feat(theories/analysis/real_limit): fix analysis.real_limit
This commit is contained in:
parent
4e78e35f77
commit
0aaa8a9770
1 changed files with 29 additions and 27 deletions
|
@ -25,7 +25,7 @@ open real classical algebra
|
||||||
noncomputable theory
|
noncomputable theory
|
||||||
|
|
||||||
namespace real
|
namespace real
|
||||||
|
local postfix ⁻¹ := pnat.inv
|
||||||
/- the reals form a metric space -/
|
/- the reals form a metric space -/
|
||||||
|
|
||||||
protected definition to_metric_space [instance] : metric_space ℝ :=
|
protected definition to_metric_space [instance] : metric_space ℝ :=
|
||||||
|
@ -38,6 +38,7 @@ protected definition to_metric_space [instance] : metric_space ℝ :=
|
||||||
⦄
|
⦄
|
||||||
|
|
||||||
open nat
|
open nat
|
||||||
|
open [classes] rat
|
||||||
|
|
||||||
definition converges_to_seq (X : ℕ → ℝ) (y : ℝ) : Prop :=
|
definition converges_to_seq (X : ℕ → ℝ) (y : ℝ) : Prop :=
|
||||||
∀ ⦃ε : ℝ⦄, ε > 0 → ∃ N : ℕ, ∀ {n}, n ≥ N → abs (X n - y) < ε
|
∀ ⦃ε : ℝ⦄, ε > 0 → ∃ N : ℕ, ∀ {n}, n ≥ N → abs (X n - y) < ε
|
||||||
|
@ -122,15 +123,15 @@ section
|
||||||
∀ k : ℕ+, ∃ N : ℕ+, ∀ m n : ℕ+,
|
∀ k : ℕ+, ∃ N : ℕ+, ∀ m n : ℕ+,
|
||||||
m ≥ N → n ≥ N → abs (X (elt_of m) - X (elt_of n)) ≤ of_rat k⁻¹ :=
|
m ≥ N → n ≥ N → abs (X (elt_of m) - X (elt_of n)) ≤ of_rat k⁻¹ :=
|
||||||
take k : ℕ+,
|
take k : ℕ+,
|
||||||
have H1 : (rat.gt k⁻¹ (rat.of_num 0)), from !inv_pos,
|
have H1 : (k⁻¹ > (rat.of_num 0)), from !inv_pos,
|
||||||
have H2 : (of_rat k⁻¹ > of_rat (rat.of_num 0)), from !of_rat_lt_of_rat_of_lt H1,
|
have H2 : (of_rat k⁻¹ > of_rat (rat.of_num 0)), from !of_rat_lt_of_rat_of_lt H1,
|
||||||
obtain (N : ℕ) (H : ∀ m n, m ≥ N → n ≥ N → abs (X m - X n) < of_rat k⁻¹), from H _ H2,
|
obtain (N : ℕ) (H : ∀ m n, m ≥ N → n ≥ N → abs (X m - X n) < of_rat k⁻¹), from H _ H2,
|
||||||
exists.intro (pnat.succ N)
|
exists.intro (pnat.succ N)
|
||||||
(take m n : ℕ+,
|
(take m n : ℕ+,
|
||||||
assume Hm : m ≥ (pnat.succ N),
|
assume Hm : m ≥ (pnat.succ N),
|
||||||
assume Hn : n ≥ (pnat.succ N),
|
assume Hn : n ≥ (pnat.succ N),
|
||||||
have Hm' : elt_of m ≥ N, from nat.le.trans !le_succ Hm,
|
have Hm' : elt_of m ≥ N, begin apply algebra.le.trans, apply le_succ, apply Hm end,
|
||||||
have Hn' : elt_of n ≥ N, from nat.le.trans !le_succ Hn,
|
have Hn' : elt_of n ≥ N, begin apply algebra.le.trans, apply le_succ, apply Hn end,
|
||||||
show abs (X (elt_of m) - X (elt_of n)) ≤ of_rat k⁻¹, from le_of_lt (H _ _ Hm' Hn'))
|
show abs (X (elt_of m) - X (elt_of n)) ≤ of_rat k⁻¹, from le_of_lt (H _ _ Hm' Hn'))
|
||||||
|
|
||||||
private definition rate_of_cauchy {X : ℕ → ℝ} (H : cauchy X) (k : ℕ+) : ℕ+ :=
|
private definition rate_of_cauchy {X : ℕ → ℝ} (H : cauchy X) (k : ℕ+) : ℕ+ :=
|
||||||
|
@ -165,7 +166,7 @@ exists.intro l
|
||||||
(take n : ℕ,
|
(take n : ℕ,
|
||||||
assume Hn : n ≥ elt_of N,
|
assume Hn : n ≥ elt_of N,
|
||||||
let n' : ℕ+ := tag n (nat.lt_of_lt_of_le (has_property N) Hn) in
|
let n' : ℕ+ := tag n (nat.lt_of_lt_of_le (has_property N) Hn) in
|
||||||
have abs (X n - l) ≤ real.of_rat k⁻¹, from conv k n' Hn,
|
have abs (X n - l) ≤ real.of_rat k⁻¹, by apply conv k n' Hn,
|
||||||
show abs (X n - l) < ε, from lt_of_le_of_lt this Hk))
|
show abs (X n - l) < ε, from lt_of_le_of_lt this Hk))
|
||||||
|
|
||||||
open set
|
open set
|
||||||
|
@ -306,12 +307,12 @@ take ε, suppose ε > 0,
|
||||||
have e2pos : ε / 2 > 0, from div_pos_of_pos_of_pos `ε > 0` two_pos,
|
have e2pos : ε / 2 > 0, from div_pos_of_pos_of_pos `ε > 0` two_pos,
|
||||||
obtain N₁ (HN₁ : ∀ {n}, n ≥ N₁ → abs (X n - x) < ε / 2), from HX e2pos,
|
obtain N₁ (HN₁ : ∀ {n}, n ≥ N₁ → abs (X n - x) < ε / 2), from HX e2pos,
|
||||||
obtain N₂ (HN₂ : ∀ {n}, n ≥ N₂ → abs (Y n - y) < ε / 2), from HY e2pos,
|
obtain N₂ (HN₂ : ∀ {n}, n ≥ N₂ → abs (Y n - y) < ε / 2), from HY e2pos,
|
||||||
let N := nat.max N₁ N₂ in
|
let N := max N₁ N₂ in
|
||||||
exists.intro N
|
exists.intro N
|
||||||
(take n,
|
(take n,
|
||||||
suppose n ≥ N,
|
suppose n ≥ N,
|
||||||
have ngtN₁ : n ≥ N₁, from nat.le.trans !nat.le_max_left `n ≥ N`,
|
have ngtN₁ : n ≥ N₁, from nat.le.trans !le_max_left `n ≥ N`,
|
||||||
have ngtN₂ : n ≥ N₂, from nat.le.trans !nat.le_max_right `n ≥ N`,
|
have ngtN₂ : n ≥ N₂, from nat.le.trans !le_max_right `n ≥ N`,
|
||||||
show abs ((X n + Y n) - (x + y)) < ε, from calc
|
show abs ((X n + Y n) - (x + y)) < ε, from calc
|
||||||
abs ((X n + Y n) - (x + y))
|
abs ((X n + Y n) - (x + y))
|
||||||
= abs ((X n - x) + (Y n - y)) : by rewrite [sub_add_eq_sub_sub, *sub_eq_add_neg,
|
= abs ((X n - x) + (Y n - y)) : by rewrite [sub_add_eq_sub_sub, *sub_eq_add_neg,
|
||||||
|
@ -373,7 +374,7 @@ take ε, suppose ε > 0,
|
||||||
obtain N (HN : ∀ n, n ≥ N → abs (X n - 0) < ε), from HX `ε > 0`,
|
obtain N (HN : ∀ n, n ≥ N → abs (X n - 0) < ε), from HX `ε > 0`,
|
||||||
exists.intro N
|
exists.intro N
|
||||||
(take n, assume Hn : n ≥ N,
|
(take n, assume Hn : n ≥ N,
|
||||||
have abs (X n) < ε, from (!sub_zero ▸ HN n Hn),
|
have abs (X n) < ε, begin rewrite -(sub_zero (X n)), apply HN n Hn end,
|
||||||
show abs (abs (X n) - 0) < ε, using this,
|
show abs (abs (X n) - 0) < ε, using this,
|
||||||
by rewrite [sub_zero, abs_of_nonneg !abs_nonneg]; apply this)
|
by rewrite [sub_zero, abs_of_nonneg !abs_nonneg]; apply this)
|
||||||
|
|
||||||
|
@ -385,7 +386,7 @@ exists.intro (N : ℕ)
|
||||||
(take n : ℕ, assume Hn : n ≥ N,
|
(take n : ℕ, assume Hn : n ≥ N,
|
||||||
have HN' : abs (abs (X n) - 0) < ε, from HN n Hn,
|
have HN' : abs (abs (X n) - 0) < ε, from HN n Hn,
|
||||||
have abs (X n) < ε,
|
have abs (X n) < ε,
|
||||||
by+ rewrite [real.sub_zero at HN', abs_of_nonneg !abs_nonneg at HN']; apply HN',
|
by+ rewrite [sub_zero at HN', abs_of_nonneg !abs_nonneg at HN']; apply HN',
|
||||||
show abs (X n - 0) < ε, using this,
|
show abs (X n - 0) < ε, using this,
|
||||||
by rewrite sub_zero; apply this)
|
by rewrite sub_zero; apply this)
|
||||||
|
|
||||||
|
@ -433,12 +434,12 @@ obtain x' [(H₁x' : x' ∈ X '[univ]) (H₂x' : sX - ε < x')],
|
||||||
from exists_mem_and_lt_of_lt_sup exX this,
|
from exists_mem_and_lt_of_lt_sup exX this,
|
||||||
obtain i [H' (Hi : X i = x')], from H₁x',
|
obtain i [H' (Hi : X i = x')], from H₁x',
|
||||||
have Hi' : ∀ j, j ≥ i → sX - ε < X j, from
|
have Hi' : ∀ j, j ≥ i → sX - ε < X j, from
|
||||||
take j, assume Hj, lt_of_lt_of_le (Hi⁻¹ ▸ H₂x') (nondecX Hj),
|
take j, assume Hj, lt_of_lt_of_le (by rewrite Hi; apply H₂x') (nondecX Hj),
|
||||||
exists.intro i
|
exists.intro i
|
||||||
(take j, assume Hj : j ≥ i,
|
(take j, assume Hj : j ≥ i,
|
||||||
have X j - sX ≤ 0, from sub_nonpos_of_le (Xle j),
|
have X j - sX ≤ 0, from sub_nonpos_of_le (Xle j),
|
||||||
have eq₁ : abs (X j - sX) = sX - X j, using this, by rewrite [abs_of_nonpos this, neg_sub],
|
have eq₁ : abs (X j - sX) = sX - X j, using this, by rewrite [abs_of_nonpos this, neg_sub],
|
||||||
have sX - ε < X j, from lt_of_lt_of_le (Hi⁻¹ ▸ H₂x') (nondecX Hj),
|
have sX - ε < X j, from lt_of_lt_of_le (by rewrite Hi; apply H₂x') (nondecX Hj),
|
||||||
have sX < X j + ε, from lt_add_of_sub_lt_right this,
|
have sX < X j + ε, from lt_add_of_sub_lt_right this,
|
||||||
have sX - X j < ε, from sub_lt_left_of_lt_add this,
|
have sX - X j < ε, from sub_lt_left_of_lt_add this,
|
||||||
show (abs (X j - sX)) < ε, using eq₁ this, by rewrite eq₁; exact this)
|
show (abs (X j - sX)) < ε, using eq₁ this, by rewrite eq₁; exact this)
|
||||||
|
@ -486,8 +487,8 @@ have H₂ : ∀ x, x ∈ X '[univ] → b ≤ x, from
|
||||||
obtain i [Hi₁ (Hi₂ : X i = x)], from H,
|
obtain i [Hi₁ (Hi₂ : X i = x)], from H,
|
||||||
show b ≤ x, by rewrite -Hi₂; apply Hb i),
|
show b ≤ x, by rewrite -Hi₂; apply Hb i),
|
||||||
have H₃ : {x : ℝ | -x ∈ X '[univ]} = {x : ℝ | x ∈ (λ n, -X n) '[univ]}, from calc
|
have H₃ : {x : ℝ | -x ∈ X '[univ]} = {x : ℝ | x ∈ (λ n, -X n) '[univ]}, from calc
|
||||||
{x : ℝ | -x ∈ X '[univ]} = (λ y, -y) '[X '[univ]] : !image_neg_eq⁻¹
|
{x : ℝ | -x ∈ X '[univ]} = (λ y, -y) '[X '[univ]] : by rewrite image_neg_eq
|
||||||
... = {x : ℝ | x ∈ (λ n, -X n) '[univ]} : !image_compose⁻¹,
|
... = {x : ℝ | x ∈ (λ n, -X n) '[univ]} : image_compose,
|
||||||
have H₄ : ∀ i, - X i ≤ - b, from take i, neg_le_neg (Hb i),
|
have H₄ : ∀ i, - X i ≤ - b, from take i, neg_le_neg (Hb i),
|
||||||
begin+
|
begin+
|
||||||
rewrite [-neg_converges_to_seq_iff, -sup_neg H₁ H₂, H₃, -nondecreasing_neg_iff at nonincX],
|
rewrite [-neg_converges_to_seq_iff, -sup_neg H₁ H₂, H₃, -nondecreasing_neg_iff at nonincX],
|
||||||
|
@ -502,7 +503,7 @@ open nat set
|
||||||
theorem pow_converges_to_seq_zero {x : ℝ} (H : abs x < 1) :
|
theorem pow_converges_to_seq_zero {x : ℝ} (H : abs x < 1) :
|
||||||
(λ n, x^n) ⟶ 0 in ℕ :=
|
(λ n, x^n) ⟶ 0 in ℕ :=
|
||||||
suffices H' : (λ n, (abs x)^n) ⟶ 0 in ℕ, from
|
suffices H' : (λ n, (abs x)^n) ⟶ 0 in ℕ, from
|
||||||
have (λ n, (abs x)^n) = (λ n, abs (x^n)), from funext (take n, !abs_pow⁻¹),
|
have (λ n, (abs x)^n) = (λ n, abs (x^n)), from funext (take n, eq.symm !abs_pow),
|
||||||
using this,
|
using this,
|
||||||
by rewrite this at H'; exact converges_to_seq_zero_of_abs_converges_to_seq_zero H',
|
by rewrite this at H'; exact converges_to_seq_zero_of_abs_converges_to_seq_zero H',
|
||||||
let aX := (λ n, (abs x)^n),
|
let aX := (λ n, (abs x)^n),
|
||||||
|
@ -511,16 +512,17 @@ let aX := (λ n, (abs x)^n),
|
||||||
have noninc_aX : nonincreasing aX, from
|
have noninc_aX : nonincreasing aX, from
|
||||||
nonincreasing_of_forall_succ_le
|
nonincreasing_of_forall_succ_le
|
||||||
(take i,
|
(take i,
|
||||||
have (abs x) * (abs x)^i ≤ 1 * (abs x)^i,
|
assert (abs x) * (abs x)^i ≤ 1 * (abs x)^i,
|
||||||
from mul_le_mul_of_nonneg_right (le_of_lt H) (!pow_nonneg_of_nonneg !abs_nonneg),
|
from mul_le_mul_of_nonneg_right (le_of_lt H) (!pow_nonneg_of_nonneg !abs_nonneg),
|
||||||
show (abs x) * (abs x)^i ≤ (abs x)^i, from !one_mul ▸ this),
|
assert (abs x) * (abs x)^i ≤ (abs x)^i, by krewrite one_mul at this; exact this,
|
||||||
|
show (abs x) ^ (succ i) ≤ (abs x)^i, by rewrite pow_succ; apply this),
|
||||||
have bdd_aX : ∀ i, 0 ≤ aX i, from take i, !pow_nonneg_of_nonneg !abs_nonneg,
|
have bdd_aX : ∀ i, 0 ≤ aX i, from take i, !pow_nonneg_of_nonneg !abs_nonneg,
|
||||||
have aXconv : aX ⟶ iaX in ℕ, from converges_to_seq_inf_of_nonincreasing noninc_aX bdd_aX,
|
assert aXconv : aX ⟶ iaX in ℕ, from converges_to_seq_inf_of_nonincreasing noninc_aX bdd_aX,
|
||||||
have asXconv : asX ⟶ iaX in ℕ, from metric_space.converges_to_seq_offset_succ aXconv,
|
have asXconv : asX ⟶ iaX in ℕ, from metric_space.converges_to_seq_offset_succ aXconv,
|
||||||
have asXconv' : asX ⟶ (abs x) * iaX in ℕ, from mul_left_converges_to_seq (abs x) aXconv,
|
have asXconv' : asX ⟶ (abs x) * iaX in ℕ, from mul_left_converges_to_seq (abs x) aXconv,
|
||||||
have iaX = (abs x) * iaX, from converges_to_seq_unique asXconv asXconv',
|
have iaX = (abs x) * iaX, from converges_to_seq_unique asXconv asXconv',
|
||||||
have iaX = 0, from eq_zero_of_mul_eq_self_left (ne_of_lt H) this⁻¹,
|
assert iaX = 0, from eq_zero_of_mul_eq_self_left (ne_of_lt H) (eq.symm this),
|
||||||
show aX ⟶ 0 in ℕ, from this ▸ aXconv
|
show aX ⟶ 0 in ℕ, begin rewrite -this, exact aXconv end --from this ▸ aXconv
|
||||||
|
|
||||||
end xn
|
end xn
|
||||||
|
|
||||||
|
@ -572,7 +574,7 @@ theorem neg_continuous_of_continuous {f : ℝ → ℝ} (Hcon : continuous f) : c
|
||||||
intros x' Hx',
|
intros x' Hx',
|
||||||
let HD := Hδ₂ x' Hx',
|
let HD := Hδ₂ x' Hx',
|
||||||
rewrite [-abs_neg, neg_neg_sub_neg],
|
rewrite [-abs_neg, neg_neg_sub_neg],
|
||||||
assumption
|
exact HD
|
||||||
end
|
end
|
||||||
|
|
||||||
theorem translate_continuous_of_continuous {f : ℝ → ℝ} (Hcon : continuous f) (a : ℝ) :
|
theorem translate_continuous_of_continuous {f : ℝ → ℝ} (Hcon : continuous f) (a : ℝ) :
|
||||||
|
@ -585,7 +587,7 @@ theorem translate_continuous_of_continuous {f : ℝ → ℝ} (Hcon : continuous
|
||||||
split,
|
split,
|
||||||
assumption,
|
assumption,
|
||||||
intros x' Hx',
|
intros x' Hx',
|
||||||
rewrite [add_sub_comm, sub_self, add_zero],
|
rewrite [add_sub_comm, sub_self, algebra.add_zero],
|
||||||
apply Hδ₂,
|
apply Hδ₂,
|
||||||
assumption
|
assumption
|
||||||
end
|
end
|
||||||
|
@ -622,7 +624,7 @@ private theorem ex_delta_lt {x : ℝ} (Hx : f x < 0) (Hxb : x < b) : ∃ δ :
|
||||||
exact div_two_lt_of_pos (and.left Hδ),
|
exact div_two_lt_of_pos (and.left Hδ),
|
||||||
exact Haδ},
|
exact Haδ},
|
||||||
{apply and.right Hδ,
|
{apply and.right Hδ,
|
||||||
rewrite [sub_add_eq_sub_sub, sub_self, zero_sub, abs_neg,
|
krewrite [sub_add_eq_sub_sub, sub_self, zero_sub, abs_neg,
|
||||||
abs_of_pos (div_pos_of_pos_of_pos (and.left Hδ) two_pos)],
|
abs_of_pos (div_pos_of_pos_of_pos (and.left Hδ) two_pos)],
|
||||||
exact div_two_lt_of_pos (and.left Hδ)},
|
exact div_two_lt_of_pos (and.left Hδ)},
|
||||||
existsi (b - x) / 2,
|
existsi (b - x) / 2,
|
||||||
|
@ -633,7 +635,7 @@ private theorem ex_delta_lt {x : ℝ} (Hx : f x < 0) (Hxb : x < b) : ∃ δ :
|
||||||
split,
|
split,
|
||||||
{apply add_midpoint Hxb},
|
{apply add_midpoint Hxb},
|
||||||
{apply and.right Hδ,
|
{apply and.right Hδ,
|
||||||
rewrite [sub_add_eq_sub_sub, sub_self, zero_sub, abs_neg,
|
krewrite [sub_add_eq_sub_sub, sub_self, zero_sub, abs_neg,
|
||||||
abs_of_pos (div_pos_of_pos_of_pos (sub_pos_of_lt Hxb) two_pos)],
|
abs_of_pos (div_pos_of_pos_of_pos (sub_pos_of_lt Hxb) two_pos)],
|
||||||
apply lt_of_lt_of_le,
|
apply lt_of_lt_of_le,
|
||||||
apply div_two_lt_of_pos (sub_pos_of_lt Hxb),
|
apply div_two_lt_of_pos (sub_pos_of_lt Hxb),
|
||||||
|
@ -730,7 +732,7 @@ private theorem intermediate_value_incr_aux2 : ∃ δ : ℝ, δ > 0 ∧ a + δ <
|
||||||
exact div_two_lt_of_pos (and.left Hδ),
|
exact div_two_lt_of_pos (and.left Hδ),
|
||||||
exact Haδ},
|
exact Haδ},
|
||||||
{apply and.right Hδ,
|
{apply and.right Hδ,
|
||||||
rewrite [sub_add_eq_sub_sub, sub_self, zero_sub, abs_neg,
|
krewrite [sub_add_eq_sub_sub, sub_self, zero_sub, abs_neg,
|
||||||
abs_of_pos (div_pos_of_pos_of_pos (and.left Hδ) two_pos)],
|
abs_of_pos (div_pos_of_pos_of_pos (and.left Hδ) two_pos)],
|
||||||
exact div_two_lt_of_pos (and.left Hδ)},
|
exact div_two_lt_of_pos (and.left Hδ)},
|
||||||
existsi (b - a) / 2,
|
existsi (b - a) / 2,
|
||||||
|
@ -741,7 +743,7 @@ private theorem intermediate_value_incr_aux2 : ∃ δ : ℝ, δ > 0 ∧ a + δ <
|
||||||
split,
|
split,
|
||||||
{apply add_midpoint Hab},
|
{apply add_midpoint Hab},
|
||||||
{apply and.right Hδ,
|
{apply and.right Hδ,
|
||||||
rewrite [sub_add_eq_sub_sub, sub_self, zero_sub, abs_neg,
|
krewrite [sub_add_eq_sub_sub, sub_self, zero_sub, abs_neg,
|
||||||
abs_of_pos (div_pos_of_pos_of_pos (sub_pos_of_lt Hab) two_pos)],
|
abs_of_pos (div_pos_of_pos_of_pos (sub_pos_of_lt Hab) two_pos)],
|
||||||
apply lt_of_lt_of_le,
|
apply lt_of_lt_of_le,
|
||||||
apply div_two_lt_of_pos (sub_pos_of_lt Hab),
|
apply div_two_lt_of_pos (sub_pos_of_lt Hab),
|
||||||
|
@ -775,7 +777,7 @@ theorem intermediate_value_incr_zero : ∃ c, a < c ∧ c < b ∧ f c = 0 :=
|
||||||
apply le_of_not_gt,
|
apply le_of_not_gt,
|
||||||
intro Hxgt,
|
intro Hxgt,
|
||||||
have Hxgt' : b - x < δ, from sub_lt_of_sub_lt Hxgt,
|
have Hxgt' : b - x < δ, from sub_lt_of_sub_lt Hxgt,
|
||||||
rewrite -(abs_of_pos (sub_pos_of_lt (and.left Hx))) at Hxgt',
|
krewrite -(abs_of_pos (sub_pos_of_lt (and.left Hx))) at Hxgt',
|
||||||
let Hxgt'' := and.right Hδ _ Hxgt',
|
let Hxgt'' := and.right Hδ _ Hxgt',
|
||||||
exact not_lt_of_ge (le_of_lt Hxgt'') (and.right Hx)},
|
exact not_lt_of_ge (le_of_lt Hxgt'') (and.right Hx)},
|
||||||
{exact sup_fn_interval}
|
{exact sup_fn_interval}
|
||||||
|
|
Loading…
Reference in a new issue