry f) = f :=
|
||||
|
@ -97,4 +98,4 @@ exists.intro a h
|
|||
end function
|
||||
|
||||
-- copy reducible annotations to top-level
|
||||
export [reduce-hints] function
|
||||
export [reduce-hints] [unfold-hints] function
|
||||
|
|
Loading…
Reference in a new issue